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Abstract: An optically active octahydro-6H-pyrido[4.3-b]carba-
zole derivative was obtained by Fischer indolization of a decahy-
droisoquinolone with phenylhydrazine. The reaction proceeded
with quantitative regioselectivity; no angular annulation products
could be observed. The tetracyclic product was derivatized by sul-
fonamide, urea or carboxamide formation. Its linear constitution as
well as relative and absolute configuration were established by sin-
gle crystal X-ray crystallography of a derivative.
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The indole ring system is a leading structural motif in drug
discovery.1 In most cases it appears annulated with other
heterocyclic rings. For example, the 6H-pyrido[4,3-b]car-
bazole skeleton is the structural motif of ellipticine2 and
related indole alkaloids.3 Octahydro-congeners like com-
pound 2 have been reported to be potent pharmaceuticals,
such as opioid receptor ligands4 and melanin-concentrat-
ing hormone antagonists.1a We have previously reported
on the preparation of building block 1 in optically active
form on a large scale by copper-catalyzed asymmetric
Michael reaction5 and it has since been used as a starting
material in medicinal chemistry.6 In this work, we have
used compound 1 as a starting material in Fischer indole
synthesis.7 We were expecting either linear octahydro-
6H-pyrido[4,3-b]carbazole derivative 2 or angular annu-
lation product 3 (Scheme 1).

Scheme 1 Synthetic plan for an octahydro-6H-pyrido[4,3-b]carba-
zole derivative 2 from optically active building block 1

trans-Decahydroisoquinolone 1 was prepared in three
steps (copper-catalyzed Michael-reaction, aldol-cycliza-
tion and catalytic hydrogenation) from L-valine-derived
enaminoester 4 as reported before.5 The stereochemical

purity (>98% ee and de) was confirmed by GLC on a
chiral phase, after conditions for appropriate baseline res-
olution was developed with the racemic material
(Scheme 2). 

In initial attempts at Fischer indolization, we decided to
heat compound 1 in TFA–AcOH together with phenylhy-
drazine, in order to cleave the carbamate protective group
in situ. However, we obtained a mixture of materials,
which could be clearly identified as indoles by 1H NMR
of the crude reaction mixture, but showed molecular
masses of m/z = 284 (compound 2), m/z = 340 (three com-
pounds) and m/z = 396 (one compound) upon GC-MS
analysis. Obviously, isobutene generated by Boc-cleav-
age reacted with the indole moiety to generate several un-
specifically tert-butylated compounds (Dm/z = 56). For
this reason, we performed the conversion stepwise as in-
dicated in Scheme 2: The Boc-group was first cleaved
with TFA at elevated temperature, then AcOH and phe-
nylhydrazine were added to the reaction mixture. After
some optimization of reaction times and temperatures, py-
ridocarbazole 2 was isolated in 54% yield.8 By applying
H,H-COSY, HMBC and HMQC experiments, we were
able to assign almost all 1H and 13C resonances. The prod-
uct constitution is therefore in accordance with structural
formula 2. We were not able to detect any product with
angular constitution 3. 

Since we were planning to utilize the N-2 function for fur-
ther derivatization (sulfonamide, urea and carboxyamide
formation), we have prepared para-bromobenzene sul-
fonamide 5 (Scheme 3), which proceeded smoothly at
23 °C within two hours with triethylamine as an addition-
al base.9 As expected, we obtained compound 5 as a high-
ly crystalline material and were able to grow single
crystals that were suitable for a X-ray diffraction analysis.
In the Supporting Information the molecular structure is
shown, which confirms the linear annulation as already
indicated by the 2D-NMR experiments. trans-Annulation
of the two saturated six-membered rings is clearly visible.
Furthermore, the bromine and sulfur atom in this com-
pound allowed for anomalous dispersion giving the
(4aS,11aR)-configuration as shown in the Supporting
Information with an absolute structure parameter10 of
–0.0086(68).11

As mentioned, we were planning to prepare the urea and
carboxamide derivatives at N-2. Conversion of carbazole
derivative 2 with phenyl isocyanate proceeded slowly, but
smoothly at ambient temperature to give the correspond-
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ing urea derivative 6 (for experimental details see Sup-
porting Information) in good yield (Scheme 4).
Amidation at N-2 with N-Boc-protected neopentyl gly-
cine (Npg)12 was performed with DCC–HOBt. However,
high reaction temperature was required in order to achieve
full conversion of starting material 2; compound 7 was
obtained in satisfying yield (for experimental details see
Supporting Information). Its NMR spectra showed dou-
bled signal sets, presumably due to rotamers along the
amide C–N bond (ratio 2:1). Conversion of the a-quater-
nary N-Boc aminoisobutyric acid (Aib)13 under the same
conditions required longer reaction times. Furthermore,
the yield was low, because separation of product 8 from
dicyclohexyl urea required two-fold chromatography (for
experimental details see Supporting Information). At am-
bient temperature, the 1H and 13C NMR spectra show very
broad signals. Two partly doubled, though still broad, sig-
nal sets appear when the spectra are recorded at 60 °C. 

In summary, we conclude that Fischer indolization of iso-
quinolone derivative 1 proceeded with high regioselectiv-
ity to yield pyrido[4,3-b]carbazole derivative 2. Further
functionalization at N-2 by sulfonamide, urea, or carbox-
amide formation went smoothly.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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