Synthesis of γ - and δ -Lactone Natural Products by Employing a *trans*-*cis* Isomerization/Lactonization Strategy

Machiko Ono,^a Keisuke Kato,^b and Hiroyuki Akita*,^{b,†}

^aSchool of Pharmaceutical Sciences, International University of Health and Welfare; 2600–1 Kitakanemaru, Ohtawara, Tochigi 324–8501, Japan: and ^b Faculty of Pharmaceutical Sciences, Toho University; 2–2–1 Miyama, Funabashi Chiba 274–8510, Japan. Received November 27, 2012; accepted January 24, 2013

Alkaline hydrolysis of 4-hydroxy- or/and 5-hydroxy-(2*E*)-alkenoate followed by acid treatment gave the corresponding (2*E*)-alkenoic acids which were subjected to lactone formation reaction without further purification. The crude acids were treated with 2,4,6-trichlorobenzoyl chloride in pyridine to afford γ -lactone or δ -lactone, respectively, accompanied by *trans-cis* isomerization. By this procedure, (±)-(4,5)-*trans*-5-benzyloxy-2-hexen-4-olide (90% overall yield), (*S*)-5-hydroxy-2-penten-4-olide (86% overall yield), (*A*,5*S*)-5-hydroxy-2-hexen-4-olide (86% overall yield), (*S*)-parasorbic acid (58% overall yield) and natural product, (5*R*,7*S*)-7-hydroxy-2-octen-5-olide (euscapholide: 20% overall yield) were synthesized.

Key words lactone formation; trans-cis isomerization; euscapholide

The α,β -unsaturated lactones are found as structural subunits in a wide variety of natural products possessing diverse biological activities as shown in Chart 1. Furthermore, simple lactones have been used as intermediates for the synthesis of biologically active compounds. The structure of typical natural products such as (S)-parasorbic acid (1), (4R,5S)osmundalactone (2), (4R,5S)-5-hydroxy-2-hexen-4-olide (3), (5R,7S)-euscapholide (4), (+)-asperlin (5), (+)-anamarine (6), (-)-tarchonanthuslactone (7), and fostriecin (8) are shown in Chart 1.

In general, the syntheses of α,β -unsaturated lactones are achieved based on the direct lactonization of the corresponding 4- or 5-hydroxy-(2Z)-unsaturated esters. To achieve efficient syntheses of α,β -unsaturated lactones, it is necessary to obtain the Z-isomer of the α,β -unsaturated esters in a stereoselective manner. This problem could be overcome by applying the modified Horner–Emmons reaction¹⁾ Ringclosing metatheses using Grubbs reagent have recently been reported to be a useful method to construct α,β -unsaturated lactone structures.²⁾

We previously reported the syntheses of (4S,5R)- and (4R,5S)-4-benzyloxy-5-hydroxy-(2E)-hexenoates (11) based on a chemoenzymatic method from methyl sorbate (9).³⁾ Hydrolysis of (4S,5R)- and (4R,5S)-11 gave the corresponding 5-hydroxy-(2E)-unsaturated carboxylic acids, which were converted to osmundalactones (4S,5R)- and (4R,5S)-2 *via* the formation of δ -lactones (4S,5R)- and (4R,5S)-12 accompanied by *trans*-*cis* isomerization, respectively as shown in Chart 2. In this paper, a reaction mechanism of isomerization from *E*isomer to *Z*-isomer is described.⁴⁾

The authors declare no conflict of interest.

[†]Present address: Nihon Pharmaceutical University; 10281 Komuro, Inamachi, Kitaadachigun, Saitama 362–0806, Japan.

Reagents: a; MeONa / MeOH b; 1) 2M NaOH / *i*-PrOH 2) 2M HCI 3) 2,4,6-trichlorobenzoyl chloride / pyridine c; AlCl₃ / *m*-xylene, CH₂Cl₂

Chart 2

Reagents: a; AlCl₃ / *m*-xylene, CH₂Cl₂ b; PhCHO / *p*-TsOH / PhH c; NaBH₃(CN) /TiCl₄ / MeCN d; 1) 2M NaOH / *i*-PrOH 2) 2M HCl e; 2,4,6-trichlorobenzoyl chloride / pyridine

Chart 3

We now report the scope and limitation of the synthesis of α,β -unsaturated lactone using the above mentioned lactone formation method accompanied by *trans-cis* isomerization from 4- or/and 5-hydroxy-2(*E*)-unsaturated ester and application to the first synthesis of (5*R*,7*S*)-euscapholide (4) will be described.

 γ -Lactonization from (±)-(4,5-*anti*)-5-Benzyloxy-4-hydroxy-(2*E*)-hexenoic acid (17) (Synthesis of (±)-18) (Chart 3) The (4*R*,5*S*)-5-hydroxy-2-hexen-4-olide (3) having antifeeding activites for the larvae of the yellow butterfly, *Eurema hecabe mandarina* DE L'ORZA, was isolated from Osmunda *japonica* THUNB.⁵⁾ The asymmetric synthesis of (4*R*,5*S*)-3 was reported based on the baker's yeast mediated asymmetric reduction of 1-phenylthio-2,3-butandiones.⁶⁾ In order to examine the above mentioned methodology for γ -lactone formation, the synthesis of (±)-(4,5)-*trans*-5-benzyloxy-2-hexen-4-olide (18) from (±)-(4,5-*anti*)-5-benzyloxy-4-hydroxy-(2*E*)-hexenoic acid (17) was selected as shown in Chart 3.

The compound (\pm) -17 was synthesized from the reported (\pm) -11³⁾ as shown in Chart 3. The AlCl₃ mediated debenzylation³⁾ of (\pm) -11 in *m*-xylene gave (\pm) -(4,5-*anti*)-4,5-dihydroxy- (2*E*)-hexenoate (13) in 66% yield, which was treated with benzaldehyde in the presence of *p*-toluenesulfonic acid (*p*-TsOH) to afford a mixture of acetals [(±)-14 and (±)-15] in 83% yield. Treatment of this mixture with sodium cyanoborohydride [Na(CN)BH₃] gave (±)-(4,5-*anti*)-5-benzyloxy-4-hydroxy-(2*E*)-hexenoate (16) (78% yield) and (±)-11 (13% yield). Alkakine hydrolysis of (±)-16 followed

by acid treatment provided the desired acid (\pm)-17, which was subjected to γ -lactone formation reaction without further purification. The *trans*-structure of (\pm)-17 was confirmed by ¹H-NMR analysis. The crude acid (\pm)-17 was treated with 2,4,6-trichlorobenzoyl chloride in pyridine to give the desired γ -lactone (\pm)-18 in 90% overall yield from (\pm)-16. The AlCl₃ mediated debenzylation of (\pm)-18 in *m*-xylene afforded the racemic natural product (\pm)-3 in 82% yield. The NMR data of the synthetic (\pm)-18 and (\pm)-3 were identical with those of the reported (+)-18⁷ and (+)-3,⁷ respectively.

γ-Lactonization from (S)-4,5-Dihydroxy-(2E)-pentenoic Acid (21) (Synthesis of (S)-22) (Chart 4) The (S)-5-hydroxy-2-penten-4-olide (22) was obtained as an aglycone from a glycoside, ranunculin, which was isolated from *Pulsatilla vulgaris* MILL.⁸⁾ It is much interested to reveal whether the formation of the γ-lactone formation or δ-lactone formation from a (S)-4,5-dihydroxy-(2E)-pentenoic acid (21) may occur. The synthesis of (S)-22 from the commercial available methyl (S)-(+)-3-(2,2-dimethyl-1,3-dioxolan-4-yl)-*trans*-2-propenoate (19) was carried out as shown in Chart 4.

Deprotection of (S)-19 with Dowex 50W (H⁺) gave (S)-4,5dihydroxy-(2*E*)-pentenoate (20) in 91% yield. Alkakine hydrolysis of (S)-20 followed by acid treatment provided the desired acid (S)-21, which was subjected to lactone formation reaction without further purification. The *trans*-structure of (S)-21 was confirmed by ¹H-NMR analysis. The crude acid (S)-21 was treated with 2,4,6-trichlorobenzoyl chloride in pyridine to give the desired γ -lactone (S)-22 in 86% overall yield from

Reagents: a; Dowex 50W (H⁺) / H₂O / dioxane b; 1) 2M NaOH / *i*-PrOH 2) 2M HCI c; 2,4,6-trichlorobenzoyl chloride / pyridine

Chart 4

Reagents: a; AlCl₃ / *m*-xylene, CH₂Cl₂ b; 1) 2M NaOH / *i*-PrOH 2) 2M HCl c; 2,4,6-trichlorobenzoyl chloride / pyridine

Chart 5

(S)-20. The specific rotation of (S)-22 ($[\alpha]_D^{26}$ -142 (c=0.332, H₂O)) was consistent with those of the reported (S)-22 ($[\alpha]_D^{25}$ -145 (c=0.126, H₂O).⁸⁾ The NMR data of the synthetic (S)-22 were identical with those of the reported (S)-22.⁸⁾ This result is particularly surprising in view of the fact that the γ -lactone formation from (S)-21 occurred in spite of the presence of two hydroxyl groups at C(4)- and C(5)-positions in substrate.

 γ -Lactonization from (4*S*,5*R*)- and (4*R*,5*S*)-4,5-Dihydroxy-(2*E*)-hexenoic Acid (23) (Synthesis of (4*S*,5*R*)- and (4*R*,5*S*)-3) (Chart 5) From the result mentioned at Chapter ' γ -Lactonization from (*S*)-4,5-Dihydroxy-(2*E*)-pentenoic Acid (21) (Synthesis of (*S*)-22),' lactone formation of (4*S*,5*R*)- and (4*R*,5*S*)-4,5-dihydroxy-(2*E*)-hexenoic acids (23) has aroused our interest as shown in Chart 5.

Deprotection of the reported (4S,5R)- and (4R,5S)-11³⁾ by the same way as the preparation of (\pm) -13 from (\pm) -11 gave (4S,5R)-13 (86% yield) and (4R,5S)-13 (74% yield), respectively. Alkakine hydrolysis of (4S,5R)-13 and (4R,5S)-13 followed by acid treatment provided the desired acids (4S,5R)-23 and (4R.5S)-23, respectively, which were subjected to lactone formation reaction without further purification. The transstructures of (4S,5R)-23 and (4R,5S)-23 were separately confirmed by ¹H-NMR analysis. The crude acids (4S,5R)-23 and (4R,5S)-23 were separately treated with 2,4,6-trichlorobenzoyl chloride in pyridine to give the desired γ -lactones (4S,5R)-5hydroxy-2-hexen-4-olide (3; $[\alpha]_D^{24}$ -176.2 (c=0.47, CHCl₃), 73% overall yield from (4S,5R)-13) and (4R,5S)-5-hydroxy-2hexen-4-olide (3; $[\alpha]_{D}^{23}$ +167.2 (c=0.34, CHCl₃), 82% overall yield from (4R,5S)-13), respectively. The specific rotation of (4R,5S)-3 was consistent with those of the reported (4R,5S)-**3** ($[\alpha]_D$ +177 (c=1.5, CHCl₃).⁵) The NMR data (¹H- and ¹³C-NMR) of the synthetic (4S,5R)- and (4R,5S)-3 were identical with those of the reported (4R,5S)-3,⁵⁾ respectively. The

selective formation of (4S,5R)- and (4R,5S)-3 from (4S,5R)and (4R,5S)-23, respectively will be discussed at late.

 δ -Lactonization from (S)-5-Hydroxy-(2E)-hexenoic Acid (25) (Synthesis of (S)-Parasorbic Acid (1)) (Chart 6) By applying the reported procedure, the starting material (S)-5-hydroxy-(2E)-hexenoate (24) was obtained from the reported (4R,5S)-13.⁹⁾ The synthesis of (S)-parasorbic acid (1) from (S)-24 was shown in Chart 6 (see Chapter ' δ -Lactonization from (5R,7S)-5,7-Dihydroxy-(2E)-octenoic Acid (29) (Synthesis of (5R,7S)-Euscapholide (4)')). Alkakine hydrolysis of (S)-24 followed by acid treatment provided the desired acid (S)-25 which was subjected to lactone formation reaction without further purification. The trans-structures of (S)-25 was confirmed by ¹H-NMR analysis. The crude acid (S)-25 was treated with 2,4,6-trichlorobenzoyl chloride in pyridine to give the desired δ -lactone (S)-parasorbic acid (1; $[\alpha]_D^{21}$ +134.9 (c=0.44, EtOH), 70% overall yield from (S)-24). The NMR data of the synthetic (S)-1 were identical with those of the reported (\pm) -1.¹⁰⁾

δ-Lactonization from (5*R*,7*S*)-5,7-Dihydroxy-(2*E*)-octenoic Acid (29) (Synthesis of (5*R*,7*S*)-Euscapholide (4)) (Chart 6) The (+)-euscapholide (4) was isolated from the leaves of *Euscaphis japonica* and the absolute structure of 4 was deduced to possess 5R,7*S*-configurations by means of spectroscopic and chemical analysis.¹¹) The first total synthesis of (-)-tarchonanthuslactone (7) (see Chart 1) having antipodal stereochemistry of (+)-4 as a partial structure was achieved based on the synthetic strategy of 1,3-*syn*-polyol system¹²) but the asymmetric synthesis of (5*R*,7*S*)-4 from the above mentioned (*S*)-24 was shown in Chart 6.

For the synthesis of (5R,7S)-4, the synthesis of (5R,7S)-5,7dihydroxy-(2E)-octenoic acid (29) from (S)-24 is necessary. To

c; PhCHO / T-BUOK / THF_d; 1) Dibai-H / toluene 2) (MeO)₂P(O)CH₂COOMe / LICI / DBU / MeC

e; Dowex 50W (H⁺) / H₂O / dioxane f; 2,4,6-trichlorobenzoyl chloride / pyridine

Chart 6

construct the 1,3-syn-structure of (5R,7S)-29, (S)-24 was converted into the acetal (3S,5S)-26 by applying Evans method.¹³⁾ Chiral alcohol (S)-24 was treated with benzaldehyde (PhCHO) in the presence of *tert*-BuOK to give the acetal (35,55)-26 in 67% yield. The 1,3-syn-structure of (3S,5S)-26 was confirmed by nuclear Overhauser effect (NOE) measurement as shown in Fig. 1. Diisobutylaluminum hydride (Dibal-H) reduction of (3S,5S)-26 followed by treatment of trimethylphosphonoacetate ((MeO)₂P(O)CH₂COOM) in the presence of base [LiCl/ DBU (1,8-diazabicyclo[5.4.0]undec-7-ene)] afforded the Horner Emmons reaction product (5R,7S)-27 in 67% overall yield. Alkakine hydrolysis of (5R,7S)-27 followed by acid treatment provided the acid (5R,7S)-28 which were subjected to deprotection of benzyl group without further purification to afford the trans acid (5R,7S)-29. The trans-structure of (5R,7S)-29 was confirmed by ¹H-NMR analysis. The crude acid (5R,7S)-29 was treated with 2,4,6-trichlorobenzoyl chloride in pyridine to give the desired δ -lactone (5R,7S)-4 ($[\alpha]_{D}^{22}$ 113.5 (c=0.10, MeOH) in 45% overall yield from (5R,7S)-27. The spectral data (¹H- and ¹³C-NMR) of synthetic (5R,7S)-4 were identical with those of the reported (5R,7S)-4.¹¹) The specific rotation of synthetic (5R.7S)-4 was consistent with those of the reported (5R,7S)-4 $([\alpha]_D^{30} + 115.5 (c=1.52, MeOH).^{11})$ Thus the absolute stereochemistry of (+)-euscapholide (4) was determined unequivocally to possess 5R,7S-configurations.

Discussion and Conclusion

As above mentioned in Chapters ' γ -Lactonization from (S)-4,5-Dihydroxy-(2E)-pentenoic Acid (21) (Synthesis of (S)-22)' and ' γ -Lactonization from (4S,5R)- and (4R,5S)-4,5-Dihydroxy-(2E)-hexenoic Acid (23) (Synthesis of (4S,5R)- and (4R,5S-3),' the selective γ -lactone formation [(S)-22, (4S,5R)- and (4R,5S)-3] from 4,5-dihydroxy-2(E)-alkenic acid [(S)-21, (4S,5R)- and (4R,5S)-23], respectively was occurred. These phenomena could be explained by the fact that the heat of formation of γ -lactones [(4S,5R)- and (4R,5S)-3] is 4.35 kcal/ mol stability than that of δ -lactones [(4S,5R)- and (4R,5S)-2] by SPARTAN Hartree–Fock method Molecular Orbital calculation.

Fig. 1. NOE Correlation of (3S,5S)-26

In conclusion, alkaline hydrolysis of both (\pm) -(4,5-anti)-5-benzyloxy-4-hydroxy-(2E)-hexenoate (16) and (S)-5-hydroxy-(2E)-hexenoate (24) followed by acid treatment gave the corresponding (2E)-hexenoic acids (\pm) -17 and (S)-25, which were subjected to lactone formation reaction without further purification. Both crude acids were treated with 2,4,6-trichlorobenzoyl chloride in pyridine to afford y-lactone $[(\pm)-(4,5)$ -trans-5-benzyloxy-2-hexen-4-olide (18; 90% overall yield from (\pm) -16) and δ -lactone [(S)-parasorbic acid (1; 70% overall yield from (S)-24)], respectively, accompanied by trans-cis isomerization. Meanwhile (S)-4,5-dihydroxy-(2E)-pentenoate (20) was selectively converted to γ -lactone [(S)-5-hydroxy-2-penten-4-olide (22; 86% overall yield from (S)-20] by the above mentioned procedure. The (4S,5R)- and (4R,5S)-4,5-dihydroxy-(2E)-hexenoates (13) were also selectively converted to δ -lactone [(4S,5R)-5-hydroxy-2-hexen-4olide (3: 73% overall yield from (4S.5R)-13) and (4R.5S)-5-hydroxy-2-hexen-4-olide (3; 82% overall yield from (4R,5S)-13), respectively, by the above mentioned procedure. The (S)-24 was converted to (5R,7S)-5,7-dihydroxy-(2E)-octenoic acid (29), which was subjected to δ -lactone formation reaction by the above mentioned procedure to afford (5R,7S)-euscapholide (4). By the asymmetric synthesis of (5R,7S)-4, the absolute stereochemistry of euscapholide (4) was unequivocally determined to possess (5R,7S)-configurations.

Experimental

¹H- and ¹³C-NMR spectra were recorded on JEOL AL 400 spectrometer in CDCl₃. Carbon substitution degrees were established by DEPT pulse sequence. The fast atom

bombardment mass spectra (FAB MS) were obtained with a JEOL JMS 600H spectrometer. IR spectra were recorded with a JASCO FT/IR-300 spectrometer. Optical rotations were measured with a JASCO DIP-370 digital polarimeter. All evaporations were performed under reduced pressure. For column chromatography, silica gel (Kieselgel 60) was employed.

y-Lactonization from (±)-(4,5-anti)-5-Benzyloxy-4-hydroxy-(2E)-hexenoic Acid (17) (Synthesis of (±)-18) (Chart 3) i) To a mixture of AlCl₃ (20.8 g, 156 mmol) in CH_2Cl_2 (200 mL) was added a solution of (\pm) -11 (13.0 g, 52 mmol) in *m*-xylene (20 mL) at 0°C and the reaction mixture was stirred for 15 min at the same temperature. The reaction mixture was diluted with H₂O and extracted with Et₂O. The organic layer was washed with brine and dried over MgSO₄. Evaporation of the organic solvent gave a residue, which was chromatographed on silica gel (300 g, n-hexane-AcOEt=1:3) to afford (\pm) -13 (5.52 g, 66%) as a colorless oil. (\pm) -13: IR (neat): 3410, 1709 cm⁻¹; ¹H-NMR δ : 1.12 (3H, d, J=6.0 Hz), 2.85, 3.21 (each 1H, brs), 3.72 (3H, s), 3.92 (1H, brt), 4.72 (1H, m), 6.09 (1H, dd, J=16.0, 2.0 Hz), 6.92 (1H, dd, J=16.0, 5.0 Hz). Anal. Calcd for C₇H₁₂O₄: C, 56.24; H, 6.29%. Found: C, 56.07; H, 6.37. FAB-MS *m*/*z*: 161 (M⁺+1).

ii) A mixture of (±)-13 (2.133 g, 13.3 mmol), p-toluenesulfonic acid 0.25 g, 1.3 mmol) and benzaldehyde (1.62 g, 21.3 mmol) in benzene (30 mL) was refluxed using Dean-Stark apparatus for 4h. The reaction mixture was diluted with brine and extracted with Et2O. The organic layer was dried over MgSO₄. Evaporation of the organic solvent gave a residue, which was chromatographed on silica gel (80g, *n*-hexane-AcOEt=50:1) to afford a less polar part (\pm)-14 (0.982 g, 30%) as a colorless oil and a more polar part. (±)-15 (1.746 g, 53%) as a colorless oil in elution order: (\pm)-14: IR (neat): $1724 \text{ cm}^{-1.1}\text{H}\text{-NMR}$: δ : 1.23 (3H, d, J=6.0 Hz), 3.76 (3H, s), 4.47 (1H, qd, J=6.0, 6.0 Hz), 4.80 (1H, ddd, J=6.0, 6.0, 1.8 Hz), 6.19 (1H, s, benzylidene H), 6.19 (1H, dd, J=16.0, 1.8 Hz), 6.90 (1H, dd, J=16.0, 6.0 Hz), 7.30-7.47 (5H, m) Anal. Calcd for C₁₄H₁₆O₄: C, 67.73; H, 6.50%. Found: C, 67.26; H, 6.50. FAB-MS m/z: 249 (M⁺+1). (±)-15: IR (neat): 1726 cm⁻¹; ¹H-NMR δ : 1.26 (3H, d, J=6.0 Hz), 3.73 (3H, s), 4.45 (1H, qd, J=6.0, 6.0 Hz), 4.74 (1H, ddd, J=6.0, 6.0, 1.8 Hz), 5.84 (1H, s, benzylidene H), 6.11 (1H, dd, J=16.0, 1.8Hz), 6.88 (1H, dd, J=16.0, 6.0 Hz), 7.33-7.53 (5H, m). Anal. Calcd for C14H16O4.0.5H2O: C, 65.36; H, 6.66%. Found: C, 65.65; H, 6.30. FAB-MS m/z: 249 (M⁺+1).

iii) NaBH₃(CN) (1.95 g, 30.8 mmol) was added to a 1:1.76 mixture (7.647 g, 30.8 mmol) of (\pm) -14 and (\pm) -15 in MeCN (210 mL) at -20° C and additional NaBH₃(CN) (1.95 g, 30.8 mmol) and TiCl₄ (3.39 mL, 30.8 mmol) were added to the above reaction mixture. The reaction mixture was stirred for 40min at the same temperature. The reaction mixture was diluted with 7% NaHCO₃ solution at 0°C and extracted with Et₂O. The organic layer was washed with brine and. dried over MgSO₄. Evaporation of organic solvent gave a crude oil, which was chromatographed on silica gel (160g, n-hexane-AcOEt=10:1) to give (\pm) -16 (6.039 g, 78%) as a colorless oil and (\pm) -11 (1.006 g, 13%) in elution order. (\pm) -16: IR (neat): 1726 cm⁻¹; ¹H-NMR δ : 1.13 (3H, d, J=6Hz), 2.38 (1H, d, J=4.4 Hz), 3.66 (1H, qd, J=6.0, 3.0 Hz), 3.73 (3H, s), 4.42 (1H, m), 4.51, 4.62 (each 1H, d, J=12.0Hz), 6.12 (1H, dd, J=16.0, 2.0 Hz), 6.90 (1H, dd, J=16.0, 5.0 Hz), 7.25-7.38 (5H, m). Anal. Calcd for C₁₄H₁₈O₄: C, 67.18; H, 7.25. Found: C, 66.93; H, 7.35.

MS (FAB) m/z: 251 (M⁺+1). NMR data of (±)-11 were consistent with the authentic (±)-11.

iv) To a solution of (±)-16 (0.985 g, 3.9 mmol) in tetrahydrofuran (THF; 20 mL) was added 2^M NaOH solution (6 mL) and the reaction mixture was stirred for 24 h at rt. The reaction mixture was acidified with 2^M HCl solution and extracted with Et₂O. The organic layer was washed with brine and. dried over MgSO₄. Evaporation of organic solvent gave a crude oil (±)-17 (0.893 g, 96%) as a colorless oil. A part of crude oil (±)-17 was purified by preparative thin-layer chromatography technique to afford pure (±)-17. (±)-17: ¹H-NMR δ : 1.14 (3H, d, *J*=6Hz), 3.68 (1H, qd, *J*=6.0, 4.0Hz), 4.47 (1H, m), 4.51, 4.63 (each 1H, d, *J*=12.0Hz), 6.13 (1H, dd, *J*=16.0, 2.0Hz), 6.99 (1H, dd, *J*=16.0, 5.0Hz), 7.25–7.38 (5H, m). *Anal.* Calcd for C₁₃H₁₆O₄: C, 66.09; H, 6.83. Found: C, 65.80; H, 6.92. MS (FAB) *m/z*: 237 (M⁺+1).

v) To a solution of (\pm) -17 (0.101 g, 0.4 mmol) in pyridine (2mL) were added 2,4,6-trichlorobenzovl chloride (0.11g, 0.47 mmol) and the reaction mixture was stirred for 1h at rt. The reaction mixture was diluted with H₂O and extracted with Et₂O. The organic layer was washed with 7% aqueous NaHCO₃ solution and dried over MgSO₄. Evaporation of the organic solvent gave a residue, which was chromatographed on silica gel (10g, n-hexane-AcOEt=10:1) to afford (±)-18 $(0.085 \text{ g}, 90\% \text{ overall yield from } (\pm)-16)$ as a colorless oil. (±)-18: ¹H-NMR δ : 1.33 (3H, d, J=6Hz), 3.68 (1H, qd, J=6.0, 4.0 Hz), 4.43, 4.55 (each 1H, d, J=12.0 Hz), 4.91 (1H, m), 6.15 (1H, dd, J=16.0, 2.0 Hz), 7.19-7.32 (5H, m), 7.55 (1H, dd, J=6.0, 2.0 Hz). ¹³C-NMR δ : 172.8 (s), 153.8 (d), 137.6 (1C, s), 128.4 (2C, d), 128.0 (2C, d), 127.6 (1C, d), 122.3 (d), 85.7 (d), 74.9 (d), 16.6 (q). Anal. Calcd for C₁₃H₁₄O₃: C, 71.54; H, 6.47. Found: C, 71.25; H, 6.67. MS (FAB) m/z: 219 (M⁺+1).

vi) To a suspension of AlCl₃ (0.160g, 1.2 mmol) in CH₂Cl₂ (2 mL) was added a solution of (±)-**18** (0.065 g,0.3 mmol) in *m*-xylene (1.0 mL) at 0°C and the reaction mixture was stirred for 45 min at 0°C. The reaction mixture was poured into ice-H₂O and extracted with Et₂O. The Et₂O layer was washed with brine and dried over MgSO₄. Evaporation of the organic solvent gave a residue, which was chromatographed on silica gel (20 g, *n*-hexane–AcOEt=1:1) to afford (±)-**3** (0.031 g, 82%). (±)-**3**; ¹H-NMR δ : 1.28 (3H, d, *J*=6.0Hz), 1.70–1.90 (1H, br s), 4.02 (1H, m), 4.91 (1H, m), 6.16 (1H, dd, *J*=6.0, 2.0Hz), 7.54 (1H, dd, *J*=6.0, 2.0Hz). ¹³C-NMR δ : 173.0 (s), 153.5 (d), 122.5 (d), 87.0 (d), 67.6 (d), 18.4 (q). *Anal.* Calcd for C₆H₈O₃: C, 56.24; H, 6.29. Found: C, 56.51; H, 6.18. MS (FAB) *m/z*: 129 (M⁺+1).

γ-Lactonization from (S)-4,5-Dihydroxy-(2E)-pentenoic Acid (21) (Synthesis of (S)-22) (Chart 4) i) To a solution of commercially available (S)-19 (0.367 g, 2.0 mmol) in dioxane (10 mL) and H₂O (10 mL) was added Dowex 50W (H+) (2.0 g), and the reaction mixture was stirred for 12 h at 50°C. The reaction mixture was filtered and the filtrate was evaporated to give a crude oil. (S)-20 (0.261 g, 91%) as a colorless oil. (S)-20: ¹H-NMR δ: 2.50 (2H, brs), 3.54 (1H, dd, J=11.0, 7.0Hz), 3.73 (1H, dd, J=11.0, 3.5Hz), 3.72 (3H, s), 4.41 (1H, dddd, J=7.0, 4.5, 3.5, 2.0Hz), 6.13 (1H, dd, J=16.0, 2.0Hz), 6.89 (1H, dd, J=16.0, 4.5Hz).

ii) To a solution of crude (S)-20 (0.261 g) in isopropyl alcohol (6.0 mL) was added 2 M NaOH solution (3 mL) and the reaction mixture was stirred for 12h at rt. The reaction mixture was treated with Et₂O and water layer was acidified

with 2_M HCl solution. The water layer was evaporated to give a crude solid, which was dissolved with MeOH. Evaporation of MeOH afforded (*S*)-**21** (0.237 g, quantitative yield). (*S*)-**21**: IR (KBr): 3342, 1687, 1638 cm⁻¹; ¹H-NMR δ : 3.52 (1H, dd, *J*=11.0, 6.0 Hz), 3.56 (1H, dd, *J*=11.0, 5.5 Hz), 4.29 (1H, ddd, *J*=6.0, 5.5, 2.0 Hz), 6.06 (1H, dd, *J*=16.0, 2.0 Hz), 6.97 (1H, dd, *J*=16.0, 5 Hz). *Anal.* Calcd for C₅H₈O₄: C, 45.46; H, 6.10. Found: C, 45.29; H, 5.97. MS (FAB) *m/z*: 155 (M⁺+Na).

iii) To a solution of (S)-21 (0.237 g, 1.8 mmol) in pyridine (5 mL) were added a solution of 2,4,6-trichlorobenzoyl chloride (0.44 g, 1.8 mmol) in CH₂Cl₂ (0.3 mL) at 0°C and the reaction mixture was stirred for 2h at 0°C. The reaction mixture was treated with 7% aqueous NaHCO₃ solution (5 mL) and stirred for 20 min. The reaction mixture was evaporated to give a residue, which was dissolved with Et₂O. The Et₂O soluble part by filtration was dried over MgSO₄ and evaporated to afford a residue, which was chromatographed on silica gel (20g, nhexane-AcOEt=1:1) to give (S)-22 (0.177 g, 86% overall yield from (S)-20). (S)-22: IR (neat): 3419, 1730, 1579 cm⁻¹; $[\alpha]_{\rm D}^{26}$ -142 (c=0.332, H₂O), ¹H-NMR δ : 2.45 (1H, brs), 3.78 (1H, dd, J=12.0, 5.0 Hz), 3.98 (1H, dd, J=12.0, 4.0 Hz), 5.14 (1H, dddd, J=5.0, 4.0, 2.0, 2.0 Hz), 6.19 (1H, dd, J=6.0, 2.0 Hz), 7.46 (1H, dd, J=6.0, 2.0 Hz). ¹H-NMR (CD₃OD) δ : 3.72 (1H, dd, J=10.0,5.0 Hz), 3.88 (1H, dd, J=10.0, 4.0 Hz), 5.16 (1H, dddd, J=5.0, 4.0, 2.0, 2.0 Hz), 6.19 (1H, dd, J=6.0, 2.0 Hz), 7.65 (1H, dd, J=6.0, 2.0 Hz). Anal. Calcd for C₅H₆O₃: C, 52.63; H, 5.30. Found: C, 52.40; H, 5.42. MS (FAB) m/z: 115 (M⁺+1).

γ-Lactonization from (4*S*,5*R*)- and (4*S*,5*R*)-4,5-Dihydroxy-(2*E*)-hexenoic Acid (23) (Synthesis of (4*S*,5*R*)- and (4*R*,5*S*)-3) (Chart 5) i) To a mixture of AlCl₃ (2.05 g, 15.2 mmol) in CH₂Cl₂ (15 mL) was added a solution of (4*S*,5*R*)-11 (0.961 g, 3.8 mmol) in *m*-xylene (2 mL) at 0°C and the reaction mixture was stirred for 15 min at the same temperature. The reaction mixture was worked up in the same way as for (±)-13 to give (4*S*,5*R*)-13 (0.530 g, 86%). (4*S*,5*R*)-13: [*a*]_D²⁵ -19.9 (*c*=0.58, CHCl₃). The spectral data (IR and ¹H-NMR) of (4*S*,5*R*)-13 (0.397 g) was also obtained from (4*R*,5*S*)-11 (0.835 g, 3.3 mmol) in 74% yield. (4*R*,5*S*)-13: [*a*]_D²⁵ +20.1 (*c*=0.47, CHCl₃). The spectral data (¹H-NMR) of (4*R*,5*S*)-13 were identical with those of (±)-13.

ii) To a solution of (4S,5R)-13 (0.480 g, 3.0 mmol) in THF (6.0 mL) was added 2 M NaOH solution (3 mL) and the reaction mixture was stirred for 1 h at rt. The reaction mixture was acidified with 2 M HCl solution and extracted with Et₂O. The organic layer was dried over MgSO₄ and evaporated to give a crude (4S,5R)-23 (0.442 g, quantitative yield), which was used for next reaction without further purification. (4S,5R)-23; [α]₂²⁶ -33.9 (c=0.49, CHCl₃), ¹H-NMR (CD₃OD) δ : 1.17 (3H, dd, J=6.0, 6.0, 2.0Hz), 6.04 (1H, dd, J=16.0, 2.0Hz), 7.04 (1H, dd, J=66.0, 6.0Hz). MS (FAB) m/z: 145 (M⁺+1). The antipode (4R,5S)-23 (0.075 g) was also obtained from (4R,5S)-13 (0.091 g, 0.6 mmol). (4R,5S)-23: [α]₂^{D9} +30.3 (c=0.31, CHCl₃). The spectral data (¹H-NMR) of (4R,5S)-23 were identical with those of (4S,5R)-23.

iii) To a solution of (4S,5R)-23 (0.399g, 2.7 mmol) in pyridine (10 mL) were added 2,4,6-trichlorobenzoyl chloride (0.72 g, 3.0 mmol) at 0°C and the reaction mixture was stirred for 1 h at rt. The reaction mixture was evaporated to give a residue, which was chromatographed on silica gel (50 g,

n-hexane–AcOEt=1:3) to give (4S,5R)-**3** (0.280 g, 80% overall yield from (4S,5R)-**13**). (4S,5R)-**3**: $[\alpha]_D^{24}$ –176.2 (*c*=0.47, CHCl₃), The spectral data (¹H- and ¹³C-NMR) of (4S,5R)-**3** were identical with those of (\pm) -**3**. The antipode (4R,5S)-**3** (0.060 g, 82% overall yield from (4R,5S)-**13**) was also obtained from (4R,5S)-**12** (0.091 g). (4R,5S)-**3**: $[\alpha]_D^{23}$ +167.2 (*c*=0.34, CHCl₃). The spectral data (¹H-NMR) of (4R,5S)-**3** were identical with those of (\pm) -**3**.

δ-Lactonization from (S)-5-Hydroxy-(2E)-hexenoic Acid (25) (Synthesis of (S)-Parasorbic Acid (1)) (Chart 6) i) To a solution of (S)-24 (0.173 g, 1.2 mmol) in THF (2.0 mL) was added 2 M NaOH solution (1.6 mL) and the reaction mixture was stirred for 2.5 h at rt. The reaction mixture was acidified with 2 M H₂SO₄ solution (3.0 mL) and extracted with Et₂O. The organic layer was dried over MgSO₄ and evaporated to give a crude (S)-25 (0.157 g, quantitative yield), which was used for next reaction without further purification. (S)-25; ¹H-NMR (CDCl₃) δ: 1.20 (3H, dd, J=6.0 Hz), 2.35 (2H, dd, J=7.0, 7.0 Hz), 3.96 (1H, dq, J=7.0, 7.0, 6.0 Hz), 5.85 (1H, d, J=16.0 Hz), 6.43–7.71 (1H, brs), 7.02 (1H, dt, J=16.0, 7.0 Hz).

ii) To a solution of (S)-25 (0.157 g, 2.7 mmol) in CH₂Cl₂ (2.0 mL) were added 4-dimethylaminopyridine (DMAP, 0.22 g, 1.8 mmol) and 2,4,6-trichlorobenzoyl chloride (0.35 g, 1.4 mmol) at rt and the reaction mixture was stirred for 2h at rt. Additional DMAP (0.4g, 1.4mmol) was added to the above reaction mixture and the reaction mixture was stirred for 2h at rt. The reaction mixture was diluted with brine and extracted with Et₂O. The organic layer was washed with 7% NaHCO₃ solution and dried over MgSO4. The organic solvent was evaporated to give a residue, which was chromatographed on silica gel (20 g, n-hexane-AcOEt=5:1) to give (S)-1 (0.078 g, 58% overall yield from (S)-24). (S)-1: $[\alpha]_{D}^{21}$ +134.9 (c=0.44, EtOH), IR (neat): 1724, 1390 cm⁻¹; ¹H-NMR δ : 1.39 (3H, d, J=7.0 Hz), 2.25 (1H, dddd, J=18.0, 11.0, 2.0, 2.0 Hz), 2.32 (1H, dddd, J=18.0, 6.0, 3.0, 1.0 Hz), 4.52 (1H, ddg, J=11.0, 7.0, 3.0 Hz), 5.96 (1H, ddd, J=10.0, 2.0, 1.0 Hz), 6.83 (1H, ddd, J=10.0, 6.0, 1.0 Hz). Anal. Calcd for C₆H₈O₂: C, 62.27; H, 7.19. Found: C, 61.99; H, 7.35. MS (FAB) m/z: 112 (M⁺+1).

 δ -Lactonization from (5R,7S)-5,7-Dihydroxy-(2E)-octenoic Acid (29) (Synthesis of (5R,7S)-Euscapholide (4)) (Chart 6) i) To a solution of (S)-24 (0.969 g, 6.7 mmol) in anhydrous THF (50.0 mL) was added benzaldehyde (0.71 g, 6.7 mmol) and tert-BuOK (0.075 g, 0.67 mmol) for 15 min at 20°C. This procedure was totally carried out three times and the reaction mixture was stirred for 2h at the same temperature. To the reaction mixture was added phosphate buffer (pH=7) solution (80 mL) and the reaction mixture was stirred for 10 min. The reaction mixture was condensed to half volume and extracted with Et₂O. The organic layer was dried over MgSO₄ and evaporated to give a residue, which was chromatographed on silica gel (30g, n-hexane-AcOEt=25:1) to afford (3S,5S)-26 (1.124g, 67%) as a colorless oil. (3S,5S)-**26**; IR (neat): 1724, 1659 cm⁻¹; $[\alpha]_D^{25}$ +37.5 (*c*=0.46, MeOH); ¹H-NMR (CDCl₃) δ : 1.32 (3H, d, J=7.0 Hz), 1.42 (1H, ddd, J=12.0, 12.0, 13.0 Hz), 1.71 (1H, ddd, J=12.0, 3.0, 3.0 Hz), 2.50 (1H, dd, J=6.0, 6.0 Hz), 2.73 (1H, dd, J=6.0, 6.0 Hz), 3.68 (3H, s), 3.97 (1H, ddq, J=13.0, 7.0, 3.0 Hz), 4.30 (1H, dddd, J=12.0, 6.0, 6.0, 3.0 Hz), 5.55 (1H, s), 7.28-7.37 (3H, m), 7.46-7.51 (2H, m). Anal. Calcd for C14H18O4: C, 67.18; H, 7.25. Found: C, 66.98; H, 7.46. MS (FAB) *m*/*z*: 251 (M⁺+1).

ii) To a solution of (3S,5S)-26 (1.001 g, 4.0 mmol) in

anhydrous toluene (50.0 mL) under argon atmosphere was added a solution of 1 M diisobutylaluminum hydride (Dibal-H) in toluene solution (5.0 mL) at -78° C and the reaction mixture was stirred for 1 h at the same temperature. The reaction mixture was diluted with H₂O (5 mL) and Et₂O (50 mL) at 0°C and stirred for 30 min. To the above reaction mixture was added 2M HCl solution (20mL) and reaction mixture was stirred for 40 min. The reaction mixture was extracted with Et₂O. The organic layer was dried over MgSO₄ and evaporated to give a crude aldehyde (0.849 g), which was used for the next reaction without further purification. To a mixture of LiCl (0.17 g, 4mmol) in CH₃CN (20 mL) at 0°C was added a solution of trimethylphosphonoacetate ((MeO)₂P(O)CH₂COOMe; 0.73 g, 4.0 mmol) in CH₂CN (20 mL) at 0°C and the reaction mixture was stirred for 15 min. To the above reaction mixture was added 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU; 0.91g, 6.0 mmol) in CH₂CN (20 mL) and the reaction mixture was stirred for 15 min. To the above reaction mixture was added a solution of the above aldehyde (0.849g) in CH₃CN (25mL) at 0°C and the reaction mixture was stirred for 12h at rt. The reaction mixture was diluted with saturated NH₄Cl solution (40 mL) and a whole mixture was condensed to half volume. It was extracted with Et₂O. The organic layer was dried over MgSO₄ and evaporated to give a residue, which was chromatographed on silica gel (20g, n-hexane-AcOEt=10:1) to afford (5R,7S)-27 (0.744 g, 67%) as a colorless oil. (5R,7S)-27; IR (KBr): 1736 cm^{-1} ; $[\alpha]_D^{26} + 45.7$ (c=0.52, MeOH); ¹H-NMR (CDCl₃) δ : 1.30 (3H, d, J=7.0 Hz), 1.42 (1H, ddd, J=13.0, 13.0, 11.0 Hz), 1.61 (1H, ddd, J=13.0, 3.0, 3.0 Hz), 2.40-2.47 (1H, m), 2.51-2.61 (1H, m), 3.72 (3H, s), 3.89-3.98 (2H, m), 5.50 (1H, s), 5.91 (1H, dt, J=16.0, 12.0 Hz), 7.00 (1H, dd, J=16.0, 7.0 Hz), 7.32-7.50 (5H, m). Anal. Calcd for C₁₆H₂₀O₄: C, 69.54; H, 7.30. Found: C, 69.17; H, 7.53. MS (FAB) m/z: 277 (M⁺+1).

iii) To a solution of (5R,7S)-27 (0.162g, 0.6mmol) in iso-PrOH (10.0 mL) was added 2M NaOH solution (2.0 mL) at 0°C and the reaction mixture was stirred for 12h at rt. The reaction mixture was condensed to half volume and acidified with 2M HCl solution (5.0mL) and extracted with Et₂O. The organic layer was dried over MgSO4 and evaporated to give a crude (5R,7S)-28 (0.154 g, quantitative yield), which was used for next reaction without further purification. To a solution of (5R,7S)-28 (0.154g) in H₂O (8.0mL) and dioxane (8.0 mL) was added Dowex 50W (H⁺) (1.0 g) and the reaction mixture was stirred for 1.5h at 130°C. The reaction mixture was filtered and the filtrate was evaporated to afford a crude (5R,7S)-29 (0.082 g, 80% yield from (5R,7S)-27), which was used for the next reaction without further purification. (5R,7S)-**29**: ¹H-NMR (CDCl₂) δ : 1.16 (3H, d, J=7.0 Hz), 1.52 (1H, ddd, J=14.0, 5.0, 5.0 Hz), 1.62 (1H, ddd, J=14.0, 8.0, 8.0 Hz), 2.34 (1H, dddd, J=14.0, 7.0, 7.0, 2.0 Hz), 2.43 (1H, dddd, J=14.0, 7.0, 5.0, 2.0 Hz), 3.88 (1H, dddd, J=8.0, 7.0, 5.0, 5.0 Hz), 3.93 (1H, ddg, J=8.0, 7.0, 6.0 Hz), 5.86 (1H, dt, J=16.0, 2.0 Hz),

6.99 (1H, dt, J=16.0, 7.0 Hz).

iv) To a solution of (5R,7S)-29 (0.082 g, 0.5 mmol) in pyridine (10mL) were added a solution of 2,4,6-trichlorobenzovl chloride (0.16 g, 0.7 mmol) in CH₂C₂ (0.3 mL) and the reaction mixture was stirred for 2.5h at rt. The reaction mixture was treated with 7% aqueous NaHCO₃ solution (3 mL) and stirred for 20 min. The reaction mixture was evaporated to give a residue, which was dissolved with a mixed solvent (Et₂O (5.0 mL) and AcOEt (2mL)). The organic solvent soluble part by filtration was dried over MgSO₄ and evaporated to afford a residue, which was chromatographed on silica gel (20g, CHCl₂-MeOH=25:1) to provide (5R,7S)-4 (0.041 g, 45% overall yield from (5R,7S)-27) as a homogeneous oil. (5R,7S)-4: $[\alpha]_{D}^{22}$ 113.5 (c=0.10, MeOH), IR (CHCl₂): 3420, 1700, 1230, 1200 cm⁻¹; ¹H-NMR (CDCl₃) δ : 1.24 (3H, d, J=6.0 Hz), 1.74 (1H, ddd, J=15.0, 5.0, 4.0 Hz), 1.99 (1H, dt, J=15.0, 8.0 Hz), 2.39 (2H, m), 4.07 (1H, m), 4.63 (1H, m), 6.00 (1H, dt, J=10.0, 2.0 Hz), 6.88 (1H, ddd, J=10.0, 5.5, 3.5 Hz). ¹³C-NMR (CD₂OD) δ : 166.4 (s), 148.3 (d), 121.3 (d), 77.5 (d), 64.8 (d), 44.7 (t), 30.2 (t), 23.6 (q). Anal. Calcd for C₈H₁₂O₃: C, 61.52; H, 7.74. Found: C, 61.77; H, 7.44. MS (FAB) m/z: 157 (M⁺+1). The spectral data (¹H- and ¹³C-NMR) of synthetic (5R,7S)-4 were identical with those of the reported (5R,7S)-4.

Acknowledgement The authors are grateful to Professor Shigeo Yamamura, Josai International University for the calculations of the heat of formation of γ -lactones (±)-3 and δ -lactones (±)-2.

References

- 1) Still W. C., Gennari C., Tetrahedron Lett., 24, 4405-4408 (1983).
- Chatterjee A. K., Morgan J. P., Scholl M., Grubbs R. H., J. Am. Chem. Soc., 122, 3783–3784 (2000).
- Ono M., Saotome C., Akita H., *Tetrahedron Asymmetry*, 7, 2595–2602 (1996).
- Ono M., Zhao X. Y., Shida Y., Akita H., *Tetrahedron*, 63, 10140– 10148 (2007).
- Numata A., Hokimoto K., Takemura T., Katsuno T., Yamamoto K., Chem. Pharm. Bull., 32, 2815–2820 (1984).
- Fujisawa T., Kojima E., Sato T., Chem. Lett., 1987, 2227–2228 (1987).
- Sanchez-Sancho F., Valverde S., Herradon B., Tetrahedron Asymmetry, 7, 3209–3246 (1996).
- Boll P. M., Vihavainen T., Selander H., Smidsrød O., Acta Chem. Scand., 22, 3245–3250 (1968).
- Nakamura H., Ono M., Shida Y., Akita H., *Tetrahedron Asymmetry*, 13, 705–713 (2002).
- Yamagiwa S., Hoshi N., Sato H., Kosugi H., Uda H., J. Chem. Soc., Perkin Trans. 1, 214–224 (1978).
- Takeda Y., Okada Y., Masuda T., Hirata E., Takushi A., Otsuka H., *Phytochemistry*, 49, 2565–2568 (1998).
- Nakata T., Hata N., Iida K., Oishi T., *Tetrahedron Lett.*, 28, 5661– 5664 (1987).
- Evans D. E., Gauchet-Prunet J. A., J. Org. Chem., 58, 2446–2453 (1993).