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 ABSTRACT: Control of polymer initiation, propagation and 
termination is important in the development of complex 
polymer structures and advanced materials.  Typically, this 
has been achieved chemically, electrochemically, photo-
chemically, or mechanochemically. Electrochemical control 
has been demonstrated in radical polymerizations; however, 
regulation of a cationic polymerization has yet to be 
achieved. Through the reversible oxidation of a polymer 
chain end with an electrochemical mediator, temporal con-
trol over polymer chain growth in cationic polymerizations 
was realized. By subjecting a stable organic nitroxyl radical 
mediator and chain transfer agent to an oxidizing current, 
control over polymer molecular weight and dispersity is 
demonstrated and excellent chain end fidelity allows for the 
synthesis of block copolymers.  

 Recently there has been a significant push to develop 
polymerizations where polymer chain growth is controlled 
by a chemical,

1
 electrochemical,

2
 photochemical,

3
 or mecha-

nochemical
4
 stimulus. The spatiotemporal control offered by 

these stimuli give an additional means to precisely regulate 
polymer structure and, hence, function.

5
 Of these stimuli, 

electrochemistry offers unique advantages because both ap-
plied voltage and current can be modified and monitored 
throughout the polymerization process.

6
 Taking advantage of 

this, Matyjaszewski developed an electrochemically mediated 
atom transfer radical polymerization (eATRP),

7
 which has 

proved powerful in a number of applications.
8
 More recently, 

Matyjaszewski
9
 and Yan

10
 independently reported electro-

chemically mediated reversible addition fragmentation chain 
transfer processes (eRAFT). However, to date, electrochemi-
cal mediation of controlled polymerizations has been re-
stricted to radical mechanisms and its implementation in 
other polymerization types remains a challenge.

1,2
 In this 

study, we address this challenge and disclose a controlled 
cationic polymerization where chain growth is electrochemi-
cally regulated.  

Recently, our group developed a cationic polymerization 
of vinyl ethers that was controlled by light.

11
 By selectively 

oxidizing a dithiocarbamate polymer chain end with an ap-
propriate photoredox catalyst, we were able to reversibly 
form a propagating carbocation that participated in a con-
trolled cationic RAFT process.

11,12
 In an analogous strategy, 

we hypothesized that we could reversibly form the carbo-
cation in this process with electrical potential instead of 

light, which would give a system where chain growth would 
be regulated electrochemically (Figure 1).  

Our group has previously shown that upon photochemical 
oxidation of a dithiocarbamate chain transfer agent (CTA), 1, 
mesolytic cleavage occurs to generate an oxocarbenium ion 
and a stabilized dithiocarbamate radical.

11c
 Cyclic voltamme-

try (CV) of 1 showed that an irreversible oxidation was occur-
ring, suggesting that a similar oxidation followed by meso-
lytic cleavage process could be occurring at the electrode 
surface (Figure 2a). To test our hypothesis that this oxida-
tion/mesolytic cleavage at the anode would give rise to cati-
onic polymerization, we looked at the polymerization of iso-
butyl vinyl ether (IBVE) in a divided electrochemical cell 
with reticulated vitreous carbon (RVC) electrodes. Encourag-
ingly, when a constant potential of 325 mV (vs Fc

+
/Fc) was 

Figure 1: Proposed electrochemically mediated cationic 
polymerization of vinyl ethers. 

Figure 2: CV of (a) 1 X 10
–3

 M isobutoxy-N,N-diethyl dithi-
ocarbamate, (b) 5 X 10

–4
 M (2,2,6,6-tetramethyylpiperidin-

1-yl)oxyl (TEMPO), and (c)1 X 10
–3

 M isobutyl vinyl ether 
in 0.1 M tetrabutylammonium perchlorate in dichloro-
methane at 20 mVs

–1
. 

Page 1 of 5

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

applied to a solution of IBVE, 1, and tetrabutylammonium 
perchlorate (Bu4NClO4) in dichloromethane, cationic 
polymerization did occur (Table 1, entry 1). However, the 
polymers resulting from this direct electrolysis of the CTA 
exhibited broad dispersities (Đ) with bimodal molecular 
weight distributions (see supporting information, Figure S7).  

We reasoned that the observed uncontrolled polymeriza-
tion could be attributed to polymer plating on the electrode 
as a result of the irreversible oxidation of the CTA.

9
 To cir-

cumvent this issue, we envisaged that the use of a mediator 
capable of reversible electron transfer at the electrode and 
homogenous oxidation of the CTA would provide controlled 
polymerization.

13
 Indeed, the addition of TEMPO (Figure 2b), 

which fit the criteria for the mediator, to the reaction mix-
ture resulted in a 8.4 kg/mol polymer with a Đ of 1.23 (Table 
1, entry 2).

14
 Importantly, excellent agreement between theo-

retical and experimental molar masses was observed, demon-
strating that we have a controlled cationic polymerization 
that is electrochemically mediated. Approximately 1 equiva-
lent of TEMPO with respect to CTA was found to be optimal 
for these polymerizations, with deviations to higher or lower 
concentrations leading to a loss in control over the molecular 
weight (Table 1, entries 2 vs 3-4). As a control experiment and 
in further support of our mechanistic hypothesis, elimination 
of the RAFT equilibrium by removal of the CTA led to un-
controlled polymerization (Table 1, entry 5). 

Upon further investigation, we found that higher conver-
sion of the monomer could be obtained under galvanostatic 
conditions, wherein the potential is allowed to drift in unison 
with E1/2 of the TEMPO redox couple as the concentration of 
TEMPO

+
 increases.

15
 Delivering an anodic current (1 mA) 

resulted in controlled polymerizations that could be run to 
full conversion (Table 1, entries 6–9).

16
 Interestingly, switch-

ing the electrolyte to tetrabutylammonium hexafluorophos-
phate or tetrabutylammonium tetrafluoroborate resulted in 
slightly broader Đs (Table 1, entries 10,11).

17
  

Under optimal galvanostatic conditions, monitoring the 
reaction conversion as a function of time revealed a short 
induction period followed by fast polymerization with full 
conversion being reached within 3 hours (Figure 3a). Addi-
tionally, Mn increased linearly and Đ decreased with conver-
sion, characteristic of a controlled chain growth mechanism 
(Figure 3b).  

To demonstrate temporal control over polymer chain 
growth, a reaction mixture of IBVE, CTA, and TEMPO was 
subjected to 1 mA anodic current for twenty minutes. Subse-
quently, the electrode was set to (-)875 mV vs Fc/Fc

+
 for 30 

minutes; we reasoned that this potential should reduce the 
dithiocarbamate radical (or disulfide) to the corresponding 
anion, which would cap propagating oxocarbenium ions.

18
 

Indeed, switching to a reducing potential stopped polymer 
chain growth with little to no background reaction observed.  

Table 1: Development of IBVE polymerization mediated by the 
electrooxidation TEMPO. 

 

Entry
a
 Stimuli [M]:[1]: 

[TEMPO] 

Mn,Theo
b
 

(kg/mol)
 

Mn,Exp
 

(kg/mol) 
Đ 

1
c
 325 mV 100:1:0 10.3 10.9 1.97 

2
c
 325 mV 100:1:1 8.3 8.4 1.23 

3
c
 325 mV 100:1:0.1 9.9 7.1 1.50 

4
c
 325 mV 100:1:50 9.9 6.6 1.39 

5
c
 325 mV 100:0:1 – 27.9 2.93 

6 1 mA 100:2:1 5.0 6.8 1.07 

7 1 mA 100:1.5:1.5 6.9 8.8 1.09 

8 1 mA 100:1:1 10.4 10.1 1.15 

9 0.1 mA 100:0.25:0.25 28.8 22.5 1.33 

10
d
 1 mA 100:1:1 9.5 8.1 1.45 

11
e
 1 mA 100:1:1 9.9 10.7 1.20 

Figure 3: (a) Conversion of isobutyl vinyl ether with time. 
(b) Relationship between Mn and conversion. 

a
[IBVE] = 3.84 M (in DCM), Vtot= 5 mL, [Bu4NClO4] = 0.1 

M, RVC Anode, Ag Reference, RVC Cathode (Divided cell). 
b
Mn,Theo = [M]/[CTA] ☓ MWM ☓ Conversion + MWCTA. 

c
Potential vs Fc

+
/Fc. 

d
Electrolyte = [Bu4NPF6] = 0.1 M.            

e
Electrolyte = [Bu4NBF4] = 0.1 M 

Figure 4: Temporal control of polymer chain growth 
with intermittent oxidizing current and reducing poten-
tial.  
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Reinitiation was then achieved by again applying the oxidiz-
ing current for 15 minutes. This process was successfully re-
peated multiple times, with polymerization only occurring 
when an oxidizing current was applied (Figure 4). These data 
demonstrated that we have excellent electrochemical control 
over polymer chain growth and the reactions can be reversi-
bly initiated or terminated by switching the direction of cur-
rent flow in the cell.  

  To explore the scope of our electrochemical polymeriza-
tion protocol, we surveyed an array of vinyl ethers. n-Butyl 
vinyl ether (nBuVE), n-propyl vinyl ether (nPrVE), ethyl vinyl 
ether (EVE), and 2-chloroethyl vinyl ether (Cl-EVE) all un-
derwent polymerization under the optimized galvonostatic 
conditions (Table 2). The resulting polymers showed good 
agreement between theoretical and experimental molecular 
weights, along with narrow Đs.  Notably, 4-methoxystyrene 
was polymerized under slightly more demanding conditions 
(2 mA), constituting an improvement upon the photocon-
trolled polymerizations we previously reported, which did 
not promote polymerizations of styryl monomers.

11a,19
 Alt-

hough the resulting polymer has slightly broader dispersities 
when compared to the vinyl ethers, this preliminary finding 
highlights the versatility of this electrochemically mediated 

polymerization.  

To further probe chain end fidelity delivered by this meth-
od we successfully chain extended a macroinitiator. A 5.1 
kg/mol poly(EVE) was first synthesized under the optimized 
conditions, to which, IBVE was added to the anodic chamber 
and an oxidizing current was resumed. A clear shift to higher 
molar masses was observed to give a 8.0 kg/mol poly(EVE-b-
IBVE) with narrow dispersity (Figure 5).   

To further understand the role of TEMPO in these reac-
tions, we found that when an oxidizing potential (325 mV vs 
Fc

+
/Fc) was applied to a solution of the CTA and TEMPO, 

tetraethylthiuram disulfide was observed as a result of the 

dimerization of II, a byproduct of oxidatively cleaved CTA. 
Based on this result and our polymerization data above, we 
propose that the oxidized TEMPO cation undergoes an at-
tack by the CTA to form a stabilized cationic intermediate I 
(Figure 6).

20
 Fragmentation of the cation gives the dithiocar-

bamate radical II and the oxocarbenium ion that participates 
in the RAFT process, as well as regenerates TEMPO; togeth-
er, this two step process completes an innersphere electron 
transfer. We hypothesize that when the current in the elec-
trochemical cell is reversed, dithiocarbamate radical II or its 
dimeric form gets reduced to the anion and caps the propa-
gating cation.

18
 This recapping step gives efficient electro-

chemical control over polymer chain growth.  

In summary, we have developed an electrochemically me-
diated cationic polymerization, which offers excellent tem-
poral control over polymer growth. A variety of poly(vinyl 
ethers) with narrow dispersities and predictable Mn values 
were obtained and the ability to polymerize less activated 
monomers was demonstrated. High chain end fidelity allows 
for the synthesis of block copolymers, while reversible elec-
trochemical activation/deactivation of chain ends allows 
precise temporal control of chain growth. This new electro-
chemical handle for controlling cationic polymer growth 

Table 2: Polymerization of vinyl ether and stryl monomers. 

Entry
a
 Monomer Mn,Theo

b 

(kg/mol) 

Mn,Exp 

(kg/mol) 

Đ 

1 nBuVE 9.9 9.7 1.32 

2 nPrVE 10.2 8.1 1.11 

3 EVE 10.4 9.7 1.14 

4 Cl-EVE 10.3 11.3 1.12 

5
c
 p-OMe-Styrene 10.2 9.2 1.33 

a
[M] = 42% in DCM v/v, Vtot = 6 mL, [Bu4NClO4] = 0.1 M, 

RVC Anode, Ag Reference, RVC Cathode (Divided), Reac-

tion time = 4 h. 
b
Mn,Theo = [M]/[CTA] ☓ MWM ☓ Conver-

sion + MWCTA.  
c
Applied current = 2 mA. 

Figure 5: Synthesis and GPC traces of poly(ethyl vinyl 
ether) and poly(ethyl vinyl ether-block-isobutyl vinyl 
ether. 

Figure 6: Proposed catalytic cycle of the TEMPO mediat-
ed polymerization of vinyl ethers. 
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should allow for the synthesis of complex polymer architec-
tures, and provide a template for future electrochemically 
controlled polymerizations. 
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