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A B S T R A C T

A catalytic synthesis of N-benzothiazol-2-yl-amides from 1-acyl-3-(phenyl)thioureas was achieved in

the presence of a palladium catalyst through the C(sp2)–H functionalization/C–S bond formation. This

synthetic methodology can produce various N-benzothiazol-2-yl-amides in high yields with good

functional group tolerance.
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1. Introduction

The benzothiazole moiety is an important scaffold due to its
widespread occurrence in bioactive natural products, pharmaceu-
ticals, organic optoelectronic materials, and ligands for phospho-
rescent complexes [1–4]. In particular, substituted N-benzothiazol-
2-yl-amides are an important class of heterocyclic compounds that
exhibit a wide range of biological properties [5–9] such as ubiquitin
ligase inhibition [5], antitumor [6], antirotavirus infections [7],
modulating the adenosine receptor [8,9], and the nuclear hormone
receptor [9]. For example, the N-benzothiazol-2-yl-cyclohexane-
carboxamide, as a new anticancer drug, was selected as one of the
most promising screening hit compounds (Fig. 1) [6]. The acylation
reaction from 2-aminobenzothiazole, one of the classical methods
for the preparation of these molecules [5,6], is known for the limited
diversity of the commercially available starting materials. Further-
more, the preparation of 2-aminobenzothiazole also required the
use of the toxic bromine.
46
47
48
49
50
51
52
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The past several years have witnessed the great progress in the
development of the C–S bond formation promoted by transition
metals, which can provide more efficient, practical, and straight-
forward approaches to valuable sulfur-containing compounds
[10,11]. However, these methods have been mainly focused on the
‘‘traditional’’ cross-coupling reactions of ArX (X = Cl, Br, I, OTf, and
B(OH)2) and sulfides [12–39]. To achieve greener and more atom-
economic C–S bond formations, transition metal-catalyzed direct
oxidative cross-coupling of C–H bonds and sulfides would be ideal
[40–47].

In our previous work, we have shown that N-benzothiazol-2-yl-
amides can be synthesized smoothly by Cu-catalyzed intramolecu-
lar cyclization of various substituted 1-acyl-3-(2-bromophe-
nyl)thioureas [48]. This method can provide more diversiform
N-benzothiazol-2-yl-amides through the carbon-heteroatom for-
mation under relatively mild conditions and avoid the use of the
toxic bromine. However, the drawback of this procedure is the
limited diversity of the commercially available starting materials
due to the use of substituted ortho-haloarylamines. In order to
further extend the diversity of N-benzothiazol-2-yl-amides, we
have recently demonstrated an efficient intramolecular cyclization
of substituted 1-acetyl-3-(2-phenyl)thiourea catalyzed by iron
through C–H functionalization [49]. This method can provide
more diversiform N-benzothiazol-2-yl-amides under relatively mild
conditions. However, the purification of the target compounds is
sis of N-benzothiazol-2-yl-amides by Pd-catalyzed C(sp2)–H
/j.cclet.2015.08.001
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Fig. 1. Structure of Sankyo investigational new drugs.
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allenging using the column chromatography or recrystalliza-
n, since it is inescapable to obtain 1-acetyl-3-phenylurea

hose polarity is similar to that of 1-acetyl-3-(2-phenyl)thiourea.
cently, Doi’s group [46] reported a Pd-catalyzed synthesis of
substituted benzothiazoles via a C–H Functionalization reac-
n. Therefore, we envisioned that Pd-catalyzed cyclization of

acyl-3-(2-phenyl)thiourea 1 would represent a viable method
r the formation and purification of substituted N-benzothiazol-
yl-amides 2 (Scheme 1).

 Experimental

All reagents were commercially available and used as supplied.
methyl sulfoxide (DMSO) was dried and distilled from calcium
dride. N,N-Dimethylformamide (DMF), toluene, DME and CH3CN

ere dried prior to use using standard methods. Unless otherwise
ated, analytical grade solvents and commercially available
agents were used as received. Thin layer chromatography
LC) employed glass 0.20 mm silica gel plates. Flash chromatog-
phy columns were packed with 200–300 mesh silica gel.

All new compounds were characterized by IR, 1H NMR, 13C NMR
d HRMS. The known compounds were characterized by 1H NMR,
C NMR and HRMS. The IR spectra were run on a Nicolete
ectrometer (KBr). The 1H NMR and 13C NMR spectra were
corded on a BRUKER AVANCEIII 400 MHz spectrometer. The
emical shifts (d) were given in parts per million relative to an
ternal standard tetramethylsilane. High resolution mass spectra
RMS) were measured with a Waters Micromass GCT instrument
d accurate masses were reported for the molecular ion (M+).
elting points were determined on a Perkin-Elmer differential
anning calorimeter and the thermometer was uncorrected.

1. General procedure for the synthesis of 1-acyl-3-arylthioureas

9,50]

To a 25 mL round-bottom flask equipped with a magnetic
irring bar was added acyl chloride (10 mmol), NH4SCN
5 mmol) and CH2Cl2 (20 mL), followed by PEG-400 (0.1 mmol).
e mixture was stirred for approximately 3 h at room tempera-
re. Aromatic amine (10 mmol) was added to the mixture and
irred for another 2 h at room temperature. The solvent was
moved under reduced pressure to give the resulting residue as a
lid, which was washed with water three times, to give the crude
oduct. The analytical samples were obtained by recrystallization
m C2H5OH in good yields (88–98%).

2. General procedure for the synthesis of N-benzothiazol-2-yl-

ides by a Pd-catalysed C(sp2)–H functionalization reaction

A round-bottom flask equipped with a stirring bar was charged
ith 1-acyl-3-arylthioureas (1 mmol), PdCl2 (10 mol%), CuI
154
155

heme 1. Pd-catalyzed cyclization of 1-acyl-3-(2-aryl)thiourea by C–H

ctionalizations directly without further purification. 

Please cite this article in press as: J.-K. Wang, et al., Synth
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(20 mol%), Cs2CO3 (2 equiv.), and L-proline (20 mol%) in 5 mL of
DMSO. The mixture was stirred at 100 8C for the indicated time in
Table 2. After cooling to room temperature, the reaction mixture
was extracted with ethyl acetate (10 mL � 3). The organic layers
were combined, dried over Na2SO4 and concentrated under
reduced pressure, and then purified by silica gel chromatography
(acetone/petroleum ether = 1:4) to yield the desired product 2.

N-(4-Ethylbenzo[d]thiazol-2-yl)acetamide (2f): A gray solid
(80% yield); mp: 264–268 8C; IR (cm�1): 3169.9, 2990.1, 2359.9,
1661.1, 1550.4; 1H NMR (400 MHz, CDCl3): d 9.42 (s, 1H), 7.67 (dd,
1H, J = 6.3, 2.9 Hz), 7.27 (dd, 2H, J = 4.4, 1.9 Hz), 3.04 (q, 2H,
J = 7.6 Hz), 2.28 (s, 3H), 1.34 (t, 3H, J = 7.6 Hz); 13C NMR (100 MHz,
CDCl3): d 171.64(s), 156.91 (s), 146.45 (s), 136.81 (s), 131.98 (s),
125.25 (s), 124.22 (s), 118.92 (s), 25.36 (s), 23.51 (s), 14.79 (s);
HRMS calcd. for C11H12N2OS [M]+: 220.0670; found 20.0678.

N-(6-Fluorobenzo[d]thiazol-2-yl)acetamide (2 g): A white solid
(94% yield); mp: 224–231 8C; IR (cm�1): 3207.8, 3071.0, 2983.9,
2360.4, 1689.2; 1H NMR (400 MHz, CDCl3): d 7.70 (dd, 1H, J = 8.9,
4.6 Hz), 7.53 (dd, 1H, J = 8.0, 2.5 Hz), 7.19 (td, 1H, J = 8.9, 2.6 Hz),
2.31 (s, 3H); 13C NMR (100 MHz, CDCl3): d 168.33 (s), 160.93 (s),
158.50 (s), 121.30 (d, J = 9.1 Hz), 114.75 (s), 108.09 (s), 107.82 (s),
23.46 (s); HRMS calcd. for C9H7FN2OS [M]+: 210.0263; found
210.0256.

3. Results and discussion

While not commercially available, benzothioureas are stable
and easily synthesized [50,51] from inexpensive starting materials
in high yields on a multigram scale. Following Scheme 2, the
synthesis of benzothioureas can be achieved in a straightforward
manner starting from inexpensive aryl acid chloride and aryla-
mines. Aryl acid chloride was treated with ammonium sulfocya-
nide in the presence of PEG-400 in CH2Cl2, followed by the addition
of arylamines, to obtain 1-arylacyl-3-phenylthiourea in good to
excellent yields. This intermediate can be used directly without
further purifications.

In a preliminary experiment, we investigated the intramolecu-
lar C–S bond formation of 1-acetyl-3-phenylthiourea utilizing
PdCl2 (20%) and a mild base (K2CO3, 2 equiv.) in DMSO for 20 h at
100 8C (Table 1, entry 1). However, the reaction almost failed to
take place. Subsequently, we screened several metal salts as co-
catalysts, including AlCl3, CuCl2, Cu(OAc)2, CoCl2, NiCl2, FeCl3, CuI,
and CuCl, and found that the addition of CuI considerably enhanced
this reaction (Table 1, entries 2–8). However, the desired yield was
still not obtained. Surprisingly, when Doi’s condition was used, the
yield was still very low (42%) (Table 1, entry 9). Generally, the
choice of the ligands is important for the reaction catalyzed by the
metal, which prompted us to explore the effect of several bidentate
ligands. We carried out the reaction of 1-acetyl-3-phenylthiourea
by screening these ligands, such as 1,10-phenanthroline, b-keto
esters, b-diketones, and L-proline. (Table 1, entries 10–13), and we
were pleased to find that the use of these ligands can notably
improve the yield of the product under the same conditions, and
that L-proline proved to be the best among an array of ligands
tested (Table 1, entry 14). When the amount of CuI and PdCl2 was
decreased to 20 mol% and 10 mol%, respectively, the catalytic
activity was maintained (Table 1, entry 14). Furthermore, we also
investigated other bases (Cs2CO3 and K3PO4) (Table 1, entries 15–
16), solvents (DMF, DME, and toluene) (Table 1, entries 17–19) and
reaction time (Table 1, entries 20–21). When only CuI was used in
Scheme 2. The synthesis of 1-acyl-3-arylthioureas.

esis of N-benzothiazol-2-yl-amides by Pd-catalyzed C(sp2)–H
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Table 1
Intramolecular cyclization of 1-acetyl-3-phenylthiourea: optimization of the catalytic condition.

N
H

O

N
H

S

N
H

O

S

NCatalyst

Solvent

1 2

.

Entry Cat. Cocatalyst Base (2 equiv.) Ligand Solvent Temp (8C) Time (h) Yield (%)a

1 PdCl2 (20 mol%) – K2CO3 – DMSO 100 20 0

2 PdCl2 (20 mol%) CuCl2 (50 mol%) K2CO3 – DMSO 100 20 12

3 PdCl2 (20 mol%) Cu(OAc)2 (50 mol%) K2CO3 – DMSO 100 20 48

4 PdCl2 (20 mol%) CoCl2 (50 mol%) K2CO3 – DMSO 100 20 25

5 PdCl2 (20 mol%) NiCl2 (50 mol%) K2CO3 – DMSO 100 20 30

6 PdCl2 (20 mol%) CuI (50 mol%) K2CO3 – DMSO 100 20 65

7 PdCl2 (20 mol%) CuCl (50 mol%) K2CO3 – DMSO 100 20 19

8 PdCl2 (20 mol%) AlCl3 (50 mol%) K2CO3 – DMSO 100 20 Trace

9 PdCl2 (20 mol%) CuI (50 mol%) K2CO3 – DMSO/NMP 120 2 42

10 PdCl2 (20 mol%) CuI (50 mol%) K2CO3 1,10-Phenanthroline DMSO 100 15 74

11 PdCl2 (20 mol%) CuI (50 mol%) K2CO3 b-Diketone DMSO 100 15 83

12 PdCl2 (20 mol%) CuI (50 mol%) K2CO3 b-Keto ester DMSO 100 15 70

13 PdCl2 (20 mol%) CuI (50 mol%) K2CO3 L-Proline DMSO 100 15 90

14 PdCl2 (10 mol%) CuI (20 mol%) K2CO3 L-Proline DMSO 100 15 89

15 PdCl2 (10 mol%) CuI (20 mol%) Cs2CO3 L-Proline DMSO 100 15 97

16 PdCl2 (10 mol%) CuI (20 mol%) K3PO4 L-Proline DMSO 100 15 86

17 PdCl2 (10 mol%) CuI (20 mol%) Cs2CO3 L-Proline DMF 100 15 75

18 PdCl2 (10 mol%) CuI (20 mol%) Cs2CO3 L-Proline DME 100 15 43

19 PdCl2 (10 mol%) CuI (20 mol%) Cs2CO3 L-Proline Toluene 100 15 Trace

20c PdCl2 (10 mol%) CuI (20 mol%) Cs2CO3 L-Proline DMSO 100 10 97

21 PdCl2 (10 mol%) CuI (20 mol%) Cs2CO3 L-Proline DMSO 100 8 96

22 – CuI (20 mol%) Cs2CO3 L-Proline DMSO 100 16 0

a Yield of isolated product from reaction on a 1 mmolQ4 scale.

Table 2
The synthesis of N-benzothiazol-2-yl-amides.a

.

Entry R Ar Product Time (h) Yield (%)b

1 CH3 C6H5 8 96

2 CH3 4-FC6H4 9 94

3 CH3 2-C2H5C6H4 10 92

4 CH3 2-CH3C6H4 10 93

5 CH3 4-NO2C6H4 8 96

6 CH3 4-MeOC6H4 8 98

7 CH3 4-ClC6H4 9 95
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Table 2 (Continued )

Entry R Ar Product Time (h) Yield (%)b

8 CH3 2-ClC6H4 12 88

9 CH3 Naphthyl 12 96

10 Cyclohexyl Naphthyl 12 93

11 Cyclohexyl 2-ClC6H4 10 91

12 Cyclohexyl 4-MeOC6H4 11 88

a Reaction conditions: 1 (1 mmol), PdCl2 (10 mol%), CuI (20 mol%), Cs2CO3 (2 equiv.), and L-proline (20 mol%) in 5 mL of DMSO at 100 8C.
b All yields are isolated yields.
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is cyclization, no reaction can take place (Table 1, entry 22). Thus,
e optimized reaction conditions are as the follows: substrate

 mmol), PdCl2 (10 mol%), CuI (20 mol%), Cs2CO3 (2 equiv.), L-
oline (20 mol%) in DMSO (4 mL) within 8 h at 100 8C.
In response to this encouraging result, we used a range of

bstituted 1-acetyl-3-(phenyl)thioureas to investigate the scope
d limitation of this reaction. The corresponding products were
tained in excellent yields (88–98%). The results obtained under
e optimized conditions are listed in Table 2. Initially, the
bstituents of phenyl were screened. The results demonstrate
at little effect of the substituted groups on the benzene ring was
served for this transformation. Furthermore, substituents at

fferent positions of the phenyl ring do not significantly affect the
ficiency (Table 2, entries 1–8). It is noteworthy that the
losubstituted benzenes survived leading to halo-substituted
oducts, which can be used for further transformations (Table 2,
tries 2, 7, 8 and 11). In order to make the new Sankyo
vestigational drugs, the R group was selected as a cyclohexyl to
ve the corresponding products (Table 2, entries 10–12).

Although extensive studies on reaction mechanism have not yet
en carried out, the proposed mechanism can be proposed
cording to the similar palladium-catalyzed processes [51]
196

197
198
199
200

201

202
203
204
205
206
207
208
209
210Scheme 3. Postulated reaction mechanism.

Please cite this article in press as: J.-K. Wang, et al., Synth
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(Scheme 3). 1-Acetyl-3-(phenyl)thiourea was converted to the
thioenolate in the presence of Cs2CO3. Pre-association of the
sulphur atom in the thioenolate to Pd(OAc)2 facilitates the ortho-
palladation process with the concomitant release of chloride ion.
The formation of the six-membered palladacycle and the subse-
quent reductive elimination leads to N-benzothiazol-2-yl-amide
and Pd(0). The Pd(0) species are reoxidized to Pd(II) by CuI, thus
completing the catalytic cycle.

4. Conclusion

In conclusion, we have achieved an efficient intramolecular
cyclization of substituted 1-acetyl-3-(2-phenyl) thioureas catalyzed
by palladium(II) catalysts through C(sp2)–H functionalization. This
method can provide more diversiform N-benzothiazol-2-yl-amides
efficiently and quickly in high yields under relatively mild
conditions. The combination of the generality with respect to the
substrate scope and facile accessibility to the starting materials may
generate numerous synthetic possibilities. Further mechanistic
analysis of these reactions will be the subject of future work.
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