Tetrahedron Letters 54 (2013) 3550-3553

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Amberlite IR-120H as an efficient and versatile solid phase catalyst for nucleophilic substitution of propargylic alcohols

very mild conditions in excellent yields.

Satheesh Gujarathi, Howard P. Hendrickson, Guangrong Zheng*

Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA

ARTICLE INFO

ABSTRACT

Article history: Received 5 April 2013 Revised 11 April 2013 Accepted 26 April 2013 Available online 3 May 2013

Keywords: Amberlite IR-120H Nucleophilic substitution Propargylic alcohols Solid phase catalyst Regioselectivity

A challenging yet important goal in organic synthesis is to maximize synthetic efficiency in transforming starting materials to the target molecules. Readily available starting materials and reagents, high yield, high selectivity, mild reaction conditions, and high atom economy are characteristics of an efficient synthetic method. Propargylic substitution reactions of activated or unactivated propargylic alcohols or propargylic esters with C-nucleophiles and heteroatom centered nucleophiles have recently been extensively explored. These reactions are generally achieved through activation of the acetylene moiety by forming cobalt complexes (Nicholas reaction)¹ or through the catalysis of rhenium,² ruthenium,³ or gold⁴ metal complexes. However, these reactions suffer from the high cost of reagents and catalysts. Alternative catalysts, including $\begin{array}{l} {\sf FeCl}_3,{}^5 \; {\sf BiCl}_3,{}^6 \; [{\sf bmim}]{\sf PF}_6/{\sf Bi}({\sf NO}_3)_3,{}^7 \; {\sf PMA-silica \; gel},{}^8 \; {\sf I}_2,{}^9 \; {\sf InCl}_3,{}^{10a} \\ {\sf InBr}_3,{}^{10b} \; {\sf Sc}({\sf OTf})_3,{}^{11} \; {\sf Yb}({\sf OTf})_3,{}^{12} \; {\sf Al}({\sf OTf})_3,{}^{13} \; {\sf CeCl}_3,{}^{14} \; {\sf Pd-Sn},{}^{15} \; {\sf and} \end{array}$ PTSA,¹⁶ have been introduced for these reactions; however, many of them involve either large amount of catalyst or limited to selective nucleophiles. Thus, highly efficient, inexpensive reaction systems with good selectivity for these transformations are still highly desirable.

Heterogeneous catalysis has played a central role in various organic transformations. Among heterogeneous catalysts, ion-exchange resins are widely used owing to their low cost, reusability, wide range of acid/base strength, ease of handling, environmental compatibility, and low toxicity. Moreover, they can be easily recovered from reaction mixtures by filtration and can be reused after activation or even without activation, making the process economically viable. Herein, we report a simple and straightforward method using Amberlite IR-120H ion-exchange resin as a catalyst for the nucleophilic substitution of propargylic alcohols with various nucleophiles in excellent yields under very mild reactions conditions.

Using 1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-ol (1a) and indole (2a) as model reactants, it was observed that the reaction proceeded smoothly in CH₃CN at room temperature in the presence of Amberlite IR-120H resin (Scheme 1). Amberlite IR-120H

Scheme 1. Substitution of the OH group in propargylic alcohol with indole.

Table 1

Optimization of the reaction conditions^a

A highly efficient Amberlite IR-120H resin mediated nucleophilic substitution of the hydroxyl group of

propargylic alcohols with a wide range of nucleophiles is reported. The reactions were achieved under

Amberlite IR-120H (mg/mmol)	Time ^b (min)	Yield ^c (%)
50	120	45
150	60	70
300	30	93
	Amberlite IR-120H (mg/mmol) 50 150 300	Amberlite IR-120H (mg/mmol) Time ^b (min) 50 120 150 60 300 30

^a All reactions were carried out with 1a(1 mmol), and 2a(1.2 mmol) in CH₃CN at rt.

 $^{\rm b}\,$ Reaction time before filtration; both 1 and 2 were incomplete.

^c Isolated yield.

© 2013 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +1 501 526 6787; fax: +1 501 526 5945. *E-mail address:* gzheng@uams.edu (G. Zheng).

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.04.120

Table 2

Amberlite IR-120H resin promoted substitution of the hydroxyl group in propargylic alcohols with various nucleophiles^a

Entry	Alcohol	Nucleophile	Product ^b	Time (min) ^c	Temperature (°C)	Yield (%) ^d
a	OH MeO Ph	ZT	3a	30	rt	93
b	OH	E H	NH 3b	30	60	87
с	OH MeO Ph		Brock Ph	30	rt	90
d	HO Ph		HN Ph 3d	120	rt	87
e	HO N Ts	Z H	H H H H H H H H H H H H H H H H H H H	90	rt	87
f	Ph F	N N N N N N N N N N N N N N N N N N N	Brite Street Str	180	60	83
g	OH MeO Ph	ОН	HO HO Ph	60	rt	93
h	OH	ОН	HO HO Ph	90	60	90
i	Ph F	ОН	HO F	180	60	90
j	MeO OH Ph	0	MeO Ph 3j	120	rt	90

(continued on next page)

Table 2 (continued)

Entry	Alcohol	Nucleophile	Product ^b	Time (min) ^c	Temperature (°C)	Yield (%) ^d
k	OH	0	of o 3k	120	60	87
1	OH MeO Ph		MeO Ph 31	150	rt	86
m	HO HO OMe	0,000	Ph 3m	180	rt	90
n	HO Ph N Ts	МеОН	MeO Ph 3n Ts	180	rt	90
0	OH MeO Ph	но	OH O MeO Ph	180	rt	83
р	OH MeO Ph	OMe	Ph 3p MeQ OMe	180	rt	87
q	OH	NH ₂	HN 3q	180	60	90
r	OH OPH Ph	TMS	or or or other or other of the second	180	60	87

^a All reactions were carried out with alcohol/nucleophile in a molar ration of 1:1.2 in CH₃CN in the presence of 300 mg/mmol of Amberlite IR-120H.

^b Products were characterized by ¹H NMR, ¹³C NMR, and MS.

^c Time required for complete consumption of propargylic alcohol (monitored by TLC and GC–MS).

^d Isolated yield.

is a gel type, strongly acidic, cation exchange resin of the sulfonated polystyrene type. It has excellent physical, chemical, and thermal stability and has been used for various organic transformations.¹⁷ The rate of the reaction is correlated with the amount of resin used. Various quantities of Amberlite IR-120H per mmol of **1a** (mg/mmol) were tested in the reaction (examples listed in Table 1); with 300 mg/mmol of resin, the reaction completed within 30 min at room temperature to give 3-(1-(4-methoxyphenyl)-3phenylprop-2-yn-1-yl)-1*H*-indole **3a** in 93% yield (Table 1, entry 3).

While the rate of reaction seemed slightly increased (suggested by TLC analysis) when increasing the amount of resin, the yield was decreased, possibly due to decomposition of **3a** and/or higher

absorption of **3a** on the resin. On the other hand, no reaction was observed when Amberlite IR-120H was replaced by Amberlite CG-50 or Amberlite IRC-50, likely due to the decreased acidity of these resins.

The scope of the application of this reaction system was then investigated. Initially, a variety of propargylic alcohols were treated with indole (Table 2, entries b and d–f) or 2-methyl indole (Table 2, entry c).¹⁸ When the *p*-MeO (entries a and c) on the phenyl ring at the benzylic position of the propargylic alcohol was removed (entry b) or replaced by an electron-withdrawing group (fluoro, entry f), elevated temperature (60 °C) was needed for completion of the reactions. Regardless of the reaction temperature, all reactions were in excellent yields (Table 2, entries b–f). A variety of nucleophiles, including 2-naphthol, 1,3-cyclohexanedione, acetylacetone, methanol, ethylene glycol, anisole, amide, and allyltrimethylsilane, were then tested under these reaction conditions. Similarly, electron-donating *p*-MeO group on the phenyl ring at the benzylic position of the propargylic alcohol was found to have beneficial effects on reactivity compared to H atom and electron-withdrawing F atom on the same position (Table 2, entry g vs entries h and i; entry j vs entry k). Complete regioselectivity was observed with nucleophiles containing more than one electron-rich carbon (2-naphthol, 1,3-cyclohexanedione, acetylacetone, and anisole). In all cases, *C*-substitution was on the carbon with the highest electron density, that is, C-1 for 2-naphthol, C-2 for 1,3-cyclohexanedione and acetylacetone, and C-4 for anisole.

In summary, we have developed a novel, efficient, and general method for the direct nucleophilic substitution of the hydroxyl group of propargylic alcohols with various nucleophiles using Amberlite IR-120H resin as a catalyst. The method features short reaction times, mild reaction conditions, simplicity in operation, zero aqueous waste generation, complete regioselectivity, and a clean reaction profile. Moreover, the resin is inexpensive, stable, noncorrosive, easy to handle, and potentially reusable.

Acknowledgments

The authors would like to thank the College of Pharmacy of University of Arkansas for Medical Sciences for financial support and Dr. Lin Song for the HRMS and HPLC analyses.

References and notes

- (a) Berge, J.; Claridge, S.; Mann, A.; Muller, C.; Tyrrell, E. Tetrahedron Lett. **1997**, 38, 685–686; (b) Goering, B. K. Dissertation; Cornell University, 1995; (c) Montana, A. M.; Fernandez, D. Tetrahedron Lett. **1999**, 40, 6499–6502; (d) Nicholas, K. M.; Mulvaney, M.; Bayer, M. J. Am. Chem. Soc. **1980**, 102, 2508– 2510; (e) Kuhn, O.; Rau, D.; Mayr, H. J. Am. Chem. Soc. **1980**, 120, 900–907; (f) Nicholas, K. M. Acc. Chem. Res. **1987**, 20, 207–214.
- (a) Kennedy-Smith, J. J.; Young, L. A.; Toste, F. D. Org. Lett. 2004, 6, 1325–1327;
 (b) Sherry, B. D.; Radosevich, A. T.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 15760–15761; (c) Ohri, R. V.; Radosevich, A. T.; Hrovat, K. J.; Musich, C.; Huang, D.; Holman, T. R.; Toste, F. D. Org. Lett. 2005, 7, 2501–2504.
- (a) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. Angew. Chem., Int. Ed. 2003, 42, 1495–1498; (b) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 11846–11847; (c) Fischmeister, C.; Toupet, L.; Dixneuf, P. H. New J. Chem. 2005, 29, 765–768; (d) Bustelo, E.; Dixneuf, P. H. Adv. Synth. Catal. 2007, 349, 933–942; (e) Inada, Y.; Nishibayashi, Y.; Hidai, M.; Uemura, S. J. Am. Chem. 2006, 10, 135–150; (g) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 14, 11846–11847; (h) Nishibayashi, I.; Wakiji, I.; Ishii, Y.; Uemura, S.; Hidai, M. J. Am. Chem. Soc. 2001, 123, 3393–3394; (i) Nishibayashi, Y.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2003, 125, 6060–6061; (j) Cadierno, V.; Diez, J.; Garcia-Garrido, S. E.; Gimerno, J. Chem. Commun. 2004, 2716–2717; (k) Nishibayashi, Y.; Wilton, M. D.; Inada, Y.; Yoshikawa, M.; Wakiji, I.; Hidai, M.; Uemura, S. Chem. Eur. J. 2005, 11, 1433–1451.
- Georgy, M.; Boucard, V.; Campagne, J.-M. J. Am. Chem. Soc. 2005, 127, 14180– 14181.
- (a) Zhan, Z.-P.; Yu, J.-L.; Liu, H.-J.; Cui, Y.-Y.; Yang, R.-F.; Yang, W.-Z.; Li, J.-P. J. Org. Chem. 2006, 71, 8298–8301; (b) Peng, S.; Wang, L. J. Org. Biomol. Chem. 2012, 10, 225–228.
- Zhan, Z.-P.; Yang, W.-Z.; Yang, R.-F.; Yu, J.-L.; Li, J.-P.; Liu, H.-J. Chem. Commun. 2006, 3352–3354.

- Narayana Kumar, G. G. K. S.; Aridoss, G.; Laali, K. K. Tetrahedron Lett. 2012, 53, 3066–3069.
- 8. Lyle, F. R. U.S. Patent 5,973,257, 1985; Chem. Abstr. 1985, 65, 2870.
- Srihari, P.; Bhunia, D. C.; Sreedhar, P.; Mandal, S. S.; Reddy, J. S. S.; Yadav, J. S. Tetrahedron Lett. 2007, 48, 8120–8124.
- (a) Liu, X.; Huang, L.; Zheng, F.; Zhan, Z. Advanced Synthesis & Catalysis. 2008, 2778–2788; (b) Yadav, J. S.; Reddy, B. V. S.; Raghavendra, K. V. R.; Narender, R. Tetrahedron Lett. 2009, 27, 3963–3965.
- 11. Yadav, J. S.; Reddy, B. V. S.; Raghavendra Rao, K. V.; Narayana Kumar, G. G. K. S. *Tetrahedron Lett.* **2007**, *31*, 5573–5576.
- 12. Huang, W.; Wang, J.; Shen, Q.; Zhou, X. Tetrahedron 2007, 47, 11636-11643.
- (a) Gohain, M.; Marais, C.; Bezuidenhoudt, B. C. B. *Tetrahedron Lett.* **2012**, *53*, 1048–1050; (b) Gohain, M.; Marais, C.; Bezuidenhoudt, B. C. B. *Tetrahedron Lett.* **2012**, *52*, 4704–4707.
- 14. Silveira, C. C.; Mendes, S. R.; Wolf, L. Tetrahedron Lett. 2010, 51, 4560-4562.
- Das, D.; Pratihar, S.; Kanti Roy, U.; Mal, D.; Roy, S. Org. Biomol. Chem. 2012, 10, 4537–4542.
- Sanz, R.; Miguel, D.; Martínez, A.; AÄ lvarez-Gutiérrez, J. M.; Rodriguez, F. Org. Lett. 2007, 9, 727–730.
- (a) Madhusudana Reddy, M. B.; Aatika, N.; Pasha, M. A. Chin. J. Catal. 2010, 31, 518–520;
 (b) Vinod, K. T.; Neetu, T.; Diksha, K.; Rama, P. T. Monatsh. Chem. 2007, 138, 1297–1302;
 (c) Pasha, M. A.; Aatika, N. J. Saudi Chem. Soc. 2012, 16, 237–240;
 (d) Neetu, T.; Diksha, K.; Vinod, K. T.; Rama, P. T. Tetrahedron Lett. 2003, 44, 6639–6642;
 (e) Krstenansky, J. L.; Cotterill, I. Curr. Opin. Drug. Disc. Dev. 2000, 4, 454–461.
- 18. General experimental procedure: to a stirred mixture of arylpropargy alcohol 1 (1 mmol) and nucleophile (1.2 mmol) was added Amberlite IR-120H resin (0.3 g) in acetonitrile (5 mL). The mixture was stirred at rt -60 °C (Table 1) for an appropriate time. When the reaction was complete (GC and TLC analyses), the mixture was filtered and evaporated to dryness in vacuo to yield the crude product, which was purified by silicagel column chromatography (EtOAchexane).

Spectral data for selected products: 3-(1-(4-methoxynaphthalen-1-yl)-3phenylprop-2-ynyl)-1*H*-indole (**3d**): solid; mp 150–152 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.33 (bt, 1H), 8.19 (bt, 1H), 7.97 (s, 1H), 7.64 (dd, J = 8.0, 16.0 Hz, 2H), 7.41-7.49 (m, 4H), 7.36 (d, J = 8.0 Hz, 1H), 7.26 (br s, 3H), 7.19 (t, J = 8.0 Hz, 1H), 7.08 (t, J = 8.0 Hz, 1H), 6.96 (s, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.08 (s, 1H), 4.02 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 154.9, 136.7, 131.7, 128.2, 128.1, 127.7, 126.5, 126.4, 126.1, 124.9, 124.0, 123.3, 122.6, 122.2, 119.8, 119.6, 116.6, 111.2, 103.3, 90.7, 55.5, 32.2 ppm; HRMS (ESI): m/z calcd for C₂₈H₂₀NO [M-H] 386.1545; found 386.1563. 3-(1-(1H-indol-3-yl)-3phenylprop-2-ynyl)-1-tosyl-1H-indole (3e): solid; mp: 129-131 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (br s, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.49 (br s, 1H), 7.39–7.45 (m, 2H), 7.35 (d, J = 8.0 Hz, 1H), 7.24–7.31 (m, 4H), 7.14–7.20 (m, 5H), 7.04 (t, J = 8.0 Hz, 1H), 5.59 (s, 1H), 2.27 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 144.8, 136.7, 135.7, 135.1, 131.7, 129.8, 129.7, 128.2, 128.0, 126.8, 125.9, 124.7, 124.3, 123.3, 123.1, 122.7, 122.3, 120.4, 119.5, 119.4, 114.2, 113.8, 111.4, 88.8, 82.7, 27.0, 21.5 ppm; HRMS (ESI): *m/z* calcd for C₃₂H₂₃N₂O₂S [M-H] 499.1480; found 499.1496. 1-(1-(4-methoxyphenyl)-3-phenylprop-2-ynyl)naphthalen-2-ol (**3g**): solid; mp: 62–64 °C ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.21–7.45 (m, 9H), 7.13 (d, J = 8.0 Hz, 1H), 6.81 (d, J = 7.3 Hz, 2H), 6.52 (s, 1H), 6.21 (s, 1H), 3.72 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 158.5, 152.2, 132.3, 131.8, 131.5, 129.7, 129.6, 128.8, 128.4, 128.3, 128.2, 126.8, 123.3, 123.0, 122.6, 119.1, 117.7, 114.0, 88.7, 85.7, 55.2, 32.9 ppm; HRMS [ESI]: *m/z* calcd for C₂₆H₁₉O₂ [M–H] 363.1385; found 363.1381. 2-(1-(4-methoxynaphthalen-1-yl)-3phenylprop-2-ynyl)cyclohexane-1,3-dione (3m): solid; mp: 87-89 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, J = 8.0 Hz, 1H,), 8.05 (d, J = 8.0 Hz, 1H), 7.71 $(d, J = 8.0 \text{ Hz}, 1\text{H}), 7.38-7.59 \text{ (m}, 5\text{H}), 7.24-7.33 \text{ (m}, 2\text{H}), 6.77 \text{ (d}, J = 8.0 \text{ Hz}, 1\text{H}), 6.21 \text{ (s}, 1\text{H}), 3.99 \text{ (s}, 3\text{H}), 2.39-2.60 \text{ (m}, 4\text{H}), 1.84-2.12 \text{ (m}, 2\text{H}) \text{ pm}; {}^{13}\text{C} \text{ NMR}$ (100 MHz, CDCl₃): δ 196.2, 174.2, 155.5, 131.8, 131.7, 128.4, 128.3, 127.1, 126.7, 126.5, 125.5, 123.8, 123.8, 122.6, 122.6, 115.3, 102.8, 88.5, 88.4, 55.5, 36.5, 29.5, 27.9, 20.4 ppm; HRMS (ESI): *m*/*z* calcd for C₂₆H₂₁O₃ [M-H] 381.1490; found 381.1492. N-(1,3-diphenylprop-2-ynyl)-4-methylbenzamide (**ag**): solid; mp: 146–148 °C; 1H NMR (100 MHz, CDCl₃): δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.23–7.48 (m, 8H), 7.21 (d, *J* = 7.6 Hz, 2H), 6.73 (d, J = 8.4 Hz, 1H), 6.47 (d, J = 8.4 Hz, 1H), 2.38 (s, 3H) ppm; ¹³C NMR (100 MHz, 100 MHz CDCl₃): 8 166.2, 142.4, 139.2, 131.9, 131.0, 129.3, 128.8, 128.6, 128.4, 128.2, 127.2, 122.5, 87.1, 85.0, 45.6, 21.5 ppm; HRMS (ESI): m/z calcd for C223H18NO [M-H] 324.1389; found 324.1372.