Molecular Structure of Copper Nitrito Complex as the Reaction Intermediate of Dissimilatory Reduction of NO₂⁻ Nobutoshi KOMEDA, Hirotaka NAGAO,^{††} Gin-ya ADACHI, Masatatsu SUZUKI,[†] Akira UEHARA,[†] and Koji TANAKA^{*, ††} Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565 [†] Department of Chemistry, Faculty of Science, Kanazawa University, Kakumamachi, Kanazawa 920-11 ^{††} Institute for Molecular Science, Myodaiji, Okazaki 444 Electrochemical reduction of NO_2^- by $[Cu(tpa)(H_2O)](ClO_4)_2$ (tpa = tris[(2-pyridyl)methyl]amine) under the controlled potential electrolysis at -0.40 V (vs. Ag/AgCl) in H₂O (pH 7.0) catalytically produced N₂O with concomitant NO evolution. As the precursor of NO evolution, $[Cu(tpa)(ONO)]PF_6$ was characterized by X-ray crystallography. Dissimilatory reduction (denitrification) of NO_2^- by nitrite reductases containing heme and copper proteins 1) is the key reaction of the nitrogen cycle, and has been widely investigated to elucidate the reaction mechanism. 2) There are, however, controversies about the precursors of NO and N₂O evolution in the pathway from NO_2^- to N₂O. We have demonstrated that $[Mo_2Fe_6S_8(SPh)_9]^{3-,3}$ $[Fe_4S_4(SPh)_4]^{2-,4}$ and $[Mo_2Fe_3S_4(SPh)_3(O_2C_6Cl_4)]_2^{4-5}$ catalyze the electrochemical reduction of NO_2^- , and the pathway of the reduction is largely influenced by the coordination mode of NO_2^- to those clusters (nitro and nitrito forms). Recently, a stoichiometric reaction of NO_2^- and NO with copper complexes has been studied in CH_2Cl_2 and EtCN.6) Here, we report catalytic reduction of NO_2^- by a copper complex in H_2O (pH 7.0) and the molecular structure of a nitrito-Cu(II) complex as the precursor of NO evolution. After an aqueous NaNO₂ (2 mmol) solution (10 cm³) was mixed with an EtOH solution (25 cm³) containing (CH₃COO)₂Cu·H₂O (1 mmol) and tris[(2-pyridyl)methyl]amine (tpa) (1 mmol), an addition of NH₄PF₆ (2 mmol) to the solution gave a green precipitate of a nitro adduct [Cu(tpa)(NO₂)]PF₆,⁷) which exhibited the $v_{as}(NO_2)$ and $v_s(NO_2)$ bands at 1390 and 1330 cm⁻¹ in the IR spectrum. Recrystallization of the nitro adduct from CH₃OH afforded single crystals of a nitrito adduct [Cu(tpa)(ONO)]PF₆ 8) showing v(N=0) and v(N-0) bands at 1426 and 1082 cm⁻¹. Both [Cu(tpa)(ONO)]PF₆ and [Cu(tpa)(NO₂)]PF₆ showed the same electronic absorption and IR spectra in acetonitrile,⁹) suggesting that they exist as an equilibrium mixture in the solution (Eq. 1). $$[Cu(tpa)(ONO)]^{\dagger} \longrightarrow [Cu(tpa)(NO_2)]^{\dagger}$$ (1) The molecular structure of $[Cu(tpa)(ONO)]PF_6$ (Fig. 1) is close to trigonal bipyramidal with the O1-Cu-N1 bond angle of 175.8(1)°.10) The ONO moiety is located in the space formed by the Cu-N2, Cu-N3, and Cu-O1 bonds, and the Cu-N4 bond distance is longer than the other Cu-N bonds. Fig. 1. Molecular structure of [Cu(tpa)(ONO)]⁺ with atom labelling. Carbon atoms are not labeled and hydrogen atoms are ommited for clarity. Table 1. Selected Bond Distances (Å) and Bond Angles (deg) for [Cu(tpa)(ONO)]PF6 | Distances | | Angles | | | | |-----------|----------|----------|----------|----------|----------| | Cu-O1 | 1.938(2) | O1-Cu-N1 | 175.8(1) | N1-Cu-N4 | 81.1(1) | | Cu-N1 | 2.031(2) | O1-Cu-N2 | 98.2(1) | N2-Cu-N3 | 131.3(1) | | Cu-N2 | 2.026(2) | O1-Cu-N3 | 100.0(1) | N2-Cu-N4 | 113.2(1) | | Cu-N3 | 2.047(2) | O1-Cu-N4 | 95.3(1) | N3-Cu-N4 | 109.6(1) | | Cu-N4 | 2.129(2) | N1-Cu-N2 | 81.5(1) | Cu-O1-N5 | 118.0(2) | | O1-N5 | 1.300(3) | N1-Cu-N3 | 83.2(1) | O1-N5-O2 | 114.8(3) | | O2-N5 | 1.211(3) | | | | | The cyclic voltammogram (CV) of $[Cu(tpa)(H_2O)](ClO_4)_2$ 11) shows the $[Cu(tpa)(H_2O)]^{2+/+}$ couple at E_{pc} = -0.47 and E_{pa} = -0.38 V with 0.10 V/s 12) in aqueous phosphate buffer solution at pH 7.0 (a solid line in Fig. 2).13) An addition of NaNO₂ to the solution causes a catalytic current due to the copper-mediated reduction of NO_2^- at potentials more negative than -0.30 V (a dotted line in Fig. 2). In accordance with this, the controlled potential electrolysis of an aqueous solution (pH 7.0, 17 cm³) 3 - 5, 14) containing $[Cu(tpa)(H_2O)](ClO_4)_2$ (14 μ mol) and NaNO₂ (1.0 mmol) at -0.40 V (vs. Ag/AgCl) produced NO and N₂O (Fig. 3),15) and the former becomes almost constant after 20 C. This observation strongly suggests that NO is the one of the reaction intermediate in the reduction of NO_2^- to N_2O . In fact, the controlled potential electrolysis of $[Cu(tpa)(H_2O)](ClO_4)_2$ in NO-saturated H₂O (pH 7.0) at -0.30 V¹⁶) also produced N₂O,17) as similar to the reduction of NO to N₂O by a Cu nitrite reductase.^{2d)} Both [Cu(tpa)(NO₂)]⁺ and [Cu(tpa)(ONO)]⁺ formed by the reaction of [Cu(tpa)(H₂O)]²⁺ with NO₂⁻ are considered to be the most possible intermediates in the reduction of NO₂⁻. Removal of either terminal or Cu-bound oxygen from the Cu-O-N-O moiety upon the reduction of [Cu(tpa)(ONO)]⁺ in H₂O would result in formation of unstable oxygen-bound nitrosyl complex, or dissociation of NO. The pathway from NO₂⁻ to NO, therefore, seems to be reasonably explained by the reduction of [Cu(tpa)(ONO)]⁺ rather than [Cu(tpa)(NO₂)]⁺, and a dimeric (tpa)Cu^{||}(NO⁻)₂-Cu^{||}(tpa) has been proposed as the intermediate in a stoichiometric reduction of NO to N₂O by [Cu[|](tpa)RCN]⁺.6) Fig. 2. Cyclic voltammograms of $[Cu(tpa)(H_2O)](ClO_4)_2$ (0.92 mmol dm⁻³) in the absence (———) and the presence of NaNO₂ (2.8 mmol dm⁻³; ········) in H₂O at pH 7.0. ; d*E*/d*t* = 0.10 V/s. Fig. 3. Plots of the products vs. electricity consumed in the controlled potential electrolysis of [Cu(tpa)(H₂O)](ClO₄)₂ (14 μ mol) and NaNO₂ (1.0 mmol) in H₂O (pH 7.0, 17 cm³) at -0.40 V vs. Aq/AqCl. This research was financially supported by Grant-in-Aid for Scientific Research on Priority Areas (No 03241106) from the Ministry of Education, Science and Culture. ## References J. W. Godden, S. Turley, D. C. Teller, E. T. Adman, M. Y. Liu, W. J. Payne, and J. LeGall, Science, 253, 438 (1991); S. Suzuki, T. Yoshimura, T. Kohzuma, S. Shidara, M. Masuko, T. Sakurai, and H. Iwasaki, Biochem. Biophys. Res. Commun., 164, 1366 (1989); H. Iwasaki and T. Matsubara, J. Biochem. (Tokyo), 69, 847 (1971); R. Timkovich, M. S. Cork, and P. V. Taylor, J. Biol. Chem., 259, 1577 (1984); R. Timkovich, R. Dhesi, K. J. Martinkus, M. K. Robinson, and T. M. Rea, Arch. Biochem. Biophys., 215, 47 (1982). - a) W. B. Tolman, *Inorg. Chem.*, 30, 4877 (1991); b) M. R. Rhodes, M. H. Barley, and T. J. Meyer, *ibid.*, 30, 629 (1991); c) G. Denariaz, W. J. Payne, and J. LeGall, *Biochim. Biophys. Acta*, 1056, 225 (1991); d) M. A. Jackson, J. M. Tiedje, and B. A. Averill, *FEBS Lett.*, 291, 41 (1991); e) C. L. Hulse, B. A. Averill, and J. M. Tiedje, *J. Am. Chem. Soc.*, 111, 2322 (1989); f) E. Weeg-Aerssens, J. M. Tiedje, and B. A. Averill, *ibid.*, 110, 6851 (1988); g) M. H. Barley, K. J. Takeuchi, and T. J. Meyer, *ibid.*, 108, 5876 (1986); h) C.-H. Kim and T. C. Hollocher, *J. Biol. Chem.*, 259, 2092 (1984); i) E. A. E. Garber and T. C. Hollocher, *J. Biol. Chem.*, 257, 8091 (1982); j) D. C. Wharton and S. T. Weintraub, *Biochem. Biophys. Res. Commun.*, 97, 236 (1980). - 3) S. Kuwabata, S. Uezumi, K. Tanaka, and T. Tanaka, Inorg. Chem., 25, 3018 (1986). - 4) K. Tanaka, R. Wakita, and T. Tanaka, J. Am. Chem. Soc., 111, 2428 (1989). - 5) K. Tanaka, N. Komeda, and T. Matsui, *Inorg. Chem.*, **30**, 3282 (1991). - 6) P. P. Paul and K. D. Karlin, J. Am. Chem. Soc., 113, 6331 (1991). - 7) Yield 70%. Anal. Found: C, 39.73; H, 3.34; N, 12.87%. Calcd for C₁₈H₁₈CuF₆N₅O₂P: C, 39.68; H, 3.33; N, 12.85%. - 8) Crystal data for [Cu(tpa)(ONO)]PF6: C₁₈H₁₈CuF₆N₅O₂P, F. W. =544.88, monoclinic, space group $P2_1/a$, a=13.374(2) Å, b=14.033(2) Å, c=13.455(2) Å, β =119.10(1)°, V=2206.5(6) Å³, Z=4, D_c =1.64 g cm⁻³, R/R_W =0.039/0.022 for 3777 unique reflections (θ <30.0°) with $|F_o|$ >3 σ (F_o) and 370 variables. The reflections were collected by θ -2 θ scan technique on an Enraf-Nonius CAD4-GX21 automated four-circle diffractometer with MoK α radiation(0.7107 Å). All the calculation is carried out using a teXsan program. - 9) Both [Cu(tpa)(NO₂)]PF₆ and [Cu(tpa)(ONO)]PF₆ showed the d-d transition band at λ_{max} = 838 nm (ϵ = 210) in CH₃CN, and the ν (N=O), ν_{as} (NO₂), and ν_{s} (NO₂) bands at 1426, 1387, and 1333 cm⁻¹, respectively, in CD₃CN. The ν (N-O) band of the nitrito complex was obscured by a strong absorption band of the solvent. - 10) During this study, a molecular structure of [Cu(N(C₂H₄C₅H₄N)₃)(ONO)]PF₆ was reported: F. Jiang, R. R. Contry, L. Bubacco, Z. Tyeklar, R. R. Jacobson, K. D. Karlin, and J. Peisach, *J. Am. Chem. Soc.*, 115, 2093 (1993). - 11) R. R. Jacobson, Z. Tyeklar, K. D. Karlin, and J. Zubieta, *Inorg. Chem.*, **30**, 2035, (1991). - 12) The CV of $[Cu(tpa)(H_2O)](ClO_4)_2$ in H_2O (pH 7.0) showed at E_{pc} = -0.45 and E_{pa} = -0.39 V at 0.01 V/s. - 13) The CV of [Cu(tpa)(ONO)]PF₆ is same as that of the mixture of [Cu(tpa)(H₂O)](ClO₄)₂ and NaNO₂ (1:1), and the dotted line of Fig. 2 is also identical to the CV of [Cu(tpa)(ONO)]PF₆ and NaNO₂ (1:2) in H₂O (pH 7.0). - 14) pH was buffered with NaOH (1.0 mol dm⁻³)-H₃PO₄. - 15) Gas analysis was performed on a Shimadzu GC-8A gas chromatograph with molecular sieves 13X, and the details of the analysis are described in references 3, 4, and 5. - 16) In the absence of [Cu(tpa)(H₂O)](ClO₄)₂, no detectable current flowed in the controlled potential electrolysis of aqueous NaNO₂ and NO-saturated H₂O (pH 7.0) at -0.40 V. - 17) The current efficiency for the formation of gaseous N₂O was 60%. (Received May 14, 1993)