

Room-Temperature Chromium(II)-Catalyzed Direct Arylation of Pyridines, Aryl Oxazolines, and Imines Using Arylmagnesium Reagents

Olesya M. Kuzmina and Paul Knochel*

Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 Munich, Germany

S Supporting Information

ABSTRACT: We report a CrCl₂-catalyzed oxidative arylation of various pyridines, aryl oxazolines, and aryl imines using aromatic Grignard reagents in the presence of 2,3-dichlorobutane (DCB). Most of the reactions proceed rapidly at 25 °C and do not require any additional ligand. Benzo [h]quinoline, 2-arylpyridine, aryl oxazoline, and imines were

successfully arylated in good yields under these conditions. A TMS-substituent was used to prevent double arylation. After oxidative cross-coupling the TMS-group was further converted to a second ortho-aryl substituent. Remarkably, inexpensive aryl N-butylimine derivatives are excellent substrates for this oxidative arylation.

he formation of C–C bonds involving a transition-metal L catalyzed C–H activation has been widely developed in recent years.¹ A range of transition metals such as Pd,² Ru,³ Rh,⁴ Co,⁵ and Fe^{6,7} catalyze such cross-couplings. Iron and to some extent cobalt complexes are of special interest due to the moderate price and toxicity of these metals. The pioneering work of Nakamura and Yoshikai involving iron^{6a,b,e} or cobalt catalysis^{5a-f,h,j-1} and the recent modification of Wang and Shi^{5g} have attracted much attention. Although very attractive, the large amounts of Grignard reagents required to reach full conversion, the long reaction times, 5g,6a,d and the need for appropriate ligands (such as cis-1,2-bis(diphenylphosphino)ethylene, 1,10-phenanthroline, 4,4'-di-*tert*-2,2-bipyridyl or *N*-heterocyclic carbenes)^{Sh-k,6a,b,7b} are drawbacks that make improvements still desirable.⁷ Previously, we reported that CrCl₂ is an excellent catalyst for performing cross-couplings between aryl or heteroaryl halides and Grignard reagents.⁸ The key feature of this cross-coupling is the very small amount of homocoupling product formed, implying that almost no excess of Grignard reagent is required. Furthermore, these chromium-(II)-catalyzed cross-couplings are very fast reactions. These interesting features led us to examine directed C-H bond activation reactions involving CrCl₂.⁹ Herein, we report the first Cr-catalyzed directed arylation of *N*-heterocycles,^{2b,3c,Sb,g,6a,7a-c} aryl oxazolines,^{3c,e} and aryl imines,^{5d,h,j,k,7a,c} which proceed usually rapidly at 25 °C and do not require any additional ligand. Thus, we have treated benzo [h] quinoline (1) with PhMgBr (2a, 1.5–4 equiv) in the presence of catalytic amounts of $CrCl_2^{10}$ and a 1,2-dichloroalkane acting as an oxidant at 25 °C for 24 h (Table 1). The use of 5 mol % of CrCl₂ led to the desired phenylated product in 57% yield, in the presence of 2,3dichlorobutane (DCB)^{5g} as an oxidant (entry 2). Using 10 mol % of CrCl₂ increased the yield of 3a to 98% (calibrated GCyield; entry 3). Lowering the amount of Grignard reagent to 1.5 or 2.5 equiv (instead of 4 equiv) decreased the yield respectively

H H H H H H H H H H H H H H				
entry	CrCl ₂ (mol %)	PhMgBr (2a ; equiv)	oxidant	yield of $3a$ (%) ^{<i>a</i>}
1	0	4	2,3-dichlorobutane (DCB)	0
2	5	4	DCB	57
3	10	4	DCB	98 $(95)^b$
4	10	1.5	DCB	19
5	10	2.5	DCB	63
6	10	4	1,2-dichloroethane	45
7	10	4	1,2-dichloro-2- methylpropane	87
8	10	4	without	10

^aYield determined after 24 h by integration of a GC chromatogram and comparison with undecane as a calibrated internal standart. ^bYield of isolated product.

to 19% and 63% (entries 4 and 5).¹¹ Changing the nature of the oxidant from DCB^{5g} to 1,2-dichloroethane or 1,2-dichloro-2methylpropane^{6a,7} led to lower yields (45-87%; entries 6 and 7). In the absence of an oxidant, only 10% of 3a was obtained (entry 8). Treatment of benzo [h] quinoline (1) with PhMgBr (2a; 4 equiv) under the optimized conditions provided the arylated heterocycle **3a** in 95% isolated yield (entry 3). Similarly, other arylmagnesium reagents bearing either donor or acceptor substituents undergo a high yield arylation at position 10 furnishing the arylated benzo [h] quinolines **3b**-**f** in 66–90%

Received: September 4, 2014

yield (entries 2–6 of Table 2). Using the same conditions, it was also possible to arylate 2-(2-trimethylsilylphenyl)pyridine (4) with various arylmagnesium reagents, affording the expected pyridines 5a-e in 79–92% yield (entries 7–11 of Table 2).

Interestingly, these chromium(II)-catalyzed arylations proceed within a few hours at 25 °C. The role of the TMS-group

^{*a*}Yield of isolated product after purification by flash column chromatography. ^{*b*}For entry 1, CrCl₂ (99.99%) was used. In all further experiments, CrCl₂ of 97% purity was used. ^{*c*}Reaction run for 38 h. ^{*d*}Reaction run for 4 h.

(TMS = trimethylsilyl) at position 2 is to avoid a double arylation. This group can be further used to introduce a second different aryl substituent as shown in Scheme 1.

Scheme 1. Selective Bis-arylation of Phenylpyridine 4 Using Chromium and Palladium Catalysts

Thus, the treatment of **4** with 3-tolylmagnesium bromide (**2h**) in the presence of $CrCl_2$ (10 mol %; 97% purity) and DCB (1.5 equiv) afforded the arylated product **5f** in 89% yield. Treatment with ICl in refluxing CH_2Cl_2 for 12 h, followed by Negishi cross-coupling¹² with the cyano-substituted phenylzinc derivative **6** in the presence of 3 mol % Pd(dba)₂ (dba = dibenzylideneacetone) and 6 mol % tfp (tfp = tris(2-furyl)phosphine)¹³ at 50 °C for 15 h, furnished the bis-arylated pyridine 7 in 63% yield over two steps (Scheme 1).

Aryl oxazolines are very popular substituents for directed C– H bond activation. Using the 2-TMS-phenyl oxazoline 8, we have achieved an efficient C–H activation and arylation with various Grignard reagents as shown in Scheme 2. Functional groups such as a methoxy, a dimethylamino, or an OTBS group were well tolerated, and the *ortho*-arylated oxazolines 9a-d were obtained in 72–91% yield (Scheme 2).

Scheme 2. Chromium-Catalyzed Arylation of 2-(2-Trimethylsilyl)phenyl)oxazoline (8) with Grignard Reagents 2

To convert the TMS group into a second aryl substituent, we have first arylated 8 with the Grignard reagent 2f using 10 mol % $CrCl_2$ and DCB (1.5 equiv) and have obtained oxazoline 9e in 87% yield (Scheme 3).

Treatment of **9e** with ICl in refluxing CH_2Cl_2 for 6 h, and subsequent Negishi cross-coupling with the ester-substituted phenylzinc derivative **10** in the presence of 3 mol % Pd(dba)₂ and 6 mol % tfp, furnishes the bis-arylated pyridine **11** in 89% yield over two steps (Scheme 3).

Also, we have found that imine-protected aldehydes 12 and 13 undergo this chromium-catalyzed C–H activation, furnishing the aldehydes 14a-f in 61-88% yield (Scheme 4). Remarkably, the reaction time is strongly dependent on the nature of an aryl imine of type 12 or 13. When the aryl *N*-(*p*-methoxy)phenyl

Scheme 3. Selective Bis-Arylation of the 2-(2-Trimethylsilyl)phenyl)oxazoline (8) Using Chromium and Palladium Catalysts

Scheme 4. Chromium-Catalyzed Arylation of Imines 12 and 13 with Grignard Reagents 2

imine 12 was used, the chromium-catalyzed arylation reactions using Grignard reagents 2c, 2f, 2d, and (3-chloro-4-(trifluoromethyl)phenyl)magnesium bromide (2i) proceeded with reaction times of 16–25 h. On the other hand, the aryl *N*butyl imine 13 reacted with Grignard reagents 2c, 2f, (4-(trifluoromethoxy)phenyl)magnesium bromide (2j) and (4-(*tert*-butyl)phenyl)magnesium bromide (2k) with much faster rates (1.5–3 h) giving after acidic workup the arylated aldehydes 14a–b and 14e–f in 73–88% yield (Scheme 4).

To show the practicability of this chromium C-H activation method, we have performed an unsymmetrical bis-arylation of the imine **15** derived from 2-chlorobenzaldehyde, via a one-pot Cr-catalyzed cross-coupling followed by a Cr-catalyzed oxidative arylation (Scheme 5).

Scheme 5. One-Pot Synthesis of Bis-Arylated Aldehyde 17 Using Chromium-Catalyzed Cross-Coupling and C–H Bond Activation Reactions

Thus, the Cr-catalyzed cross-coupling of **15** with the Grignard reagent (**2l**; 1.5 equiv) leads to the arylated imine **16**. Without isolation, a second Grignard reagent (**2f**; 4 equiv) was added and the desired C-H activation and cross-coupling is complete within 1 h at 25 °C, providing after acidic workup the

unsymmetrically bis-arylated aldehyde 17 in 65% yield (Scheme 5).

In conclusion, we have shown that $CrCl_2$ is a very efficient catalyst for the performance of C–H activations of benzo[h]-quinoline, 2-phenylpyridine, phenyl oxazoline, and aryl imines using DCB as an oxidant. All these direct arylations proceed at 25 °C. The high catalytic activity of $CrCl_2$ avoids the use of additional ligands, and a broad reaction scope is achieved. Also, in the case of the direct arylation of imines, the use of *N*-butyl imines is possible for the first time (usually *N*-aryl imines are required). Further extensions of these Cr-catalyzed arylations are underway in our laboratories.

ASSOCIATED CONTENT

S Supporting Information

Full experimental details, ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: paul.knochel@cup.uni-muenchen.de.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We would like to thank DFG (Deutsche Forschungsgemeinschaft) for financial support. We also thank BASF SE and Rockwood Lithium GmbH for the generous gift of chemicals.

REFERENCES

(1) For reviews on C-H bond activations, see: (a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731. (b) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (c) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792. (d) Kulkarni, A. A.; Daugulis, O. Synthesis 2009, 4087. (e) Chen, X.; Engle, K. M.; Wang, D.-H; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (f) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (g) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (h) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236. (i) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726.

(2) For palladium-catalyzed C-H bond activations, see: (a) Zhou, C.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 2302. (b) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330. (c) Wang, D.-H.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 17676. (d) Zhou, W.; Li, H.; Wang, L. Org. Lett. 2012, 14, 4594. (3) For ruthenium-catalyzed C-H bond activations, see: (a) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529. (b) Harris, P. W. R.; Rickard, C. E. F.; Woodgate, P. D. J. Organomet. Chem. 1999, 589, 168. (c) Matsuura, Y.; Tamura, M.; Kochi, T.; Sato, M.; Chantani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 9858. (d) Muralirajan, K.; Parthasarathy, K.; Cheng, C.-H. Org. Lett. 2012, 14, 4262. (e) Ogiwara, Y.; Kochi, T.; Kakiuchi, F. Chem. Lett. 2014, 43, 667.

(4) For rhodium-catalyzed C-H bond activations, see: (a) Muralirajan, K.; Parthasarathy, K.; Cheng, C.-H. *Angew. Chem. Int., Ed.* **2011**, 50, 4969. (b) Patureau, F. W.; Nimphius, C.; Glorius, F. *Org. Lett.* **2011**, 13, 6343. (c) Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. *J. Am. Chem. Soc.* **2011**, 133, 2154.

(5) For cobalt-catalyzed C–H bond activations, see: (a) Ding, Z.; Yoshikai, N. Org. Lett. **2010**, *12*, 4180. (b) Gao, K.; Lee, P.-S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc. **2010**, *132*, 12249. (c) Chen, Q.; Ilies, L.; Yoshikai, N.; Nakamura, E. Org. Lett. **2011**, *13*, 3232. (d) Lee, P.-S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc. 2011, 133, 17283. (e) Ilies, L.;
Chen, Q.; Zeng, X.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 5221.
(f) Chen, Q.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 428.
(g) Li, B.; Wu, Z.-H.; Gu, Y.-F.; Sun, C.-L.; Wang, B.-Q.; Shi, Z.-J.
Angew. Chem., Int. Ed. 2011, 50, 1109. (h) Gao, K.; Lee, P.-S.; Long, C.;
Yoshikai, N. Org. Lett. 2012, 14, 4234. (i) Song, W.; Ackermann, L.
Angew. Chem., Int. Ed. 2012, 51, 8251. (j) Gao, K.; Yoshikai, N. J. Am.
Chem. Soc. 2013, 135, 9279. (k) Gao, K.; Yoshikai, N. Acc. Chem. Res.
2014, 47, 1208. (l) Gao, K.; Yamakawa, T.; Yoshikai, N. Synthesis 2014, 46, 2024.

(6) For iron-catalyzed C-H bond activations, see: (a) Norinder, J.; Matsumoto, A.; Yoshikai, N.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 5858. (b) Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 17755. (c) Li, K.; Tan, G.; Huang, J.; Song, F.; You, J. Angew. Chem., Int. Ed. 2013, 52, 12942. (d) Gu, Q.; Al Mamari, H. H.; Graczyk, K.; Diers, E.; Ackermann, L. Angew. Chem., Int. Ed. 2014, 53, 3868. (e) Asako, S.; Norinder, J.; Ilies, L.; Yoshikai, N.; Nakamura, E. Adv. Synth. Catal. 2014, 356, 1481.

(7) For already reported improvements, see: (a) Yoshikai, N.; Asako, S.; Yamakawa, T.; Ilies, L.; Nakamura, E. *Chem.—Asian J.* **2011**, *6*, 3059. (b) Ilies, L.; Asako, S.; Nakamura, E. *J. Am. Chem. Soc.* **2011**, *133*, 7672. (c) Sirois, J.; Davis, R.; DeBoef, B. Org. Lett. **2014**, *16*, 868.

(8) Steib, A. K.; Kuzmina, O. M.; Fernandez, S.; Flubacher, D.; Knochel, P. J. Am. Chem. Soc. 2013, 135, 15346.

(9) For key coupling reactions using chromium(II) salts, see: (a) Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am. Chem. Soc. 1977, 99, 3179. (b) Okude, Y.; Hiyama, T.; Nozaki, H. Tetrahedron Lett. 1977, 3829. (c) Takai, K.; Kimura, K.; Kuroda, T.; Hiyama, T.; Nozaki, H. Tetrahedron Lett. 1983, 24, 5281. (d) Jin, H.; Uenishi, J.-I.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644. (e) Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 6048. (f) Matsubara, S.; Horiuchi, M.; Takai, K.; Utimoto, K. Chem. Lett. 1995, 259. (g) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349. (h) Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem., Int. Ed. 1998, 37, 152. (i) Fürstner, A. Chem. Rev. 1999, 99, 991. (j) Takai, K.; Toshikawa, S.; Inoue, A.; Kokumai, R. J. Am. Chem. Soc. 2003, 125, 12990. (k) Takai, K.; Toshikawa, S.; Inoue, A.; Kokumai, R.; Hirano, M. J. Organomet. Chem. 2007, 692, 520. (1) Murakami, K.; Ohmiya, H.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 1569. (m) Holzwarth, M. S.; Plietker, B. ChemCatChem 2013, 5, 1650.

(10) For experiments of Table 1, 99.99% pure $CrCl_2$ has been used. All further experiments were performed with $CrCl_2$ (97%).

(11) The reaction theoretically requires 2 equiv of Grignard reagent (1 equiv for deprotonation and 1 equiv for coupling). Additionally some small amount of Grignard reagent is needed to reduce the $CrCl_2$ to its catalytically active species. Further optimizations are under investigation in our laboratories.

(12) (a) Negishi, E.-i.; Valente, L. F.; Kobayashi, M. Am. Chem. Soc. **1980**, 102, 3298. (b) Negishi, E.-i. Acc. Chem. Res. **1982**, 15, 340.

(13) (a) Farina, V.; Krishman, B. J. Am. Chem. Soc. **1991**, 113, 9585– 9595. (b) Farina, V.; Kapadia, S.; Krishman, B.; Wang, C.; Liebeskind, L. J. Org. Chem. **1994**, 59, 5905.