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ABSTRACT: We report a CrCl,-catalyzed oxidative arylation
of various pyridines, aryl oxazolines, and aryl imines using
aromatic Grignard reagents in the presence of 2,3-dichlor-
obutane (DCB). Most of the reactions proceed rapidly at 25
°C and do not require any additional ligand. Benzo[h]-
quinoline, 2-arylpyridine, aryl oxazoline, and imines were
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successfully arylated in good yields under these conditions. A TMS-substituent was used to prevent double arylation. After
oxidative cross-coupling the TMS-group was further converted to a second ortho-aryl substituent. Remarkably, inexpensive aryl
N-butylimine derivatives are excellent substrates for this oxidative arylation.

he formation of C—C bonds involving a transition-metal

catalyzed C—H activation has been widely developed in
recent years. A range of transition metals such as Pd,? Ru,® Rh,*
Co,”® and Fe®” catalyze such cross-couplings. Iron and to some
extent cobalt complexes are of special interest due to the
moderate price and toxicity of these metals. The pioneering
work of Nakamura and Yoshikai involving iron®*™® or cobalt
catalysis®* "™ and the recent modification of Wang and Shi*®
have attracted much attention. Although very attractive, the
large amounts of Grignard reagents reqdulred to reach full
conversion, the long reaction times,*® and the need for
appropriate ligands (such as cis-1,2-bis(diphenylphosphino)-
ethylene, 1,10-phenanthroline, 4,4'-di-tert-2,2-bipyridyl or N-
heterocyclic carbenes )%™ 7 are drawbacks that make
improvements  still desirable.” Previously, we reported that
CrCl, is an excellent catalyst for performing cross-couplings
between aryl or heteroaryl halides and Grignard reagents.® The
key feature of this cross-coupling is the very small amount of
homocoupling product formed, implying that almost no excess
of Grignard reagent is required. Furthermore, these chromium-
(11)-catalyzed cross-couplings are very fast reactions. These
interesting features led us to examlne directed C—H bond
activation reactions involving CrCl,.” Herein, we report the first
Cr-catalyzed directed arylation of N-heterocycles,*>°>&672<
aryl oxazolines,>** and aryl imines,**™"7* which proceed
usually rapidly at 25 °C and do not require any additional ligand.
Thus, we have treated benzo[h]quinoline (1) with PhMgBr (2a,
1.5—4 equiv) in the presence of catalytic amounts of CrCl,"
and a 1,2-dichloroalkane acting as an oxidant at 25 °C for 24 h
(Table 1). The use of S mol % of CrCl, led to the desired
phenylated product in 57% yield, in the presence of 2,3-
dichlorobutane (DCB)’® as an oxidant (entry 2). Using 10 mol
% of CrCl, increased the yield of 3a to 98% (calibrated GC-
yield; entry 3). Lowering the amount of Grignard reagent to 1.5
or 2.5 equiv (instead of 4 equiv) decreased the yield respectively
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Table 1. Optimization of the Reaction of Benzo[h]quinoline
(1) with PhMgBr (2a) Catalyzed by CrCl,

% PhMgCI (2a; equiv) | \
-
) "

oL mol %) O
oxidant (1.5 equiv) Ph
THF, 25 °C, 24 h
1 3a
CrCl, PhMgBr yield of 3a
entry  (mol %) (2a; equiv) oxidant (%)*
1 0 4 2,3-dichlorobutane 0
(DCB)
2 S 4 DCB 57
3 10 4 DCB 98 (95)”
4 10 1.5 DCB 19
N 10 2.5 DCB 63
6 10 4 1,2-dichloroethane 45
7 10 4 1,2-dichloro-2- 87
methylpropane
8 10 4 without 10

“Yield determined after 24 h by integration of a GC chromatogram
and comparison with undecane as a calibrated internal standart. bYield
of isolated product.

to 19% and 63% (entries 4 and 5)."" Changing the nature of the
oxidant from DCB® to 1,2-dichloroethane or 1,2-dichloro-2-
methylpropane®” led to lower yields (45—87%; entries 6 and
7). In the absence of an oxidant, only 10% of 3a was obtained
(entry 8). Treatment of benzo[h]quinoline (1) with PhMgBr
(2a; 4 equiv) under the optimized conditions provided the
arylated heterocycle 3a in 95% isolated yield (entry 3). Similarly,
other arylmagnesium reagents bearing either donor or acceptor
substituents undergo a high yield arylation at position 10
furnishing the arylated benzo[h]quinolines 3b—f in 66—90%
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yield (entries 2—6 of Table 2). Using the same conditions, it was
also possible to arylate 2-(2-trimethylsilylphenyl)pyridine (4)
with various arylmagnesium reagents, affording the expected
pyridines Sa—e in 79—92% yield (entries 7—11 of Table 2).
Interestingly, these chromium(II)-catalyzed arylations pro-
ceed within a few hours at 25 °C. The role of the TMS-group

Table 2. Chromium-Catalyzed Arylation of
Benzo[h]quinoline (1) and 2-(2-
Trimethylsilylphenyl)pyridine 4)

THF,25°C, 24 h

(2a c, 2f - g; 4 equiv)
CrCIZ (10 mol %)

ArMgBr
(2a f, 4 equiv)
CrCIZ (10 mol %)
DCB (1.5 equiv)

DCB (1.5 equiv)

THF, 25°C,3h
entry ArMgBr product yield (%)*
"
Ar

1 PhMgBr (2a) 3a: Ar = Ph; 95%"

2 3-MeO-CsHsMgBr 3b: Ar = 3-MeO-CsHs; 90%
(2b)

3 4-Me;N-CsHsMgBr 3c: Ar = 3-Me:N-CsHq; 87%
(2¢)

0. MgBr
T

4 2d
S 4-F3C-CsHsMgBr (2e)  3e: Ar=4-F3C-CsHs; 66%*
6 4-F-CsHsMgBr (2f) 3f: Ar = 4-F-CsHs; 86%
[ A ™S
e
Ar
7 PhMgBr (2a) Sa: Ar=Ph; 92%
8 3-MeO-CsHsMgBr 5b: Ar = 3-MeO-CeHs; 79%
(2b)
9 4-Me>N-CsHaMgBr Sc: Ar = 3-Me2N-CsHy; 85%¢
(2¢)
10 3-TBSO-CsHs (2g) 5d: Ar = 3-TBSO-CsHs; 83%
11 4-F-CsHsMgBr (2f) Se: Ar = 4-F-C4Ha; 84%

“Yield of lsolated product after purification by flash column
chromatography. bFor entry 1, CrCl, (99.99%) was used. In all
further experlments, CrCl, of 97% purity was used. “Reaction run for
38 h. “Reaction run for 4 h.

(TMS = trimethylsilyl) at position 2 is to avoid a double
arylation. This group can be further used to introduce a second
different aryl substituent as shown in Scheme 1.

Scheme 1. Selective Bis-arylation of Phenylpyridine 4 Using
Chromium and Palladium Catalysts
NC
r mol %) 1) ICI (3.5 equiv)
CrCl (10 mol % q - O

DCB | A TMS  CHyCly, reflux
1.5 equtv) pZ 12h | P
N — > N
2) NC

J QO

MgBr Me 2nCl Me
4 (2h; 4 equiv) 5f: 89% (6, 1.5 equiv) 7:63%
THF,25°C,4h Pd(dba)y, tfp (over two steps)
THF,50°C, 15 h

Thus, the treatment of 4 with 3-tolylmagnesium bromide
(2h) in the presence of CrCl, (10 mol %; 97% purity) and DCB
(1.5 equiv) afforded the arylated product 5f in 89% yield.
Treatment with ICI in reﬂuxmg CH,CI, for 12 h, followed by
Negishi cross-coupling'® with the cyano-substituted phenylzinc
derivative 6 in the presence of 3 mol % Pd(dba), (dba =
dibenzylideneacetone) and 6 mol % tfp (tfp = tris(2-
furyl)phosphine)'® at 50 °C for 15 h, furnished the bis-arylated
pyridine 7 in 63% yield over two steps (Scheme 1).

Aryl oxazolines are very popular substituents for directed C—
H bond activation. Using the 2-TMS-phenyl oxazoline 8, we
have achieved an efficient C—H activation and arylation with
various Grignard reagents as shown in Scheme 2. Functional
groups such as a methoxy, a dimethylamino, or an OTBS group
were well tolerated, and the ortho-arylated oxazolines 9a—d were
obtained in 72—91% yield (Scheme 2).

Scheme 2. Chromium-Catalyzed Arylation of 2-(2-
Trimethylsilyl)phenyl)oxazoline (8) with Grignard Reagents
2

Me_Me Me_ Me
CrCl, (10 mol %)
Ny O DCB (1.5 equiv) Ny O
+ ArMgBr 4>
™S H HF,25°C  TMS Ar
2a,b,c,g (4 equiv) 3 15h
8 9a-d
Me Me Me Me Me Me Me Me

OTBS

N N N N NMe, N N
TMS\g/‘ ™S Tms\g/‘/ ™S

9a:91%, 3 h 9b: 85%, 5 h 9¢: 72%, 15 h 9d: 72%, 12 h

To convert the TMS group into a second aryl substituent, we
have first arylated 8 with the Grignard reagent 2f using 10 mol %
CrCl, and DCB (1.5 equiv) and have obtained oxazoline 9e in
87% vield (Scheme 3).

Treatment of 9e with ICl in refluxing CH,Cl, for 6 h, and
subsequent Negishi cross-coupling with the ester-substituted
phenylzinc derivative 10 in the presence of 3 mol % Pd(dba),
and 6 mol % tfp, furnishes the bis-arylated pyridine 11 in 89%
yield over two steps (Scheme 3).

Also, we have found that imine-protected aldehydes 12 and
13 undergo this chromium-catalyzed C—H activation, furnishing
the aldehydes 14a—f in 61—88% yield (Scheme 4). Remarkably,
the reaction time is strongly dependent on the nature of an aryl
imine of type 12 or 13. When the aryl N-(p-methoxy)phenyl
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Scheme 3. Selective Bis-Arylation of the 2-(2-
Trimethylsilyl)phenyl)oxazoline (8) Using Chromium and
Palladium Catalysts

Me Me CrCl, (10 mol %) Me Me 1)ICI (3.5 equiv) Me Me
DCB <3H2<:|2 reflux coza
O (1.5 equiv) Na
T TMS\‘/‘/ 2) COEt
9e:87% Z"C' 11:89%

MQB" (10, 1.5 equiv) (over two steps)

@f: 4 equiv) Pd(dba),, tfp

THF, 25 °C THF, 50°°C
3h 15h

Scheme 4. Chromium-Catalyzed Arylation of Imines 12 and
13 with Grignard Reagents 2

™S Me  armgBr ™S O ArMgBr
S (4 equiv) (4 equiv) (i SN -Bu
[ :[ CrCl, (10 mol %) t:Ar CrCl (10 mol %)

H

DCB (1.5 equiv) DCB (1.5 equiv)
12 THF, 25°C THF, 25 °C
16-25h 15-3h
14a: R = NMe, 14c: 75%, 25 h 14d: 67%, 16 h 14e: R = OCF3
from 12; 16 h, 76% (from 12) (from 12) from 13; 3 h, 75%
from 13; 3 h, 73% 14f: R =tBu

14b:R=F from 13; 1.5 h, 74%
from 12; 16 h, 61%

from 13; 2 h, 88%

imine 12 was used, the chromium-catalyzed arylation reactions
using Grignard reagents 2c, 2f, 2d, and (3-chloro-4-(trifluoro-
methyl)phenyl)magnesium bromide (2i) proceeded with
reaction times of 16—25 h. On the other hand, the aryl N-
butyl imine 13 reacted with Grignard reagents 2c, 2f (4-
(trifluoromethoxy)phenyl)magnesium bromide (2j) and (4-
(tert-butyl)phenyl)magnesium bromide (2k) with much faster
rates (1.5—3 h) giving after acidic workup the arylated aldehydes
14a—b and 14e—f in 73—88% yield (Scheme 4).

To show the practicability of this chromium C—H activation
method, we have performed an unsymmetrical bis-arylation of
the imine 15 derived from 2-chlorobenzaldehyde, via a one-pot
Cr-catalyzed cross-coupling followed by a Cr-catalyzed oxidative
arylation (Scheme $).

Scheme 5. One-Pot Synthesis of Bis-Arylated Aldehyde 17
Using Chromium-Catalyzed Cross-Coupling and C—H Bond

Activation Reactions
E
t ] E
MgBr

MgBr

H
(21, 1.5 equiv) (2f, 4 equiv)
SN™BY Crel, (3 mol %) CrCly (10 mol %)
—_— ———
cl THF, 25°C, 2 h DCB (1.5 equiv)
OMe THF, 25 °C, 1h
15 16 17: 65% OMe

(without isolation)

Thus, the Cr-catalyzed cross-coupling of 15 with the Grignard
reagent (2I; 1.5 equiv) leads to the arylated imine 16. Without
isolation, a second Grignard reagent (2f; 4 equiv) was added and
the desired C—H activation and cross-coupling is complete
within 1 h at 25 °C, providing after acidic workup the

unsymmetrically bis-arylated aldehyde 17 in 65% yield (Scheme
5).

In conclusion, we have shown that CrCl, is a very efficient
catalyst for the performance of C—H activations of benzo[h]-
quinoline, 2-phenylpyridine, phenyl oxazoline, and aryl imines
using DCB as an oxidant. All these direct arylations proceed at
25 °C. The high catalytic activity of CrCl, avoids the use of
additional ligands, and a broad reaction scope is achieved. Also,
in the case of the direct arylation of imines, the use of N-butyl
imines is possible for the first time (usually N-aryl imines are
required). Further extensions of these Cr-catalyzed arylations
are underway in our laboratories.
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Full experimental details, '"H and '*C NMR spectra. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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