## Accepted Manuscript

cis- $\beta$ -Bromostyrene derivatives from cinnamic acids via a tandem substitutive bromination-decarboxylation sequence

Khanh G. Tang, Greggory T. Kent, Ihsan Erden, Weiming Wu

| PII:           | S0040-4039(17)31093-6                          |  |
|----------------|------------------------------------------------|--|
| DOI:           | http://dx.doi.org/10.1016/j.tetlet.2017.08.069 |  |
| Reference:     | TETL 49259                                     |  |
| To appear in:  | Tetrahedron Letters                            |  |
| Received Date: | 9 August 2017                                  |  |
| Revised Date:  | 24 August 2017                                 |  |
| Accepted Date: | 28 August 2017                                 |  |



Please cite this article as: Tang, K.G., Kent, G.T., Erden, I., Wu, W., *cis*-β-Bromostyrene derivatives from cinnamic acids via a tandem substitutive bromination-decarboxylation sequence, *Tetrahedron Letters* (2017), doi: http://dx.doi.org/10.1016/j.tetlet.2017.08.069

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## **Graphical Abstract**

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

## *cis*-β-Bromostyrenes from cinnamic acids via a tandem substitutive brominationdecarboxylation sequence

Leave this area blank for abstract info.

Khanh G. Tang, Greggory T. Kent, Ihsan Erden,<sup>\*</sup> and Weiming Wu<sup>\*</sup> Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA





**Tetrahedron Letters** 

journal homepage: www.elsevier.com

# cis- $\beta$ -Bromostyrene derivatives from cinnamic acids via a tandem substitutive bromination-decarboxylation sequence

Khanh G. Tang, Greggory T. Kent, Ihsan Erden,<sup>\*</sup> and Weiming Wu<sup>\*</sup>

Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA

Dedicated to Professor James R. Keeffe on the occasion of his 80th birthday

| ARTICLE INFO             | ABSTRACT                                                                            |                      |
|--------------------------|-------------------------------------------------------------------------------------|----------------------|
| Article history:         | cis-β-Bromostyrene derivatives were synthesized stereospecifically from cinnamic    | e acids through      |
| Received                 | β-lactone intermediates. The synthetic sequence did not require the purification of | the $\beta$ -lactone |
| Received in revised form | intermediates although they were found to be stable and readily purified in most c  | ases.                |
| Accepted                 |                                                                                     |                      |

2009 Elsevier Ltd. All rights reserved.

### 1. Introduction

Available online Keywords: Bromination  $cis-\beta-styrene$ cinnamic acids  $\beta$ -lactones decarboxylation

Vinyl bromides are very useful synthetic intermediates in organic synthesis; they are used as precursors in the formation of vinyl carbanions<sup>1</sup> and as substrates in many transition metal-catalyzed cross-coupling reactions.<sup>2-4</sup> Vinyl bromides have also been used to synthesize styrene and stilbene derivatives and heterocyclic compounds.<sup>5-9</sup> Therefore, development of methods for the stereoselective synthesis of *E*- or *Z*-vinyl bromides is of considerable importance.

Most methods for the stereoselective preparation of vinyl bromides involve organometallic or related compounds.<sup>10</sup> The Hunsdiecker-type bromodecarboxylation and decarboxylation of brominated cinnamic acid have been reported for the synthesis of both *E*- or Z-vinyl bromides.<sup>10-19</sup>

We recently reported on the reductive debromination or dehydrobromination of *vic*-dibromides by anisidines (*o* and *m*) and trimethylamine, respectively.<sup>20-21</sup> Recently, during our attempt to prepare a vicinal dibromide from cinnamic acid, we isolated a stable  $\beta$ -lactone instead.



**Scheme 1.** Synthesis of cis- $\beta$ -bromostyrenes from cinnamic acids

Corresponding outporer inrden Osfau adur yany Osfau adu

In this *Letter*, we report on the stereospecific synthesis of *cis*- $\beta$ -bromostyrene derivatives **3** from cinnamic acids **1** through the formation of isolable  $\beta$ -lactone intermediates **2**, as shown in Scheme 1.

#### 2. Results and Discussion

Bromination of cinnamic acids in methylene chloride produced a rather non-polar compound, which was identified as  $\beta$ -lactone **2** by NMR spectroscopy. It is presumably formed through the ring-opening nucleophilic attack on the bromonium intermediate **4** by the carboxylic acid functionality as shown in Scheme 2.<sup>14,22</sup> In most cases, the  $\beta$ -lactone intermediates can be readily isolated and even purified by column chromatography, though their purification is not required for synthetic purposes.



Scheme 2. Mechanism of the decarboxylative bromination

When lactones 2 were treated with 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU),  $\beta$ -bromostyrenes **3** were isolated as the predominant products. Their structures and the *cis*stereochemistry were determined by NMR spectroscopy. The <sup>1</sup>H–<sup>1</sup>H coupling constant J<sub>cis</sub> was used to assign the stereochemistry since *cis*-isomers have smaller coupling

#### Tetrahedron

constants than *trans*-isomers.<sup>10,14,19,23</sup> Triethylamine was found to be a much less effective base, as expected, requiring elevated temperatures and resulting in lower yields.

The mechanism of the sequence of reactions was also shown in Scheme 2. DBU deprotonates the  $\alpha$ -proton to give 5, which displaces the C-O bond with concomitant C=C formation leading to the carboxylate 6 in an E1cb-like mechanism. Compound 6 then decarboxylates to form the corresponding Z-vinyl carbanion (structure not shown), which is protonated to produce (Z)- $\beta$ bromostvrenes **1**. The fact that only the Z isomer is formed indicates that the decarboxylation of  $\beta$ -lactone 2 is not a thermal nor concerted process (only the E-isomer would be expected from such a pathway). Instead, after the deprotonation of the acidic  $\alpha$ -proton, the resulting enolate stereospecifically undergoes a well-known "forbidden"  $\beta$ -elimination by a E1cB mechanism to give the Z-alkene as concluded by the detailed study of lactone enolates like **5** by Mulzer et al.<sup>24</sup> An enthalphy of -18 kcal/mol was reported for the isomerization of  $\beta$ -lactone enolates of the type 5 to the more stable Z carboxylates like  $6^{2}$ . The study concluded that enolates of the type 5 represent equivalents of vinyl anions of the type 7 with fixed stereochemistry (Figure 1).<sup>24</sup> The carboxylate intermediate  $\mathbf{6}$ decarboxylates with ease in the present case because the resulting 1-bromovinyl carbanion is stabilized by the bromine. Therefore, our mechanism rationalizes both the formation of the  $\beta$ -lactone intermediate and the observed Z stereochemistry of the product and is entirely consistent with the findings of Mulzer et al. (Scheme 2).<sup>24</sup>



Figure 1. Enolate 5 as an equivalent of vinyl anion 7

These reactions work well for various substituting groups on the aromatic moiety as shown in Table 1. Although lactone **3** was stable and readily isolated, it can be used in the second reaction without purification. The methylene chloride solvent and excess bromine were stripped off in vacuo to leave the crude lactone product behind which was treated with DBU in CH<sub>2</sub>Cl<sub>2</sub>. The product can be isolated by simple extraction of the reaction residue with hexanes or column chromatography if necessary.<sup>25</sup>

Table 1. Conversion of cinnamic acids to β-bromostyrenes

| Y 1 CO2                     |                     | Br                                              |
|-----------------------------|---------------------|-------------------------------------------------|
| Entries                     | Y                   | Combined Yield %                                |
|                             |                     | (isolated)                                      |
| a                           | Н                   | 99                                              |
| b                           | 4-methyl            | 70                                              |
| с                           | 4-fluoro            | 72                                              |
| d                           | 4-chloro            | 75                                              |
| e                           | 4-bromo             | 92                                              |
| f                           | 4-methoxy           | $70^{\mathrm{a}}$                               |
| g                           | 2-methoxy           | 75 <sup>b</sup>                                 |
| h                           | 4-nitro             | 75                                              |
| i                           | 2-nitro             | 65                                              |
| <sup>a</sup> 5.1 mixture of | cis- to trans- ison | pers <sup>b</sup> 1.1 mixture of <i>cis</i> -to |

"5:1 mixture of *cis*- to *trans*- isomers; "1:1 mixture of *cis*- to *trans*- isomers.

Careful examination of the reactions of different substrates provides further support for the proposed mechanism and hints to an alternative mechanism for reactions with a strong electrondonating group (EDG) present. As shown in Table 1, reactions with strong electron-donating groups are less stereoselective. In these cases, the initial bromonium ion opens up to a stabilized benzylic carbocation intermediate **8** which is subject to rotation before being captured intramolecularly by the ester oxygen to the  $\beta$ -lactone **2f** as a mixture of both diastereomers (Scheme 3). Decarboxylation with DBU thus gives both the *cis*-isomer **3f** and the *trans*-isomer **9f**. Furthermore, when a substrate was used carrying a strong electron-donating group ( i.e., 2-and 4methoxy) on the aryl group, and ether was employed as solvent, the bromination reaction produced a mixture of lactones **2** as well as both *cis*- and *trans*- $\beta$ -bromostyrenes.

In support of this mechanism is the fact that bromine additions to styrenes in  $CH_2Cl_2$  change from near nonstereoselective for the most reactive styrene (*p*-methoxy) to antistereospecific for the least reactive one (3,5-(CF<sub>3</sub>)<sub>2</sub>).<sup>26</sup>



Scheme 3. Mechanism for the nonstereoselective formation of styrene bromides from 1f.

#### 3. Conclusions.

In summary, cinnamic acids are converted to  $\beta$ -lactones upon bromination, which are subsequently transformed to *cis*- $\beta$ bromostyrenes in a stereospecific manner. The  $\beta$ -lactone intermediates can be readily isolated and identified except when strong electron-donating groups are present on the aromatic ring. However, isolation and purification of the lactone intermediates is not necessary. The tandem substitutive brominationdecarboxylation sequence presented herein thus provides an efficient and stereospecific method for the conversion of cinnamic acids to *cis*- $\beta$ -bromostyrenes.

#### Acknowledgments

This investigation was partly supported by the National Institutes of Health, United States [Grant No. SC1 GM095419 (W.W.) and Grant No. SC1 GM082340 (I.E.)]. The NMR facility was funded by the National Science Foundation, United States (DUE-9451624 and DBI 0521342). K.G.T. and G.T.K. were supported by Departmental Summer Research Fellowships. We thank ACS Project SEED student Qiying Huang for technical assistance.

#### **References and Notes**

- 1. Davis FA, Lal GS, Wei, J. Tetrahedron Lett. 1988; 29: 4269-4272.
- Molander GA, Gormisky PE, Sandrock DL J. Org. Chem. 2008; 73: 2052–2057.

2

- Tsuji J. Palladium Reagent and Catalysts, Innovations in Organic Synthesis; Wiley: Chichester, 1995.
- Diederich F, Stang PJ. Metal-Catalyzed Cross-Coupling Reactions; Wiley-VCH: Weinheim, 1998.
- 5. Lu J, Tan X, Chen C. J. Am. Chem. Soc. 2007; 129: 7768–7769.
- Parrish JP, Trzupek JD, Hughes TV, Hwang I, Boger DL. Bioorg. Med. Chem. 2004; 12: 5845–5856.
- Ranu BC, Chattopadhyay K, Banerjee S. J. Org. Chem. 2006; 71: 423– 425.
- Barluenga J, Jiménez-Aquino A, Fernández A, Aznar F, Valdés C. Tetrahedron 2008; 64: 778–786.
- 9. Nguyen TB, Martel A, Dhal R, Dujardin G. J. Org. Chem. 2008; 73: 2621–2632.
- References cited in Kuang C, Yang Q, Senboku H, Tokuda M. Synthesis 2005; 1319-1325.
- 11. Johnson RG, Ingham RK. Chem. Rev. 1956; 56: 219-269.
- 12. Prakash J, Roy S. J. Org. Chem. 2002; 67: 7861-7864.
- 13. Ye C, Shreeve JM. J. Org. Chem. 2004; 69: 8561-8563.
- Huang Y-L, Cheng Y-H, Hsien K-C, Chen Y-L, Kao C-L. *Tetrahedron Lett.* 2009; 50: 1834–1837.
- 15. Chowdhury S, Roy S. J. Org. Chem. 1997; 62: 199-200.
- 16. Naskar D, Chowdhury S, Roy S Tetrahedron Lett. 1998; 39: 699-702.
- 17. Kuang C, Senboku H, Tokuda M. Tetrahedron 2005; 61: 637-642.
- Kuang C, Yang Q, Senboku H, Tokuda M. *Tetrahedron* 2005; 61: 4043-4052.
- (a) Jiang Y, Kuang C. Synth. Commun. 2009; 39: 4298–4308; (b) Kuang C, Senboku H, Tokuda M. Synlett 2000, 143901442.
- McGraw, KM, Bowler, JT, Ly, VT, Erden, I, Wu, W. Tetrahedron Lett. 2016; 57: 285-287.

- 21. McGraw, KM, Kent, GT, Gonzalez, JR, Erden, I, Wu, W. *Tetrahedron Lett.* 2017; 58: 1973-1975.
- 22. Kingsbury CA, Max G. J. Org. Chem. 1978; 43: 3131-3139.
- See Supporting Information in Müller D, Alexakis A. Chem. Eur. J. 2013; 19: 15226 – 15239.
- 24. Mulzer J, Kerkmann T. J. Am. Chem. Soc. 1980, 102: 3620-3622.
- 25. Experimental details: All reagents were obtained from commercial sources and used without further purification. Typical experimental procedures are described below using the syntheses of 4-bromo-*cis*-β-bromostyrenes (**3e**) as an example. Bromination of the nitrocinnamic acids (Entries **h** and **i**) took overnight to complete. To a mixture of 4-bromocinnamic acid (228 mg, 1mmol) in 5mL of methylene chloride in a round-bottom flask in an ice bath was added excess bromine dropwise until color remained dark orange. The reaction was allowed to react for 2 hours. The solvent and excess bromine were evaporated to yield a white solid (**1e**) in quantitative yield, which was used without further purification.

To a solution of lactone **1e** in 5mL of anhydrous THF in a round-bottom flask in an ice bath was added DBU (300mg, 2mmol). The reaction was allowed to warm up to room temperature overnight. The reaction mixture was partitioned between hexanes and water. The aqueous layer was extracted with hexanes two more times and the combined organic layer was dried with sodium sulfate to yield 4-bromo-*cis*-β-bromostyrenes (**3e**) as a clear liquid (241 mg, 92%).

26. Ruasse MF, Argile A, Dubois JE. J. Am. Chem. Soc. 1978, 100: 7645-7652.