Artikel

Disupersilylmetalle (^tBu₃Si)₂M und Supersilylmetallhalogenide ^tBu₃SiMX mit M = Zn, Cd, Hg: Synthesen, Strukturen, Eigenschaften [1]

N. Wiberg*, K. Amelunxen, H.-W. Lerner, H. Nöth¹), A. Appel¹), J. Knizek¹) und K. Polborn^{a,1})

München, Institut für Anorganische Chemie und a Institut für Organische Chemie der Universität

Bei der Redaktion eingegangen am 26. März 1997.

Professor Manfred Weidenbruch zum 60. Geburtstag gewidmet

Inhaltsübersicht. Disupersilylmetalle (^tBu₃Si)₂Zn (farblos), (^tBu₃Si)₂Cd (blaßgelb), (^tBu₃Si)₂Hg (blaßgelb) und Supersilylmetallhalogenide ^tBu₃SiZnCl(THF) (farblos), ^tBu₃SiCdI (farblos), ^tBu₃SiHgCl (farblos) bilden sich in THF durch Einwirkung von ^tBu₃SiNa auf ZnCl₂, CdI₂, HgCl₂ im Molverhältnis 2:1 bzw. 1:1. THF läßt sich durch TMEDA unter Bildung von ^tBu₃SiZnCl(TMEDA) (farblos) ersetzen, (^tBu₃Si)₂Zn durch Einwirkung von BiCl₃ oder BBr₃ in ^tBu₃SiZnCl (farblos) oder ^tBu₃SiZnBr (farblos) umwandeln. Gemäß Röntgenstrukturanalysen sind die Verbindungen (^tBu₃Si)₂M monomer mit linearen SiMSi-Gerüsten, wogegen ^tBu₃SiZnBr

thermostabil (Ausnahme (^tBu₃Si)₂Cd), photolabil und vergleichsweise stabil gegen Wasser und Sauerstoff. Die Disupersilylmetalle wirken als Quellen für Supersilylradikale ^tBu₃Si (bei Bestrahlung) sowie als milde Supersilanidierungsmittel (z. B. (^tBu₃Si)₂Zn/BBr₃ \rightarrow ^tBu₃SiZnBr/^tBu₃SiBBr₂), die Supersilylmetallhalogenide als Lewis-Säuren (Bildung von ^tBu₃SiMX · Donor) und Elektrophile (z. B. ^tBu₃SiHgCl/ RLi \rightarrow ^tBu₃SiHgR/LiCl).

und ^tBu₃SiHgCl tetramer sind, und zwar in ersterem Falle mit regulärem, in letzterem mit ausgeprägt irregulärem kubi-

schem M₄X₄-Gerüst. Die Verbindungen sind bis 200 °C

Disupersilylmetals (^tBu₃Si)₂M and Supersilylmetal Halides ^tBu₃SiMX with M = Zn, Cd, Hg: Syntheses, Properties, Structures [1]

(colorless). Disupersilylmetals $(^{t}Bu_{3}Si)_{2}Zn$ Abstract. (^tBu₃Si)₂Cd (light yellow), (^tBu₃Si)₂Hg (light yellow), and supersilylmetal halides ^tBu₃SiZnCl(THF) (colorless), ^tBu₃SiCdI (colorless), ^tBu₃SiHgCl (colorless) are obtained in THF by the action of ^tBu₃SiNa on ZnCl₂, CdI₂, HgCl₂ in the molar ratio 2:1 and 1:1, respectively. THF can under be exchanged by TMEDA formation of ^tBu₃SiZnCl(TMEDA), and (^tBu₃Si)₂Zn transforms by the action of BiCl₃ or BBr₃ into ^tBu₃SiZnCl (colorless) and ^tBu₃SiZnBr (colorless), respectively. As to X-ray crystal structure analyses, the compounds (^tBu₃Si)₂M are monomeric with a linear SiMSi framework, whereas ^tBu₃SiZnBr and ^tBu₃SiHgCl are tetrameric, the former with a regular,

the latter with a pronounced irregular cubic M_4X_4 framework. The compounds are thermal stable up to 200 °C (exception (^tBu₃Si)₂Cd), photolabile, and comparatively inert for water and oxygen. The disupersilylmetals work as sources of supersilyl radicals ^tBu₃Si (on irradiation) and as mild supersilanidation agents (e.g. (^tBu₃Si)₂Zn/ BBr₃ \rightarrow ^tBu₃SiZnBr/^tBu₃SiBBr₂), the supersilylmetal halides as Lewis acids (formation of ^tBu₃SiMX · donor) and electrophiles (e.g. ^tBu₃SiHgCl/RLi \rightarrow ^tBu₃SiHgR/LiCl).

Keywords: Supersilylzinc; Supersilylcadmium; Supersilylmercury; X-ray structure analyses; Supersilyl radical, Supersilanidation

Prof. Dr. N. Wiberg Institut für Anorganische Chemie der Universität Meiserstraße 1 D-80333 München

Einleitung

Zur Stabilisierung von Verbindungen $R_n E_m$ mit zentralen Elementen E (m = 1), die eine ungewöhnliche Koordinationsgeometrie bzw. eine kleine Koordinationszahl aufweisen, oder mit Elementclustern E_m (m > 1) bewährte sich in vielen Fällen die leicht zugängliche und chemisch vergleichsweise inerte, in Abb. 1 wiedergegebene Tri-*tert*-butylsilylgruppe

¹) Röntgenstrukturuntersuchung

^{*} Korrespondenzadresse:

Abb. 1 Raumerfüllung der Supersilylgruppe ^tBu₃Si

(Supersilylgruppe) ^tBu₃Si als Substituent R [2]. Die Synthesen der betreffenden supersilylierten Elementverbindungen $R_n E_m$ erfolgen hierbei mit Vorteil durch Reaktionen von Elementhalogeniden EX_n mit Supersilylalkalimetallen (Alkalisupersilaniden) ^tBu₃SiM, die wir vor über 10 Jahren zugänglich machten [3] und deren Synthesen, Strukturen und Eigenschaften in einer vorausgehenden Mitteilung [4] eingehend beschrieben wurden.

Als Folge der hohen Reduktionskraft des Supersilanids 'Bu₃Si⁻, das den stark polaren Supersilylalkalimetallen zugrunde liegt, führt die Supersilanidierung von EX_n mit 'Bu₃SiM häufig zu unerwünschten Redoxreaktionen. Dies veranlaßte uns, weniger polare, aber hinsichtlich EX_n nach wie vor als Supersilanidierungsmittel wirkende Supersilylmetalle (Metallsupersilanide) zu synthetisieren, nämlich die an anderer Stelle zu besprechenden Supersilylerdalkalimetalle und die hier zur Diskussion stehenden Supersilylverbindungen der Zinkgruppenmetalle.

Trimethylsilyl- und Triphenylsilylverbindungen von Metallen der II. Nebengruppe, nämlich $(Me_3Si)_2Hg$, $(Ph_3Si)_2Zn$ und $(Ph_3Si)_2Hg$ wurden bereits im Jahre 1963 durch *Wiberg* et al. hergestellt [5]. Ihnen folgten in der Mitte der siebziger Jahre mit (^tBu_3Si)_2Cd und (^tBu_3Si)_2Hg erstmals Supersilylverbindungen von Elementen der Zinkgruppe, die *Rösch* et al. gemäß Gleichung (1) aus R₂M (R = Et, ^tBu) und Supersilan ^tBu_3SiH synthetisierten, aber nicht röntgenstrukturanalytisch charakterisierten [6]. Studien jüngeren Datums von *Tilley* et al. [7] und *Klinkhammer* et al. [8] befaßten sich schließlich mit Darstellung und Charakterisierung von Hypersilylverbindungen [(Me_3Si)_3Si]_2M (M = Zn, Cd, Hg).

$$R_2M \xrightarrow[(ohne \ Lsm.; \ ca. 90 \circ C)]{+2 'Bu_3SiH; -2 RH} ({}^tBu_3Si)_2M$$
(1)

Inzwischen haben wir durch weitere Methoden die nachfolgend aufgeführten Supersilylverbindungen des Typus (${}^{t}Bu_{3}Si)_{2}M$ (1) und zudem des bisher unbekannten Typus ${}^{t}Bu_{3}SiMX$ (2; donorfrei und donorhaltig) synthetisiert sowie hinsichtlich ihrer Strukturen und Eigenschaften erschlossen. Über diesbezügliche Studien, die auch Versuche zur Erzeugung von Clustern des Typus (${}^{t}Bu_{3}Si)_{2}M_{2}$ (3) beinhalten, wird nachfolgend berichtet.

(^t Bu ₃ Si) ₂ M	^t Bu ₃ SiMX	$(^{t}Bu_{3}Si)_{2}M_{2}$
(1)	(2)	(3)
(M = Zn, Cd, H)		

Synthesen

Verbindungen des Typus 1 und 2 – nämlich (${}^{t}Bu_{3}Si_{2}Zn$, (^tBu₃Si)₂Cd, (^tBu₃Si)₂Hg, ^tBu₃SiZnCl(THF), ^tBu₃SiCdI und ^tBu₃SiHgCl – erhält man gemäß Gleichung (2) bzw. (3) durch Zutropfen einer Lösung von ^tBu₃SiNa in Tetrahydrofuran (THF) zu einer Lösung von Halogeniden der Zinkgruppenmetalle (hier ZnCl₂, CdI₂, HgCl₂) in THF bei Raumtemperatur im Molverhältnis 1:2 bzw. 1:1. Im Zuge der Supersilanidierung entfärbt sich die gelbe Supersilylnatriumlösung an der Eintropfstelle augenblicklich unter Bildung von schlecht löslichem Natriumhalogenid, das im Falle der Darstellung der Cd- und Hg-Verbindungen durch geringe Mengen von ebenfalls entstehendem elementarem Cd und Hg grau gefärbt ist. Führt man die entsprechenden Umsetzungen in Alkanen durch, so erfolgt hauptsächlich eine Reduktion zum Metall nach $MX_2 + 2^{t}Bu_3SiNa \rightarrow M + 2NaX +$ ^tBu₃Si-Si^tBu₃ unter gleichzeitiger Bildung von NaX und Superdisilan ^tBu₃Si-Si^tBu₃.

$$MX_{2} \xrightarrow{+2^{\circ}Bu_{3}SiNa; -2NaX}_{(THF; 20^{\circ}C)} ({}^{t}Bu_{3}Si)_{2}M$$
(2)

$$MX_{2} \xrightarrow{+ {}^{t}Bu_{3}SiNa; -NaX}_{(THF; 20^{\circ}C)} {}^{t}Bu_{3}SiMX$$
(3)

(^tBu₃Si)₂Zn ist auch direkt durch Reaktion von ^tBu₃SiBr mit aktivem, aus ZnCl₂ und Kalium erzeugtem Zink in siedendem Heptan zugänglich: 2 ^tBu₃SiBr + 2 Zn \rightarrow (^tBu₃Si)₂Zn + ZnBr₂. Ebenso besteht die Möglichkeit zur Synthese von (^tBu₃Si)₂Hg aus ^tBu₃SiBr und Natriumamalgam sowie aus Hg₂Cl₂ und ^tBu₃SiNa. Die THF-freien Verbindungen ^tBu₃SiZnCl und ^tBu₃SiZnBr erhält man andererseits gemäß den Gleichungen (4) und (5) durch Einwirkung von Bismuttrichlorid und Bortribromid auf (^tBu₃Si)₂Zn in Alkanen bei Raumtemperatur:

$${}^{(^{t}Bu_{3}Si)}_{2}Zn \xrightarrow{+BiCl_{3}; -{}^{^{t}Bu_{3}SiBiCl_{2}}}_{(Alkane; 20^{\circ}C)} {}^{^{t}Bu_{3}SiZnCl}$$

$$(4)$$

$$({}^{t}Bu_{3}Si)_{2}Zn \xrightarrow{+BBr_{3}; -{}^{t}Bu_{3}SiBBr_{2}}{(Alkane; 20^{\circ}C)} {}^{t}Bu_{3}SiZnBr$$

$$(5)$$

Die Synthese von Verbindungen des Typus 3 mit M_2 -Clustern ist bisher nicht gelungen. So führten die Reaktionen von ^tBu₃SiZnCl(THF) und Lithiumnaphthalenid C₁₀H₈Li in THF bei Raumtemperatur und von Hg₂Cl₂ mit ^tBu₃SiNa in THF bei -30 °C zu (^tBu₃Si)₂M (M = Zn, Hg) und Zn bzw. Hg. Auch die Einwirkung von (^tBu₃Si)₂Zn auf Hg₂Cl₂ lieferte kein (^tBu₃Si)₂Hg₂, sondern u. a. (^tBu₃Si)₂Hg.

Charakterisierung

Zur Isolierung der einzelnen Verbindungen kondensiert man in jedem Falle alle flüchtigen Anteile im Ölpumpenvakuum ab und extrahiert die verbleibenden Rückstände mit Pentan. Aus den Pentanlösungen fallen dann bei $-23 \,^{\circ}$ C die Verbindungen der Typen 1 und 2 in Form farbloser bis blaßgelber, luftempfindlicher bis luftstabiler, bei Temperaturen um 200 $^{\circ}$ C schmelzender oder sich zersetzender Kristalle aus (vgl. Tabelle 1). Alle gewonnenen Substanzen sind etwas lichtempfindlich (Bildung grauer Beläge auf den Kristallen). Besonders charakteristisch für die in C₆D₆ gelösten Produkte ist ein deutlicher Tieffeldshift der ²⁹Si-NMR-Signallagen beim Übergang von den Zinküber die Cadmium- zu den Quecksilberverbindungen (Tabelle 1). Ein ähnlicher Trend der NMR-Verschiebungen des mit M verknüpften Atoms beobachtet man nicht nur bei den "Supersilyl"-Verbindungen (${}^{t}Bu_{3}Si_{2}M$, sondern auch bei den "Hypersilyl"-Verbindungen [(Me_{3}Si)_{3}Si]_{2}M [8] sowie den "Monosyl"-Verbindungen (Me_{3}SiCH₂)_2M [9].

Wie das nachfolgende Schema des Baus der – zum Teil röntgenstrukturanalytisch geklärten (s. unten) – Verbindungen der Typen **1** und **2** (donorfrei und donorhaltig) demonstriert, liegen die Produkte (${}^{t}Bu_{3}Si)_{2}M$ im Kristall als *Monomere* mit zentralem linearen SiMSi-Gerüst vor. Analoges gilt in grober Näherung auch für ${}^{t}Bu_{3}SiHgCl$ im Kristall (Winkel SiHgCl ca. 160°; gelöstes ${}^{t}Bu_{3}SiHgCl$ weist sicherlich

^tBu₃Si-Hg-Cl

(M = Zn, Cd, Hg)

 Tabelle 1
 Einige Kenndaten der in der ersten Spalte wiedergegebenen Verbindungen

Verbindungen	Allgemeine Eigenschaften	NMR-Spektren (C_6D_6); δ -Werte			
-		¹ H	$^{13}C{^{1}H}$	²⁹ Si	
(^t Bu ₃ Si) ₂ Zn	farblose Quader Schmp. 217–218 °C wenig luftempfindlich	1.23 (s, Si ^t Bu ₃)	24.69 (Me ₃ C) 32.79 (Me ₃ C)	25.9	
(^t Bu ₃ Si) ₂ Cd	blaßgelbe Prismen Zers. > 130 °C wenig luftempfindlich	1.21 (s, Si ^t Bu ₃)	24.43 (Me ₃ C) 32.95 (Me ₃ C)	47.6	
(^t Bu ₃ Si) ₂ Hg	Bu ₃ Si) ₂ Hg blaßgelbe Rhomben Smp. 199–201 °C nicht luftempfindlich		28.59 (Me ₃ C) 33.15 (Me ₃ C)	88.3	
^t Bu ₃ SiZnCl	farbloser Feststoff luftempfindlich	1.28 (s, Si ^t Bu ₃)	24.40 (Me ₃ C) 32.20 (Me ₃ C)	37.6	
^t Bu ₃ SiZnBr	farblose Quader Zers. > 185 °C luftempfindlich	1.29 (s, Si ^t Bu ₃)	25.95 (Me ₃ C) 32.28 (Me ₃ C)	34.5	
^t Bu ₃ SiCdI	farbloser Feststoff luftempfindlich	1.38 (s, Si ^t Bu ₃)	25.91 (Me ₃ C) 32.55 (Me ₃ C)	40.3	
^t Bu ₃ SiHgCl	farblose Nadeln Zers. > 198 °C nicht luftempfindlich	0.95 (s, Si ^t Bu ₃)	24.92 (Me ₃ C) 31.49 (Me ₃ C)	63.9	
^t Bu ₃ SiZnCl(THF)	farblose Nadeln luftempfindlich	1.32 (s, 27 H, Si ^t Bu ₃) 1.32 (m, 8 H, THF) 3.73 (m, 8 H, THF)	24.01 (Me ₃ C) 32.38 (Me ₃ C) 25.11, 63.38 (THF)	34.1	
^t Bu ₃ SiZnCl(TMEDA)	3SiZnCl(TMEDA) farbloser Feststoff luftempfindlich		23.65 (Me ₃ C) 33.03 (Me ₃ C) 48.54, 57.07 (TMEDA)		

ein lineares SiHgCl-Gerüst auf). Dagegen bilden ^tBu₃SiZnBr und wohl auch ^tBu₃SiZnCl sowie ^tBu₃SiCdI *Tetramere* mit näherungsweise kubischem M_4X_4 -Gerüst (vgl. Experimentelles). Die ^tBu₃SiMX-Oligomeren lassen sich durch Einwirkung von Donoren depolymerisieren, wie die Bildung des – wohl *dimeren* – Tetrahydrofuranaddukts ^tBu₃SiZnCl(THF) und des – wohl *monomeren* – Tetramethylethylendiaminaddukts ^tBu₃SiZnCl(TMEDA) lehren.

Reaktivität

Die *Thermolyse* der zur Diskussion stehenden, mit Ausnahme von (${}^{t}Bu_{3}Si$)₂Cd bis 200 °C stabilen Verbindungen (Tabelle 1) ist bisher nicht eingehender studiert worden.

Während Lösungen der Disupersilylverbindungen des Typus 1 in THF vergleichsweise lichtstabil sind, zersetzen sich die betreffenden Substanzen in Alkanen oder Benzol am Tageslicht rasch. Die *Photolyse* mit UV-Licht führt hierbei zu feinverteiltem Zn, Cd, Hg und typischen Folgeprodukten intermediär gebildeter Supersilylradikale ^tBu₃Si, nämlich ^tBu₃Si-Si^tBu₃ (Hauptprodukt) sowie ^tBu₃SiH und (^tBu₃SiCH₂)₂C=CH₂ [4]. Die darüber hinaus entstehenden, bisher noch nicht identifizierten und möglicherweise metallhaltigen Substanzen stellen wohl ebenfalls Folgeprodukte intermediär gemäß Gleichung (6) gebildeter Radikale dar:

$${}^{t}Bu_{3}Si-M-Si^{t}Bu_{3} \xrightarrow{h\nu} {}^{t}Bu_{3}Si-M \xrightarrow{-{}^{t}Bu_{3}Si} M$$
(6)

Mithin wirken die Disupersilylverbindungen (^tBu₃Si)₂M am Licht als gut handhabbare *Supersilylradikalquellen*. Von Bedeutung für die – bei den polaren Supersilylalkalimetallen nicht zu beobachtende [4] – lichtinduzierte ^tBu₃Si-Radikalbildung ist sicherlich die vergleichsweise geringe Polarität der SiM-Bindungen in 1 (Pauling-Elektronegativitäten von Si/Zn/Cd/Hg = 1.8/1.6/1.7/1.9 [10]) und der "edelgasähnliche" Elektronenzustand der sich bildenden Metalle Zn, Cd, Hg (abgeschlossene Elektronenunterschalen [10]).

Die Monosupersilylverbindungen 2 sind insgesamt etwas lichtbeständiger als die Disupersilylverbindungen 1. Die besonders photostabile Substanz ^tBu₃SiHgCl liegt selbst nach 14stündiger Bestrahlung in Heptan mit UV-Licht noch unverändert vor.

Im Unterschied zu ^tBu₃SiZnBr weisen (^tBu₃Si)₂M (M = Zn, Cd, Hg) sowie ^tBu₃SiCdI und ^tBu₃SiHgCl keine Tendenz zur Addition von THF auf; auch bilden die Disupersilylverbindungen keine Oligomeren im Festzustand, während die Monosupersilylverbindungen ^tBu₃SiZnBr und wohl auch ^tBu₃SiZnCl sowie ^tBu₃SiCdI in fester Phase tetramer vorliegen und ^tBu₃SiHgCl im Kristall deutliche Anzeichen einer Tetramerisierung zeigt (Abstände Hg–Cl sowie Hg…Cl 2.47 sowie 3.07 Å). Hiernach wächst die Acidität der Verbindungen in Richtung abnehmenden Supersily-

lierungsgrades und abnehmender Ordnungszahl des Zinkgruppenmetalls. Da Reaktionen der zur Diskussion stehenden Substanzen mit Methanol wohl über MeOH-Addukte verlaufen, verwundern die hohen Methanolysestabilitäten der Verbindungen (^tBu₃Si)₂M nicht. Die größere Bereitschaft von ^tBu₃SiMX für eine Basenaddition zeigt sich andererseits in ihrer Elektrophilie bezüglich starker Nucleophile. So werden die Verbindungen durch ^tBu₃SiNa zu (^tBu₃Si)₂M supersilanidiert (vgl. Darstellung); auch läßt sich ^tBu₃SiHgCl gemäß Gleichung (7) in Pentan mit ⁿBuLi bzw. ^tBuLi bei Raumtemperatur glatt zu ^tBu₃SiHgⁿBu bzw. ^tBu₃SiHg^tBu alkanidieren:

$$^{t}Bu_{3}SiHgCl \xrightarrow{+RLi; -LiCl}{(Pentan; 20^{\circ}C)} ^{t}Bu_{3}SiHgR$$
 (7)

In den zur Diskussion stehenden Substanzen stellt das Metallatom das saure Zentrum dar, während die Basizität der Verbindungen auf das Siliciumatom der Supersilvlgruppen zurückgeht. Tatsächlich wirkt sich letztere wegen der geringen Polarität der SiM-Bindungen (s. oben) viel schwächer aus als die Basizität von ^tBu₃Si der stark polaren Supersilylalkalimetalle [4]. Demgemäß sind auch erstere Verbindungen im Unterschied zu letzteren vergleichsweise protolysestabil. Des weiteren ist ihre Nucleophilie klein, so daß sie ganz im Sinne unserer Zielvorstellungen (s. Einleitung) nur schwache Supersilanidierungsmittel darstellen. (^tBu₃Si)₂Zn führt etwa Elementhalogenide EX_n – anders als Supersilylalkalimetalle [4] - gemäß Gleichung (8) ausschließlich in Monosupersilylverbindungen über (vgl. hierzu [11]):

$$({}^{t}Bu_{3}Si)_{2}Zn + 2EX_{n} \rightarrow 2{}^{t}Bu_{3}SiEX_{n-1} + ZnX_{2}$$
(8)

Die Übertragung von 'Bu₃Si⁻ erfolgt zudem wesentlich langsamer als im Falle der Supersilylalkalimetalle. Andererseits setzt sich ('Bu₃Si)₂Zn mit Bismuttrichlorid oder Bortribromid, die sowohl basische als auch saure Zentren aufweisen, vergleichsweise rasch gemäß den Gleichungen (4) und (5) zu 'Bu₃SiZnCl und 'Bu₃SiBiCl₂ bzw. zu 'Bu₃SiZnBr und 'Bu₃SiBBr₂ um.

Der Übergang von den Supersilylalkalimetallen zu den Supersilylverbindungen der Zinkgruppenmetalle ist nicht nur mit einer Abnahme der Nucleophilität der Supersilvlgruppen, sondern auch mit einer Verringerung ihrer Reduktionstendenz verbunden. Demgemäß sind erstere Substanzen extrem oxidationsempfindlich, während letztere Verbindungen etwa von Luft nicht oder nur langsam bis mäßig langsam angegriffen werden (Tabelle 1). Als Produkte der Einwirkung von feuchter Luft auf (^tBu₃Si)₂Zn in MeOD-haltigem Benzol lassen sich 'Bu₃SiOH und ^tBu₃SiOMe (Molverhältnis 4:1) nachweisen. Möglicherweise bildet sich also intermediär aus (^tBu₃Si)₂Zn und O₂ zunächst Zinksupersilanolat Zn(OSi^tBu₃)₂, das zu den ^tBu₃Si-haltigen Produkten hydrolysieren bzw. methanolysieren könnte.

Die Disupersilylverbindungen **1** weisen darüber hinaus auch keine Oxidationstendenz auf und reagieren selbst in siedendem Heptan (ca. 100 °C) nicht mit Natrium gemäß (^tBu₃Si)₂M + 2 Na \rightarrow 2 ^tBu₃SiNa + M. Etwas reduktionsempfindlicher verhalten sich demgegenüber die Monosupersilylverbindungen **2**. So setzt sich etwa ^tBu₃SiZnCl in THF mit Lithiumnaphthalenid C₁₀H₈Li zu (^tBu₃Si)₂Zn, Zn und LiCl um. Möglicherweise bilden sich somit intermediär Supersilylzink-Radikale ^tBu₃SiZn', die sich allerdings nicht zu (^tBu₃SiZn)₂ dimerisieren, sondern zu (^tBu₃Si)₂Zn und Zn disproportionieren.

Röntgenstrukturanalysen

Bezüglich der röntgenographisch geklärten Strukturen der Verbindungen der Typen 1 und 2 vgl. die Abbildungen 2 bis 6.

Zentrales Strukturelement der isostrukturellen Disupersilylmetalle (^tBu₃Si)₂M (M = Zn, Cd, Hg) ist die lineare Gruppierung Si-M-Si, wobei die ^tBu-Substituenten des einen Si-Atoms hinsichtlich der ^tBu-Gruppen des anderen Si-Atoms exakt auf Lücke stehen, so daß also das Metallatom auf einem Verbindungsinversionszentrum liegt, und die Moleküle die höchstmögliche Symmetrie D_{3d} aufweisen (Abb. 2, 3 und 4). Im Unterschied dazu sind die entsprechenden Hypersilylmetallverbindungen [(Me₃Si)₃Si]₂M (M = Zn, Cd, Hg) in jeweils einer Trimethylsilylgruppe fehlgeordnet und weichen damit von der idealen Symmetrie ab [7, 8].

Die Supersilylmetallhalogenide ^tBu₃SiZnBr und ^tBu₃SiHgCl bilden im Festkörper Tetramere (Abb. 5 und 6; ^tBu₃SiZnBr- und ^tBu₃SiCdI-Kristalle haben gleiche Elementarzellen, so daß ^tBu₃SiCdI wohl ebenfalls tetramer gebaut ist). ^tBu₃SiZnBr weist als zentrales Strukturelement einen fast perfekten Zn₄Br₄-

Abb. 2 Struktur von (${}^{t}Bu_{3}Si)_{2}Zn$ im Kristall (Lokalsymmetrie: D_{3d} ; ORTEP-Plot; thermische Schwingungsellipsoide 30%). Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: Si1–Zn1 2.384(1), Si1–C1 1.939(4), Si1–C5 1.946(4), Si1–C9 1.943(4); Si1–Zn1–Si1 a 180.0, C1–Si1–C5 112.0(2), C1–Si1–C9 111.7(2), C5–Si1–C9 111.6(2).

Kubus auf, dessen Ecken abwechselnd mit Zn- und Br-Atomen besetzt sind. Die Zinkatome haben 3 Brund 1 Si-Atom als Nachbarn, so daß ihnen eine tetraedrische Umgebung und die Koordinationszahl 4 zukommt. Die Bromatome sind mit 3 Zn-Atomen verknüpft, mit denen sie zusammen eine trigonale Pyramide (Br an der Spitze) bilden. In der Tat sind bei den verwandten Organozinkverbindungen RZnX (X = Hal oder OR) Tetramere mit zentralen Zn₄X₄-Kubanen schon lange bekannt [10].

Das zentrale Strukturelement der Verbindung ^tBu₃SiHgCl stellt ein so stark verzerrtes Hg₄Cl₄-Heterokuban dar, daß man das Tetramere besser als eine lose Verknüpfung von 4 einzelnen ^tBu₃SiHgCl-Einheiten über Metall-Halogen-Kontakte beschreibt. Die

Abb. 3 Struktur von (${}^{t}Bu_{3}Si)_{2}Cd$ im Kristall (Lokalsymmetrie: D_{3d} ; ORTEP-Plot; thermische Schwingungsellipsoide 30%). Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: Si1-Cd1 2.524(2), Si1-C1 1.942(4), Si1-C5 1.944(4), Si1-C9 1.942(4); Si1-Cd1-Si1 a 180.0, C1-Si1-C5 111.9(2), C1-Si1-C9 111.9(2), C5-Si1-C9 112.0(2).

Abb. 4 Struktur von (${}^{t}Bu_{3}Si)_{2}Hg$ im Kristall (Lokalsymmetrie: D_{3d} ; ORTEP-Plot; thermische Schwingungsellipsoide 30%). Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: Si1-Hg1 2.495(2), Si1-C1 1.950(7), Si1-C5 1.954(7), Si1-C9 1.906(8); Si1-Hg1-Si1a 180.0, C1-Si1-C5 112.1(4), C1-Si1-C9 111.6(4), C5-Si1-C9 112.9(4).

Abb. 5 Struktur von ^tBu₃SiZnBr im Kristall (tetramer; Lokalsymmetrie: C_{3v}; ORTEP-Plot; thermische Schwingungsellipsoide 25%). Die Wasserstoffatome wurden der Übersichtlichkeit halber weggelassen. Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: Si1-Zn1 2.377(2), Si2-Zn2 2.369(4), Zn1-Br1 2.655(1), Zn1-Br1 a 2.623(1), Zn1-Br2 2.641(1), Zn2-Br1 2.639(1), Si1-C1 1.939(8), Si1-C5 1.941(8), Si1-C9 1.939(8), Si2-C13 112.3(4), 1.940(8); C1–Si1–C5 112.2(4), C1–Si1–C9 C5-Si1-C9 112.4(4), C13- Si2-C13a 112.0(2), Si1-Zn1-Br1 124.09(6), Si1-Zn1-Br2 124.57(7), Si1-Zn1-Br1a 126.45(7), Br1-Zn1-Br1 a 90.36(4), Br1–Zn–Br2 89.93(4), Br1a-Zn1-Br2 90.63(4), Si2-Zn2-Br1 124.99(3), Br1-Zn2-Br1 a 90.38(5), Zn1-Br2-Zn1 a 89.68(5).

Quecksilberatome werden von 3 Chlor- und 1 Siliciumatom stark verzerrt tetraedrisch umgeben (jeweils eine kurze Si-Hg und Hg-Cl-Bindung, zwei lange Hg...Cl-Kontakte). Das Chloratom ist von 3 Hg-Atomen koordiniert (eine kurze Cl-Hg-Bindung, zwei lange Cl...Hg-Kontakte) und bildet mit diesen eine verzerrte trigonale Pyramide (Cl an der Spitze). Die verwandten Organoquecksilberverbindungen RHgX liegen anders als ^tBu₃SiHgCl meist in monomerer Form vor, da kovalent gebundenes Hg – im Gegensatz zu Zn und Cd – die Koordinationszahl 2 bevorzugt und Winkel von 180° am Quecksilber ausbildet [10]. Diese Tendenz ist auch noch beim Übergang von ^tBu₃SiZnBr \rightarrow ^tBu₃SiHgCl zu beobachten: der Winkel SiZnBr beträgt ca. 125°, der Winkel SiHgCl 159°.

Gemäß Tabelle 2, welche wichtige Bindungslängen und -winkel der röntgenstrukturanalytisch geklärten Verbindungen wiedergibt (vgl. hierzu auch die Legenden der Abb. 2 bis 6) betragen die *Silicium-Metall-Abstände* SiZn, SiCd und SiHg im Mittel 2.38, 2.52 und 2.47 Å, wobei auffällt, daß die Abstände in (^tBu₃Si)₂Hg und ^tBu₃SiHgCl vergleichsweise unterschiedlich ausfallen (Abstandsverkleinerung) und daß

Abb. 6 Struktur von ^tBu₃SiHgCl im Kristall (tetramer; Lokalsymmetrie: C1; ORTEP-Plot; thermische Schwingungsellipsoide 25%). Die Wasserstoffatome wurden der Übersichtlichkeit halber weggelassen. Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: Si1-Hg1 2.439(3), Si2-Hg2 2.437(3), Si3-Hg3 2.442(3), Si4-Hg4 2.439(3), Hg1-Cl1 2.467(3) Hg1...Cl2 3.084, Hg1...Cl4 3.090, Hg2-Cl2 2.466(3), Hg2...Cl3 3.041. Hg $2\cdots$ Cl4 3.046, Hg3-Cl3 2.472(2) Hg $3\cdots$ Cl13.048, Hg3…Cl2 3.090, Hg4-Cl4 2.475(3) Hg4…Cl1 3.014, Hg4...Cl3 3.114, Si1-C1 1.93(1), Si1-C5 1.91(2), Si1-C9 1.92(2), Si2-C13 1.92(1), Si2-C17 1.95(1), Si2-C21 1.94(1), Si3-C25 1.93(1), Si3-C30 1.93(1), Si3-C33 1.95(1), Si4-C37 1.92(1), Si4-C41 1.95(1), Si4-C45 1.94(1); C1-Si1-C5 113.4(7), C5-Si1-C9 114.3(7), C1-Si1-C9 112.3(7),C13-Si2-C17 112.8(5), C13-Si2-C21 112.7(6), C17-Si2-C21 113.5(6), C25-Si3-C30 113.0(6), C25-Si3-C33 113.0(5), C30-Si3-C33 113.8(6), C37-Si4-C41 113.3(6), C37-Si4-C45 112.6(6), C41-Si4-C45 113.0(6), Si1-Hg1-Cl1 157.6(1), Si2-Hg2-Cl2 158.6(1), Si3-Hg3-Cl3 158.1(1), Si4-Hg4-Cl4 160.9(1).

der Übergang von den Supersilyl- zu den analogen Hypersilvlmetallen mit einer SiM-Abstandsvergrößerung um 0.03-0.04 Å verbunden ist. Der Grund dürfte in der vergleichsweise großen räumlichen Ausdehnung der Supersilylgruppe zu suchen sein, welche längere SiM-Bindungen erzwingt, falls M zwei sperrige ^tBu₃Si-Substituenten trägt. Die Abnahme des SiM-Abstands beim Übergang (^tBu₃Si)₂Cd \rightarrow (^tBu₃Si)₂Hg um 0.03 Å wurde auch bei den analogen Hypersilylverbindungen beobachtet [9] und geht wohl u.a. auf relativistische Effekte zurück [10]. Die Bindungsverkürzung findet einen sichtbaren Ausdruck in der geringeren thermischen Stabilität ersterer (Zers. ab 130°C) gegenüber letzterer Verbindung (Schmp. ca. 200 °C, vgl. Tabelle 1). Der aus den Pauling-Elektronegativitäten abzuleitende Sachverhalt des Vorliegens unpolarer SiM-

Bindungen wird durch die gefundenen Kohlenstoff-Silicium-Kohlenstoff-Winkel gestützt, die mit durchschnittlich 112–113° (Tabelle 2) am oberen Rand des "normalen" Bereichs (110–112°) von CSiC-Winkeln der Verbindungen ^tBu₃SiX mit kovalenten SiX-Bindungen liegen (vgl. hierzu Lit. [2]). Erwartungsgemäß beobachtet man dann *Silicium–Kohlenstoff-Abstände* (1.93–1.94 Å; Tabelle 1) am unteren Ende des Normalbereichs (1.94–1.95 Å) [2].

Tabelle 2 Bindungslängen [Å] und Bindungswinkel [°] der in der ersten Spalte wiedergegebenen Verbindungen (Mittelwerte bei Vorliegen mehrerer vergleichbarer Gruppierungen)

<u>,</u>	М	Si–M	C-Si	C-Si-C
(^t Bu ₃ Si) ₂ Zn	Zn	2.384	1.943	111.8
^t Bu ₃ SiZnBr	Zn ^a)	2.373	1.940	112.2
(^t Bu ₃ Si) ₂ Cd	Cd	2.524	1.943	111.9
(^t Bu ₃ Si) ₂ Hg	Hg	2.495	1.937	112.2
^t Bu ₃ SiHgCl	Hg ^b)	2.439	1.933	113.1

^a) Zn-Br 2.638; Br-Zn-Br 90.3, Zn-Br-Zn 89.7; Si-Zn-Br 125.0.

^b) Hg–Cl 2.470; Hg · · · Cl 3.066; Si–Hg–Cl 158.8.

Experimentelles

Alle Untersuchungen wurden unter Ausschluß von Luft und Wasser unter Verwendung von Stickstoff (99.9996%ig) als Schutzgas durchgeführt. Die Reaktionsmedien wurden mit Natrium in Gegenwart von Benzophenon vorgetrocknet und vor Gebrauch über diesen Stoffen abdestilliert. Zur Verfügung standen ZnCl₂, CdI₂, HgCl₂, Hg₂Cl₂, BBr₃, BiCl₃, Na, K, Na_xHg, Zn. Nach Literaturvorschriften wurden synthetisiert: ^tBu₃SiBr [4], ^tBu₃SiNa [4], ^tBu₃SiNa(THF)₂ [4].

Für NMR-Spektren dienten Multikerninstrumente Jeol GSX 270 (¹H/¹³C/²⁹Si: 270.17/67.94/53.67 MHz) und Jeol EX 400 (¹H/¹³C/²⁹Si: 399.78/100.53/79.31 MHz). ²⁹Si-NMR-Messungen wurden mit Hilfe eines INEPT-Pulsprogramms mit empirisch optimierten Parametern für die Siliciumsubstituenten aufgenommen. Für Massenspektren (electron impact) standen Geräte CH7 der Firma Varian, MS 80 RFA der Firma Kratos und MAT 95Q der Firma Finnigan zur Verfügung.

Darstellung von ([†]**Bu**₃**Si**)₂**M** (**M** = **Zn**, **Cd**, **Hg**). Zu 1.224 g (9.128 mmol) ZnCl₂ in 30 ml THF (**A**) bzw. 0.77 g (2.10 mmol) CdI₂ in 10 ml THF (**B**) bzw. 0.23 g (0.84 mmol) HgCl₂ in 6 ml THF (**C**) werden bei Raumtemperatur 18.26 mmol [†]Bu₃SiNa in 30 ml THF bzw. 4.20 mmol [†]Bu₃SiNa in 8.57 ml THF bzw. 1.68 mmol [†]Bu₃SiNa in 3.42 ml THF langsam zugetropft. Hierbei nehmen die Reaktionsmischungen im Falle **B** und **C** einen gelbgrünen Farbton an. Laut ¹H-NMR nahezu quantitative Umsätze zu ([†]Bu₃Si)₂M (im Falle von **B** enthält die Lösung geringe Mengen an [†]Bu₃SiH, im Falle von **C** geringe Mengen an ([†]Bu₃Si)₂). Nach Abkondensieren aller flüchtigen Anteile im Ölpumpenvakuum, Aufnahme des Rückstands in 30–20 ml Pentan, Abfiltrieren unlöslicher Anteile (NaCl, NaI, mit wenig Hg verunreinigtes NaCl) und Einengen der Filtrate

auf 10-5 ml kristallisieren im Laufe von 48 h bei -23 °C 3.73 g (8.03 mmol; 88%) *Disupersilylzink* (^tBu₃Si)₂Zn in farblosen Quadern bzw. 0.98 g (1.92 mmol; 91%) *Disupersilylcadmium* (^tBu₃Si)₂Cd in feinen gelben Nadeln bzw. 0.43 g (0.72 mmol; 86%) *Disupersilylquecksilber* (^tBu₃Si)₂Hg in blaßgelben Rhomben. Bezüglich der Charakterisierung von (^tBu₃Si)₂M vgl. Tabelle 1, bezüglich der Röntgenstrukturanalysen der Verbindungen weiter unten.

Analysen: $C_{24}H_{54}Si_2Zn$ (464.3 g/mol); Zn (komplex.) 13.88 (ber. 14.09)%.

 $C_{24}H_{54}Si_2Cd$ (511.3 g/mol); C 55.18 (ber. 56.38); H 10.72 (10.65)%.

MS (m/z): Ber. für M⁺ von (^tBu₃Si)₂M und M = 64 Zn/¹¹⁴Cd/²⁰²Hg 462/512/600; gef. 462/512/600 (jeweils 100% Peak; Isotopenmuster korrekt).

Anmerkungen: (i) Aktives, durch Reaktion von ZnCl₂ und K bereitetes Zn reagiert mit ^tBu₃SiBr in siedendem Heptan zu (^tBu₃Si)₂Zn (Identifizierung durch Vergleich mit authentischer Probe). – (ii) Beim Erhitzen von Na_xHg und ^tBu₃SiBr auf 170 °C bildet sich (^tBu₃Si)₂Hg (Identifizierung durch Vergleich mit authentischer Probe). – (iii) Die Umsetzung von Hg₂Cl₂ und ^tBu₃SiNa (Molverhältnis 1:2) in THF bei Raumtemperatur führt zu (^tBu₃Si)₂Hg (Identifizierung durch Vergleich mit authentischer Probe) sowie NaCl und Hg. – (iv) Im Zuge des Zutropfens von ^tBu₃SiNa in THF zu einer Suspension von ZnCl₂, CdI₂ bzw. HgCl₂ (Molverhältnis jeweils 2:1) in Pentan oder Heptan bei Raumtemperatur bildet sich ein unlösliches graues, aus Natriumhalogenid und Zn, Cd bzw. Hg bestehendes Produkt. Die Reaktionslösungen enthalten laut NMR Superdisilan ^tBu₃Si-Si^tBu₃ [4].

Darstellung von ^tBu₃SiZnCl, ^tBu₃SiZnBr, ^tBu₃SiCdI und ^tBu₃SiHgCl. Zu 0.073 g (0.137 mmol) (^tBu₃Si)₂Zn in 1 ml Heptan (A) bzw. zu 0.39 g (0.84 mmol) (^tBu₃Si)₂Zn in 15 ml Heptan (**B**) bzw. 0.70 g (1.91 mmol) CdI₂ in 10 ml THF (**C**) bzw. 1.99 g (7.32 mmol) HgCl₂ in 30 ml THF (**D**) werden bei Raumtemperatur 0.102 g (0.271 mmol) BiCl₃ gegeben (A) bzw. 0.16 ml BBr₃ in 3 ml THF (B) bzw. bei 0 °C 1.91 mmol ^tBu₃SiNa in 3 ml THF (C) bzw. bei -30 °C 7.32 mmol ^tBu₃SiNa in 12 ml THF (**D**) zugetropft. Im Falle von **A** bildet sich im Laufe von 2 Tagen laut ¹H-NMR ^tBu₃SiZnCl und ^tBu₃SiCl im Verhältnis 2:1, wobei letztere Verbindung vermutlich aus ^tBu₃SiBiCl₂ entsteht. Im Falle von **B** bildet sich im Laufe von 3.5 h ein feiner weißer Niederschlag von ZnBr₂. Laut ¹H-NMR der Reaktionslösung hat sich ^tBu₃SiZnBr neben ^tBu₃SiBBr₂ gebildet, wobei letztere Verbindung (Identifizierung durch Vergleich mit authentischer Probe [12]) thermisch zu 'Bu₃SiBr und "BBr" zerfällt, so daß ^tBu₃SiBBr₂ bei Spektrenaufnahme nur noch untergeordnet neben ^tBu₃SiBr vorlag. In den Fällen C und D nehmen die Reaktionsmischungen während des Zutropfens einen blaßgelben bzw. zitronengelben Farbton an, und es bildet sich ein fein verteilter schwarzer (C) bzw. ein fein verteilter weißer (D) Niederschlag. A wurde nicht weiter aufgearbeitet. Nach Abkondensieren aller flüchtigen Anteile im Ölpumpenvakuum, Aufnahme des Rückstands in 30 ml (B) bzw. 50 ml (C, D) Pentan, Abfiltrieren unlöslicher Anteile (ZnBr₂, NaI bzw. NaCl) und Einengen der Filtrate auf ca. 15 ml, kristallisieren im Laufe von 72 h bei -23 °C 0.724 g (0.210 mmol; 25%) Supersilylzinkbromid ^tBu₃SiZnBr in farblosen Quadern bzw. im Laufe von 24 h bei -23 °C 0.58 g (1.32 mmol; 69%) Supersilylcadmiumiodid ^tBu₃SiCdI als farbloser Feststoff bzw. im Laufe von 24 h bei -23 °C 2.89 g (6.64 mmol; 91%) Supersilylquecksilberchlorid ^tBu₃SiHgCl in farblosen Nadeln. Bezüglich der Charakterisierung der Verbindungen vgl. Tabelle 1, bezüglich der Röntgenstrukturanalysen von ^tBu₃SiZnBr und ^tBu₃SiHgCl weiter unten.

Analysen: $C_{12}H_{27}CdI$ (438.7 g/mol); C 34.04 (ber. 32.85); H 6.50 (ber. 6.20)%.

MS (m/z): Ber. für M⁺ von ^tBu₃SiCdI/^tBu₃SiHgCl und ¹¹⁴Cd/²⁰²Hg, ³⁵Cl 440/436; gef. 440/436 (100/1% Peak; Isotopenmuster korrekt).

Anmerkungen: (i) Ein gewisser Anteil des gebildeten ^tBu₃SiZnBr reagiert mit dem im Überschuß eingesetzten BBr₃ gemäß ^tBu₃SiZnBr + BBr₃ \rightarrow ZnBr₂ + ^tBu₃SiBBr₂ unter Bildung von unlöslichem ZnBr₂ weiter. – (ii) Die Reaktion von (^tBu₃Si)₂Cd mit BI₃ im Molverhältnis 1:1 führt zu ^tBu₃SiBI₂ (Identifizierung durch Vergleich mit authentischer Probe [12]) und CdI₂ ^tBu₃SiCdI entsteht nicht; es bleibt (^tBu₃Si)₂Cd übrig). ^tBu₃SiBI₂ zerfällt innerhalb kurzer Zeit zu ^tBu₃SiI und "BI" [12]. – (iii) Der Vorteil der Bromierung von (^tBu₃Si)₂Zn mit BBr₃ besteht darin, daß gebildetes ^tBu₃SiBBr₂ in leicht von ^tBu₃SiZnBr abtrennbare Produkte zerfällt.

Darstellung von ¹Bu₃SiZnCl(THF) und ¹Bu₃SiZnCl(TMEDA). a) Zu 0.23 g (1.66 mmol) ZnCl₂ in 5 ml THF werden bei 0 °C 1.66 mmol ^tBu₃SiNa in 3.4 ml THF langsam zugetropft. Es bildet sich ein feinverteilter weißer Niederschlag (NaCl). Laut ¹H-NMR (C_6D_6) hat sich ^tBu₃SiZnCl(THF) neben (^tBu₃Si)₂Zn gebildet (Molverhältnis ca. 7:1). Nach Abkondensieren aller flüchtigen Anteile im Ölpumpenvakuum, Aufnahme des Rückstands in 50 ml Pentan, Abfiltrieren unlöslicher Anteile (NaCl) und Einengen des Filtrats auf ca. 15 ml kristallisieren im Laufe von 24 h bei -23 °C 0.35 g (0.96 mmol; 58%) Supersilylzinkchlorid-Tetrahydrofuran (1/1) ^tBu₃SiZnCl(THF) in farblosen Nadeln. - b) Zu 0.095 g (0.261 mmol) ^tBu₃SiZnCl(THF) in 0.5 ml Toluol werden 0.10 ml (0.67 mmol) TMEDA gegeben. Nach Abkondensieren aller flüchtigen Anteile im Ölpumpenvakuum verbleibt ein farbloser Feststoff, bei dem es sich laut NMR-Spektren (C₆D₆) um Supersilylzinkchlorid-Tetramethylethylendiamin (1/1) ^tBu₃SiZnCl(TMEDA) handelt. Bezüglich der Charakterisierung von ^tBu₃SiZnCl(THF) und ^tBu₃SiZnCl(TMEDA) vgl. Tabelle 1.

MS (m/z): Ber. für M⁺ von ^tBu₃SiZnCl und für ⁶⁴Zn, ³⁵Cl 298; gef. 298 (90% Peak; Isotopenmuster korrekt).

Photolyse von (^tBu₃Si)₂M (M = Zn, Cd, Hg). Im Zuge der 14stündigen Bestrahlung einer Lösung von 0.75 mmol (^tBu₃Si)₂M in jeweils 10 ml Heptan bei Raumtemperatur mit Licht einer UV-Hg-Dampflampe bilden sich feinverteilte schwarze Niederschläge von Zn, Cd bzw. ein grauer Bodensatz von Hg. Laut ¹H-NMR-Spektren (C_6D_6) der aus (^tBu₃Si)₂M gewonnenen Lösungen liegen ca. 50/50/70% der sichtbaren ^tBu₃Si-Gruppen in Form von ^tBu₃Si-Si^tBu₃, ca. 10/3/10% in Form von (^tBu₃SiCH₂)₂C=CH₂ und ca. 10/2/5% in Form von ^tBu₃SiH vor (Identifizierung der Verbindungen durch Vergleich mit authentischen Proben [4]). Daneben entstehen noch Verbindungen (insgesamt ca. 30/45/15%) mit ¹H-NMR-Signalen (C₆D₆) um $\delta = 1.0$, 1.2 und 1.3. Letztere verschwinden nach Zugabe von 2 ml sauerstoffhaltigem Methanol zu den filtrierten Reaktionslösungen der Photolyse von (^tBu₃Si)₂Zn und (^tBu₃Si)₂Cd (die aus (^tBu₃Si)₂Hg entstehenden Produkte sind methanolysestabil). Dies könnte darauf deuten, daß die fraglichen Substanzen metallhaltig sind (Hg-Verbindungen verhalten sich stets MeOH- und O2stabiler als analoge Zn- und Cd-Verbindungen). Nach Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile (hierzu gehört auch ^tBu₃SiH) nimmt man die Rückstände in C₆D₆ auf. Laut ¹H-NMR der aus (^tBu₃Si)₂Zn und (^tBu₃Si)₂Cd gewonnenen Lösungen verteilen sich die nunmehr sichtbaren ^tBu₃Si-Gruppen zu ca. 50/60% auf ^tBu₃Si-Si^tBu₃, zu ca. 20/5% auf (^tBu₃SiCH₂)₂C=CH2, zu ca. 20/30% auf ^tBu₃SiOH und zu ca. 10/5% auf ^tBu₃SiOMe.

Anmerkungen: (i) Der größere Anteil an "metallhaltigen" Substanzen im Falle der Photolyse von (${}^{t}Bu_{3}Si)_{2}Zn$ und (${}^{t}Bu_{3}Si)_{2}Cd$ ist wohl darauf zurückzuführen, daß sich trotz starken Rührens an der Kolbenwand während der Photolyse ein, die UV-Durchlässigkeit mindernder Metallspiegel bilden konnte, während sich flüssiges Hg naturgemäß am Boden absetzt. – (ii) Bestrahlung von 0.60 mmol ${}^{t}Bu_{3}SiHgCl$ in 10 ml Heptan bei Raumtemperatur mit UV-Licht führt auch nach 14 h zu keiner Eduktveränderung.

Umsetzungen von ^tBu₃SiHgCl mit ⁿBuLi und ^tBuLi. Zu 1.67 g (3.83 mmol) ^tBu₃SiHgCl in 30 ml Pentan bei -30 °C (A) bzw. 1.16 g (2.66 mmol) ^tBu₃SiHgCl in 25 ml Pentan bei Raumtemperatur (B) tropft man 3.82 mmol ⁿBuLi in 13 ml Pentan/Hexan bzw. 2.66 mmol ^tBuLi in 8 ml Pentan/Hexan, wobei sich ein grauer Niederschlag bildet. Laut ¹H-NMR fast quantitative Bildung von ${}^{t}Bu_{3}SiHgR$ (R = ${}^{n}Bu$, ${}^{t}Bu$). Nach Abfiltrieren unlöslicher Anteile (LiCl mit Spuren Hg) und Einengen des Filtrats auf 10 ml kristallisieren aus letzterem bei -23 °C 1.70 g (3.72 mmol; 97%) n-Butyl-tri-tert-butylsilylquecksilber ^tBu₃SiHgnBu in farblosen, wenig oxidations- und hydrolyseempfindlichen, aber lichtlabilen Prismen bzw. 1.00 g (2.20 mmol; 83%) Tert-butyl-tri-tert-butylsilvlquecksilber ^tBu₂SiHg^tBu als wenig oxidations- und hydrolyseempfindlicher, aber lichtlabiler Feststoff. ^tBu₃SiHgⁿBu: ¹H-NMR (C₆D₆, iTMS): $\delta = 1.10/2.36/$ 1.55/1.01 (t/quin/sex/t; Hg-CH₂-CH₂-CH₂-CH₃), 1.15 (s; Si^tBu₃). – ¹³C(¹H)-NMR (\tilde{C}_6D_6 , iTMS): $\delta = 66.09/31.29/28.78/$ 14.25 (Hg-CH₂-CH₂-CH₂-CH₃), 26.19 (3 CMe₃), 32.56 (3 CMe₃). $-^{29}$ Si-NMR (C₆D₆, eTMS): $\delta = 63.8$ (s; ¹*J*(Si¹⁹⁹Hg) = 1262.3 Hz; Si^tBu₃). $-^{t}$ Bu₃SiHg^tBu: ¹H-NMR (C₆D₆, iTMS): $\delta = 1.16$ (s; Si^tBu₃), 1.58 (s; Hg^tBu). $-^{13}$ C[¹H]-NMR (C₆D₆, iTMS): $\delta = 25.80/29.46$ (HgCMe₃), 32.57/80.37 $(Si(CMe_3)_3)$. - ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 63.0$ (s; $^{1}J(\mathrm{Si}^{199}\mathrm{Hg}) = 1039.3 \mathrm{Hz}; \mathrm{Si}^{\mathrm{t}}\mathrm{Bu}_{3}).$

Anmerkung: ^tBu₃SiHgⁿBu setzt sich in Pentan bei 70 °C nicht mit ⁿBuLi um (erwartete Produkte: ^tBu₃SiLi und ⁿBu₂Hg).

Umsetzungen von (¹Bu₃Si)₂Zn und (¹Bu₃Si)₂Hg mit Natrium. Man setzt 0.11 g (0.24 mmol) (¹Bu₃Si)₂Zn mit 1.0 g (43 mmol) kleingeschnittenem Natrium bzw. 0.75 g (1.25 mmol) (¹Bu₃Si)₂Hg und 0.5 g (22 mmol) kleingeschnittenem Natrium 18 h in siedendem Heptan um. Laut ¹H-NMR (C₆D₆) verändern sich hierbei die Edukte nicht.

Umsetzung von (^tBu₃Si)₂Zn mit MeOD/O₂. Man läßt ein unverschlossenes NMR-Rohr mit 0.025 g (0.05 mmol) (^tBu₃Si)₂Zn, 0.6 ml C₆D₆ und 0.05 ml MeOD 2 Tage an der Luft stehen. Laut NMR-Spektrum haben sich in dieser Zeit 50% des Edukts (^tBu₃Si)₂Zn in ^tBu₃SiOH und ^tBu₃SiOMe (Molverhältnis 4:1) umgewandelt.

Anmerkung: Im luftdicht verschlossenen Rohr beobachtet man NMR-spektroskopisch selbst nach 1 Woche keinen Umsatz.

Umsetzung von ¹Bu₃SiZnCl(THF) mit $C_{10}H_8Li$. Zu einer Lösung von 0.055 g (0.15 mmol) ¹Bu₃SiZnCl in 10 ml THF

wird so lange eine 0.2 molare Lösung von $C_{10}H_8Li$ in THF getropft, bis an der Eintropfstelle keine Entfärbung der Tropfen mehr auftritt. Es bildet sich ein fein verteilter schwarzer Niederschlag (Zn, LiCl). Laut NMR der Reaktionslösung hat sich ausschließlich (^tBu₃Si)₂Zn als ^tBu₃Si-gruppenhaltiges Produkt gebildet (Identifizierung durch Vergleich mit authentischer Probe, s. oben).

Umsetzung von Hg₂Cl₂ mit (^tBu₃Si)₂Zn. 0.030 g (0.064 mmol) Hg₂Cl₂ und 0.025 g (0.054 mmol) (^tBu₃Si)₂Zn werden in 0.6 ml C₆D₆ 8 h auf 100 °C erhitzt, wobei elementares Hg ausfällt. Laut ¹H-NMR enthält die Reaktionslösung dann ^tBu₃SiD, ^tBu₃Si-C₆D₅, (^tBu₃Si)₂Hg (Identifizierung durch Vergleich mit authentischen Proben, s. oben und Lit. [4]) sowie nicht identifizierte Verbindungen.

Anmerkung: 2stündiges Erhitzen des Eduktgemischs auf 60 °C führt zu keinem Umsatz.

Kristallstrukturen. Für Röntgenstrukturanalysen geeignete Kristalle wurden wie folgt erhalten: $({}^{t}Bu_{3}Si)_{2}Zn$ in Form farbloser Quader aus *n*-Pentan bei $-23 \,^{\circ}C$; $({}^{t}Bu_{3}Si)_{2}Cd$ in Form blaßgelber Prismen aus $C_{6}D_{6}$ in einem NMR-Rohr bei Raumtemperatur durch sehr langsames Abkondensieren des Lösungsmittels; $({}^{t}Bu_{3}Si)_{2}Hg$ in Form blaßgelber Rhomben aus $C_{6}D_{6}$ in einem NMR-Rohr bei Raumtemperatur durch sehr langsames Abkondensieren des Lösungsmittels; ^tBu₃SiZnBr in Form farbloser Quader aus *n*-Pentan bei -23 °C; ^tBu₃SiHgCl in Form farbloser Prismen aus C₆D₆ in einem NMR-Rohr bei Raumtemperatur durch sehr langsames Abkondensieren des Lösungsmittels.

Für die Strukturbestimmungen von (${}^{t}Bu_{3}Si$)₂M (M = Zn, Cd, Hg) wurde ein CAD4-Gerät der Fa. Enraf-Nonius genutzt, für die Strukturbestimmungen der Verbindungen (${}^{t}Bu_{3}Si$)₂ZnBr und ${}^{t}Bu_{3}Si$ HgCl ein Siemens P4-Diffraktometer mit einem CCD-Flächendetektor. Die Strukturlösungen (SHELXTL, Version 5) erfolgten mit direkten Methoden. Alle Nichtwasserstoffatome wurden in anisotroper Beschreibung verfeinert, H-Atome unter Einschluß berechneter Atomlagen, die mit einem Reitermodell und fixierten isotropen U_i-Werten in die Verfeinerung einbezogen wurden. ORTEP-Plots der röntgenstrukturanalytisch geklärten Verbindungen sind in den Abb. 2–6 wiedergegeben.

Angaben zu den Röntgenstrukturanalysen sind in Tabelle 3 zusammengestellt. Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-407682 [(¹Bu₃Si)₂Zn], CSD-407683 [(¹Bu₃Si)₂Cd], CSD-407681 [(¹Bu₃Si)₂Hg], CSD-407686 [¹Bu₃SiZnBr] und CSD-407685 [¹Bu₃SiHgCl].

Tabelle 3	Ausgewählte Parameter d	er Röntgenstrukturanal	vsen der in Zeile 1	wiedergegebenen	Verbindungen
	0	0	2		

	(^t Bu ₃ Si) ₂ Zn	(^t Bu ₃ Si) ₂ Cd	(^t Bu ₃ Si) ₂ Hg	[^t Bu ₃ SiZnBr] ₄	[^t Bu ₃ SiHgCl] ₄
Summenformel	C ₂₄ H ₅₄ SiZn	C ₂₄ H ₅₄ SiCd	C ₂₄ H ₅₄ SiHg	$C_{48}H_{108}Br_4Zn_4Si_4$	C ₄₈ H ₁₀₈ Cl ₄ Hg ₄ Si ₄
Molmasse [g mol ⁻¹]	464.22	511.25	599.44	1378.84	1441.88
Temp. [K]	298	298	298	195	173
Wellenlänge [Å]	MoK α , $\lambda = 0.71073$	MoK α , $\lambda = 0.71073$			
Kristallgröße [mm ³]	$0.27 \times 0.47 \times 0.60$	$0.20 \times 0.40 \times 0.53$	$0.07 \times 0.53 \times 0.60$	$0.4 \times 0.3 \times 0.3$	$0.1 \times 0.2 \times 0.3$
Kristallsystem	triklin	triklin	triklin	hexagonal	triklin
Raumgruppe	P-1	P-1	P-1	P-3	P-1
a [Å]	8.623(3)	8.588(3)	8.603(3)	14.216(2)	13.396(1)
b [Å]	8.752(3)	8.746(2)	8.757(3)	14.216(2)	14.164(1)
<i>c</i> [Å]	12.051(4)	12.172(7)	12.141(5)	19.732(4)	20.204(1)
α [°]	107.34(2)	106.19(4)	106.25(3)	90	90.588(1)
β [°]	93.85(2)	94.60(5)	94.38(3)	90	107.418(1)
γ [°]	118.33(2)	117.92(2)	118.24(3)	120	106.156(1)
$V[\dot{A}^3]$	740.2(4)	751.5(5)	749.6(5)	3454(1)	3494.9(4)
Ζ	1	1	1	8	10
Dichte [Mg/m ³]	1.041	1.130	1.328	1.326	1.729
$\mu [\mathrm{mm}^{-1}]$	0.917	0.813	5.220	3.782	9.010
F(000)	256	274	306	1424	1764
Index-Bereich	$-9 \le h \le 9,$	$-9 \le h \le 9,$	$-9 \le h \le 9,$	$-1 \le h \le 16$,	$-14 \le h \le 14,$
	$-9 \le k \le 9,$	$-9 \le k \le 9,$	$-9 \le k \le 9,$	$-16 \le k \le 1,$	$-15 \le k \le 15,$
	–13 ≤1 ≤ 13	$-13 \le l \le 13$	$-13 \le 1 \le 2$	$-1 \le l \le 23$	$-21 \le l \le 22$
2θ-Bereich [°]	2.75-22.97	2.75-22.98	2.75-22.98	2.06-49.98	3.00-46.56
gesammelte Reflexe	4116	4175	2428	5042	15465
unabhängige Reflexe	2058	2089	2083	3925	8140
beobachtete Reflexe	1842 (I > $2\sigma I$)	2032 (I > $2\sigma I$)	2082 (I > $2\sigma I$)	2477 (F > $4\sigma(F)$)	7137 (F > $4\sigma(F)$)
Gewichtung ^a) x/y	0.25858/3.3657	0.1582/3.89	0.0449/1.5994	0.0534/17.6314	0.0645/25.6536
GOOF	0.421	0.362	1.149	1.062	1.124
$R1 [F > 4\sigma(F)]$	0.0505	0.0361	0.0333	0.0528	0.0472
wR2	0.1385	0.0909	0.0851	0.1285	0.1160
Restelektronen- dichte $[e/Å^3]$	0.973	0.708	1.228	1.224	2.076

^a) $\mathbf{w}^{-1} = \sigma^2 \mathbf{F}_o^2 + (\mathbf{x}\mathbf{P})^2 + \mathbf{y}\mathbf{P}; \mathbf{P} = (\mathbf{F}_o^2 + 2\mathbf{F}_o^2)/3$

Literatur

- 115. Mitteilung über Verbindungen des Siliciums. Zugleich 14. Mitteilung über sterisch überladene Supersilylverbindungen. 114. (13.) Mitteilung: [4].
- [2] N. Wiberg in: B. Marciniec und J. Chojnowski (Hrsg.), Progress in Organosilicon Chemistry, Gordon and Breach Publishers, Amsterdam, 1995, S. 19; N. Wiberg in: A. R. Bassindale and P. P. Gaspar (Hrsg.), Frontiers of Organosilicon Chemistry, The Royal Society of Chemistry, Cambridge, 1991, S. 263.
- [3] N. Wiberg, G. Fischer, P. Karampatses, Angew. Chem. 1984, 96, 58; Angew. Chem. Int. Ed. Engl. 1984, 23, 59.
- [4] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Schuster, H. Nöth, I. Krossing, M. Schmidt-Amelunxen, T. Seifert, J. Organomet. Chem., im Druck.
- [5] E. Wiberg, O. Stecher, H.-J. Andraschek, L. Kreuzbich-

ler, E. Staude, Angew. Chem. 1963, 75, 516; Angew. Chem. Int. Ed. Engl. 1963, 2, 507.

- [6] L. Rösch, H. Müller, Angew. Chem. 1976, 88, 670; Angew. Chem. Int. Ed. Engl. 1976, 15, 620; H. Müller, L. Rösch, J. Organomet. Chem. 1977, 133, 1.
- [7] J. Arnold, T. D. Tilley, A. L. Rheingold, S. J. Geib, *Inorg. Chem.* 1987, 26, 2106.
- [8] K. W. Klinkhammer, J. Weidlein, Z. Anorg. Allg. Chem. 1996, 622, 1209.
- [9] D. M. Heinekey, S. R. Stobart, Inorg. Chem. 1978, 17, 1463.
- [10] Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, DeGruyter, Berlin, 1995.
- [11] N. Wiberg, Coord. Chem. Rev., im Druck.
- [12] K. Amelunxen, Dissertation, Universität München, 1997.