Chiral Copper(I) Iodide Based Porous Coordination Frameworks
with Asymmetrically Substituted Bridging N-Donor Ligands

B. RoBenbeck and W. S. Sheldrick

Lehrstuhl fiir Analytische Chemie, Ruhr-Universitit Bochum, D-44780 Bochum, Germany

Reprint requests to Prof Dr. W. S. Sheldrick. E-mail: shel @anachem.ruhr-uni-bochum.de
Z. Naturforsch. 55 b, 467472 (2000); received February 1, 2000
Copper(I) Halides, 2-Methylpyrazine, Chiral Network

The 2-dimensional coordination polymers 2 [{(Cul)(Mepyz),} - Mepyz] (1a), 2 [CuX(Me-
pyz)] (2a, X = Br; 2b, X = Cl) and 2[(CuX)>(Mepyz)] (3a, X = [:3b, X = Br) may be
prepared by reaction of the appropriate copper(I) halide with 2-methylpyrazine (Mepyz) either
in acetonitrile solution at 130 °C (2a/2b, 3a/3b) or without solvent at 20 °C (1a). Mepyz ligands
bridge (Cul), rhomboid dimers in the chiral network of 1a, whose resulting 24-membered
rings are large enough to accomodate an Mepyz guest molecule. 1a rapidly loses these guests
to afford a crystalline powder (1b), that can reversibly imbibe benzonitrile molecules into its
open channels. In contrast to 1a, the sheets of 2a/2b contain zigzag infinite CuX chains, those
of 3a/3b staircase L [CuX] double chains as their characteristic substructures. Helical 1 [Cul]
single chains in the 3-dimensional network of 3 [Cul(Mepip)]4 are bridged by R-2-methyl-
piperazine (Mepip) ligands in a second example of a chiral coordination polymer.

Introduction

Two ever recurring goals in the rapidly expand-
ing field of inorganic crystal engineering are the
development of functional materials with zeolite-
like molecular-sized cavities or channels [1 - 4] and
the construction of chiral coordination networks of
potential utility for nonlinear optics [5]. However,
attempts to design two- or three-dimensional frame-
works with larger well-defined pores have often
been foiled by the self-interpenetration of multiple
networks, which eliminates the void space [6]. This
phenomenon is particularly typical for diamondoid
polymers [3], for which as many as eight or nine
interweaving frameworks can be obtained [7 - 9].
As a result, surprisingly few coordination frame-
works have been reported that can clathrate organic
guest molecules with a degree of shape specificity
[10 - 16]. Several of these examples contain biden-
tate rodlike 4,4'-bipyridine as an organic spacer
molecule, and tridentate ligands have also been suc-
cessfully employed to construct such porous mate-
rials [11, 15].

We ourselves have recently described the assem-
bly of two CuCN based three-dimensional frame-
works 3 [CuCN(p-2Mepyz)] and 3 [CuCN(;-4Me-
pym)] (ZMepyz = 2-methylpyrazine, 4Mepym =
4-methylpyrimidine) [17], the former of which is

both chiral and porous. The asymmetric bridg-
ing heterocyclic diazines, whose 2-methyl sub-
stituents protrude into the large nanometer-sized
channels of 3 [CuCN(;-2Mepyz)] (dimensions
1.10x 1.14 nm), are clearly instrumental in inducing
the adoption of a chiral framework during the self-
assembly process. As such porous networks could
be of potential interest for both asymmetric catal-
ysis and nonlinear optics we considered it to be
of interest to establish whether similar copper(I)
halide based polymers can be obtained. Many types
of oligomeric and polymeric CuX (X = Cl, Br, I)
substructures have been found in their coordina-
tion frameworks with bridging spacer molecules,
for instance (CuX), rings, cubane-like and tricyclic
CuyX, tetramers, zigzag L[CuX] single chains
and staircase or spirocyclic 1 [CuX] double chains
[18 - 22]. Both 2-methylpyrazine and the chiral
derivative R-2-methylpiperazine (Mepip) were em-
ployed as asymmetrically substituted N-donor lig-
ands in the present work.

Results and Discussion

Treatment of Cul with an equimolar quantity
of the liquid 2-methylpyrazine at room tempe-
rature leads to slow growth of orange crys-
tals of the chiral lamellar coordination poly-
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Fig. 1. Asymmetric unit of the 2 [(Cul),(Mepyz).] sheets
of 1a. Selected bond lengths (A) and angles (°): Cu(1)-
I(1) 2.659(3), Cu(1)-1(2) 2.737(3), Cu(2)-1(1) 2.619(3),
Cu(2)-1(2) 2.575(3), Cu(1)-I(1)-Cu(2) 63.27(9), Cu(2)-
1(2)-Cu(l) 62.74(9), 1(1)-Cu(1)-1(2) 111.86(9), I(1)-
Cu(2)-1(2) 118.79 (9).

r Z[{(Cul)2(Mepyz),} - Mepyz] la (space
group P2,2,2;), which contains (Cul), rings as
its characteristic building blocks. In contrast,
2 [CuX(Mepyz)] (X =Br, CI; 2a, 2b) and %[(CuX)g
(Mepyz)] (X =1, Br; 3a, 3b), which were prepared
by reacting the appropriate copper (I) halide with
2-methylpyrazine at the required molar ratio in ace-
tonitrile solution (T = 130 °C), all crystallise in
the centrosymmetric monoclinic space group P2/c
and exhibit respectively single and double chains as
component CuX substructures.

2-Methylpyrazine ligands bridge the (Cul);
rhomboid dimers through N(11)-Cu(1) and N(41)-
Cu(2) bonds (Fig.1) to afford an open 4* net with
large 24-membered rings. Neighbouring sheets at
an average distance of 6.96 A (b/2) are related by
2, screw diad axes and stack so as to create con-
tinuous channels whose dimensions (8.74x8.54 A
cross section) are large enough to accomodate a
noncoordinated 2-methylpyrazine guest molecule.
As may be seen in Fig. 2a), Einer L [(Cul),(Me-
pyz)] chains in direction [100] are connected by
2-methylpyrazine pillars in direction [001], which
themselves belong to Zweier chains of the same
composition. The presence of differing #>N1 and

Fig. 2. a) Projection of the structure of 2 [Cul),(Mepyz)]
la with its Mepyz guests perpendicular to [010], and
b) Stacking of the polymeric sheets of la as viewed
along [100].

#x>N4 coordination modes at the independent cop-
per atoms Cu(1l) and Cu(2) is also reflected in a
marked distortion of the (Cul), lozenges. Longer
Cu(1)-I distances of 2.659(3) and 2.737(3) A ac-
company the shorter Cu(1)-N(11) and Cu(1)-N(12)
bonds [2.05(1) A] In contrast Cu(2)-I bond lengths
of 2.619(3) and 2.575(3) A are associated with the
longer Cu(2)-N distances to the 2-methylpyrazine
N4 atoms [2.09(1), 2.07(2) A] A Cu(1)...Cu(2) sep-
aration of 2.769(3) Ai 1s observed within the (Cul),
rings. The stacking of 2 [(Cul),(Mepyz),] layers in
1a is illustrated by Fig. 2b), which also shows how
individual (Cul), rings in neighbouring sheets inter-
act through weak secondary I(1)...I(2) interactions.
It is also apparent from this projection of the struc-
ture that the 2-methylpyrazine guest molecules are
significantly displaced from the sheets of the host-
ing 2-dimensional coordination polymers.

1:1 CuBr and CuCl based coordination poly-
mers of 2-methylpyrazine could only be obtained
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Fig. 4. Projection of the structure of 2[(Cul)>(Mepyz)] 3a
perpendicular to [001]. Selected bond lengths (A): Cu(1)-
I(1)2.662(1), Cu(1)-I(1b) 2.629(1), Cu(1)-I(1c) 2.722(1),
Cu(2)-I1(2) 2.668(1), Cu(2)-1(2b) 2.642(1), Cu(2)-1(2¢c)
2.656(1).

from acetonitrile solution at higher temperature
(130 °C). In contrast to 1a, the isostructural com-
pounds %[CuX(Mepyz)] 2a and 2b (X = Br, C])
contain infinite zigzag CuX chains as their charac-
teristic copper(I) halide substructures. As depicted
in Fig. 3, such | [CuX] ribbons are linked through
1-N1,N4 coordinated 2-methylpyrazine spacers to
afford 2-dimensional polymers with 14-membered
pores. Neighbouring sheets are related through the
¢ glide planes of the monoclinic space group P2,/c
and stack so as to afford narrow channels in direc-
tion [001]. Particularly striking are the very wide

Fig. 3. Projection of the struc-
tures of 2 [CuX(Mepyz)] 2a and
2b (X=Br, Cl) with number-
ing for the former perpendic-
ular to [001]. Selected bond
lengths (A) and angles (°):
in 2a, Cu(1)-Br(l) 2.591(1),
Cu(1)-Br(la) 2.507(1), N(1)-
Cu(1)-N(4a) 137.3(1) in 2b,
Cu(1)-CI(1) 2.484(1), Cu(l)-
Cl(la) 2.378(1), N(1)-Cu(1)-
N(4a) 136.0(1).

Fig. 5. Framework structure of 3 [Cul(Mepip)] 4 pro-
jected perpendicular to [100]. Selected bond lengths (A)
and angles (°): Cu(1)-1(1)2.783(2), Cu(1)-I(1a) 2.905(2),
Cu(1)-N(1)2.056(8), Cu(1)-N(4a) 2.068(9), N(1)-Cu(1)-
N(4a) 135.5(3).

N(1)-Cu(1)-N(4a) angles of 137.3(1) and 136.0(1)°
within the component L[{Cu(Mepyz)}*] ribbons
of 2a and 2b.

2:1 coordination polymers 2Z[(CuX)>(Mepyz)]
3a and 3b (X = I, Br) could be isolated for Cul and
CuBr under similar reaction conditions but not for
the analogous copper(I) chloride. These compounds
also crystallise in the monoclinic space group P2,/c
but now contain 1 [CuX] staircase double chains,
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Fig. 6. Powder dia-
grams (Cu-K., Bruker
AXS D8 Advance):
(a) of Z[{(Cul)2(Me-
pyz)2} - Mepyz], 1a; (b)
of Z[(Cul):(Mepyz),],
1b, as obtained after
removal of the guest
Mepyz molecules of 1a
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which are depicted in Fig. 4 for 3a. In contrast to
2a/b, such CuX substructures in the 2:1 polymers
are generated by the screw diads parallel to y, which
therefore exhibits short repeat distances of respec-
tively 4.228(1) and 3.996(1) A in 3a/b. Cu-I and
Cu-Br distances within the double chains lie in the
narrow ranges 2.629 - 2.722 and 2.489 - 2.540 A.

The crystallisation of 2 [{(Cul)>(Mepyz), } - Me-
pyz] 1a in the chiral orthorhombic space group
P2,2,2; is in accordance with our previous ob-
servations for 3 [CuCN(;-Mepyz)] (space group
P2,2,2;) and 2Z[CuSCN(Mepym-xN1)] (space
group P1) [17], that asymmetrically substituted het-
erocyclic diazines can induce chirality into coordi-
nation polymers generated under kinetically con-
trolled self-assembly conditions. An alternative ap-
proach to this goal is to employ a chiral bridg-
ing ligand such as R-2-methylpiperazine (Mepip),
which generates a three-dimensional framework
3 [Cul(Mepip)] 4 with Cul in acetonitrile at room
temperature. As may be seen in Fig. 5 helical
L[Cul] chains in direction [100] (space group
P2,2,2,) are linked together by bridging R-2-meth-
ylpiperazine molecules in 4 to afford narrow chan-
nels into which the 2-methyl substituents protrude.
Alternating raother long Cu-I distances of 2.783(2)
and 2.905(2) A are observed within the infinite Cul
ribbons and are associated with wide N(1)-Cu(1)-
N(4a) angles of 135.5(3)°, similar to those found in
2a/b.

Loss and Exchange of Guest Species by 1

Few examples of coordination frameworks have
been described that are capable of retaining their

under vacuum.

integrity on loss or exchange of imbibed aromatic
molecules [10]. More typical are reports on ion ex-
change or replacement of smaller solvent molecules
(e. g.s H,O, CH3CN, DMF) in the channels of such
microporous networks [15].

Yellow Z[{(Cul)>(Mepyz),} - Mepyz] (1a) rap-
idly loses its 2-methylpyrazine guest molecules un-
der vacuum at room temperature to afford an or-
ange microcrystalline powder (1b), whose elemen-
tal analysis is in accordance with a formulation as
[Cul(Mepyz)]. A powder diffraction pattern of (1b)
[Fig. 6(b)] recorded with Cu-K,, radiation confirms
the retention of crystallinity and contains strong
Bragg reflections in the 26 range 10 - 30° at angles
closely similar to those found for 1a [Fig. 6(a)].
On covering 1b with benzonitrile a colour change
from orange back to the original yellow can be
followed over a period of days. An IR spectrum
taken for the yellow powder after 7d contains char-
acteristic absorption bands for benzonitrile (e. g.
v(CN), 2226 cm™ ), thereby confirming success-
ful imbibement of this aromatic molecule. After re-
moval of benzonitrile under vacuum, the powder
diffraction pattern of the resulting yellow powder
once again closely resembles that of 1b. A thermal
gravimetric analysis on la reveals that following
rapid loss its 2-methylpyrazine guests, the coordi-
nation polymer 1b is stable up to 210 °C before
endothermically losing both its bridging N-donor
ligands. Our results, therefore, suggest that after
removal of the Mepyz guest molecules, the host lat-
tice of Z[{(Cul),(Mepyz),} - Mepyz] 1a is able to
reversibly imbibe benzonitrile without loss of in-
tegrity.
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Table 1. Crystal and refinement data for 1 - 4.

Compound la 2a 2b 3a 3b 4

Formula C|5H13Cuzle6 C5 H(,BI‘CUNZ C5H6C1CUN2 CsH(,CuglzNj_ C5H(,BI‘QCIJ2N2 CﬁH]()CUINz
M 663.2 237.6 193.1 475.0 381.0 288.6

Space group P2,2,2, P2,/c P2,/c P2/c P2/c P2,2,2;
alA] 8.740(3) 4.023(1) 3.861(1) 15.255(5) 15.066(3) 7.249(2)

b [A] 13.920(7) 12.940(4) 12.887(3) 4.228(1) 3.996(1) 9.090(2)
c[A] 17.082(5) 12.801(4) 12.585(3) 16.142(4) 15.619(3) 12.132(3)

B [°] 90 96.83(2) 95.59(2) 112.23(2) 110.78(2) 90

VA% 2078.2(1) 661.6(3) 623.2(2) 963.7(4) 879.2(3) 799.4(4)

Z 4 4 4 4 4 4

Deale [g-em™3] 2.120 2.385 2.058 3.274 2.879 2.398
F(000) 1256 456 384 856 712 544

Crystal size [mm] 0.18x0.16x0.12 0.62x0.32x0.24 0.66x0.20x0.18 0.42x0.18x0.16 0.32x0.12x0.02 0.32x0.22x0.18
j(Mo-Ka)[mm~!] 5.03 9.24 3.82 10.76 13.86 6.51
Max./min. trans.  0.34/0.20 0.31/0.23 0.45/0.42 0.79/0.21 0.53/0.21 0.37/0.19
h/k/l Ranges 0,10/0,16/0,20  0,5/-18,0/-17,17 0,5/0,16/-16,16 —19,18/0,5/0,20  0,19/0,5/-20,18  0,9/0,11/0,15
260range [°] 4-50 4-60 4-55 4-55 4-55 4-55
Independent refls 2097 1916 1419 2220 1992 1073

Ry [I>20(D)] 0.055 0.032 0.040 0.037 0.095 0.040

wR, [all data] 0.125 0.074 0.104 0.106 0.270 0.107

S [goodness-of-fit] 1.024 1.036 1.214 1.119 0.957 1.128
Min./max. res. 0.75/-1.30 0.65/-0.62 0.69/-1.55 0.85/-1.73 3.44/-2.16 1.29/-0.80
[e:A=3]

Experimental 2 [CuCl(Mepyz)] (2b)

FTIR: KBrdiscs, Perkin Elmer 1760X; elemental anal-
ysis: VarioEL (Elementar Analysensystem GmbH) fiir C,
H, and N, AASG6 vario atom absorption spectrometer (Carl
Zeiss Technology) for Cu. The thermogravimetric analy-
sis (TGA/DTA) was performed on an Exstar 6000 (Seiko
Instruments), the PXRD study on a Bruker AXS D8 Ad-
vance. Syntheses of 2a, 2b, 3a and 3b were performed in
sealed glass tubes using dried acetonitrile as solvent.

2 [{(Cul)>(Mepyz)>}-Mepyz] (1a)

138 mg Cul (0.7 mmol) and 66 mg (0.7 mmol) 2-meth-
ylpyrazine (Mepyz) were mixed together and allowed
to stand at room temperature to afford orange crystals
of 1 in 91% yield (139 mg) over a period of 3 days.
Ci5sHigCuxbNg, (M = 663.2): Caled C 27.0, H 2.7, N
12.6%. Found C 27.3, H2.9,N 12.9%.

2 [CuBr(Mepyz)] (2a)

192 mg CuBr (1.34 mmol) and 122 mg 2-methylpyr-
azine (1.34 mmol) were heated in 1.5 ml CH;CN at 130 °C
for 40 h in a sealed glass tube. Slow cooling to room
temperature over 80 h afforded red needles of 2 in 66%
yield (209 mg). CsHsBrCuN> (M =237.6): Calcd C 25.3,
H2.4,N 11.8,Cu26.7. Found C 249, H2.4,N 11.8, Cu
27.2%.

A 56% yield (120 mg) of red crystals of 2b was
achieved under conditions similar to 2a with 112 mg CuCl
(1.1 mmol) and 103 mg 2-methylpyrazine (1.1 mmol).
CsHeCICuN, (M = 193.1): Caled C 31.1, H3.1, N 14.5,
Cu 32.9. Found C 30.2, H 3.1, N 14.1, Cu 32.4%.

2 [(Cul)>(Mepyz)] (3a)

Reaction of 191 mg Cul (1 mmol) and 68 mg 2-meth-
ylpyrazine (0.5 mmol) under conditions as for 2a afforded
yellow needles of 4 in 52% yield (123 mg). CsHsCuz12N»
(M =475.0): Caled C 12.6, H 1.3, N 5.9. Found C 13.0,
H 1.3, N 5.9%.

2 [(CuBr)>(Mepyz)] (3b)

A 42% yield (206 mg) of orange crystals of 3b was ob-
tained by treating 373 mg CuBr (2.6 mmol) with 121 mg
2-methylpyrazine (1.3 mmol) under analogous reaction
conditions to 2a. CsHgBroCusN> (M = 381.0): Caled C
159,H 1.6, N 7.4. Found C 15.6, H 1.6, N 7.3%.

3 [Cul(Mepip)] (4)

191 mg Cul (1 mmol) and 98 mg R-2-methylpiper-
azine (Mepip) were added to 1.5 ml acetonitrile and the
reaction mixture left to stand for 8 d at room tempera-
ture to afford yellow-brown crystals of 4 in 46% yield
(132 mg). CsH oCulN, (M =288.6): Calcd C 20.8, H 3.5,
N 9.7, Cu 22.0. Found C 20.1, H4.1,N 9.0, Cu 22.1%.
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X-ray structural analyses of 1 - 4

Crystal and refinement data for compounds 1 - 4 are
listed in Table 1. The X-ray structural analysis for 3b was
of poor quality and this compound, which is isostruc-
tural to 3a, is only included for comparison purposes.
Unit cell constants were obtained from least-squares fits
to the settings of 25 - 30 reflections centered on a Siemens
P4 diffractometer. Intensity data were collected in the w
mode at 293 K. Three selected reflections were moni-
tored for each of the compounds during the course of data

collection; significant deviations in intensity were not ob-
served. Semi-empirical absorption corrections were per-
formed on the basis of ¢* scans for 9 chosen reflections
with high \ values. After structure solution with SHELXL
86, positional parameters and anisotropic temperature
factors were refined against F,> with SHELXL 93 [23].
Hydrogen atoms were included at calculated sites together
with group isotropic temperature factors. Absolute struc-
tures of the chiral coordination polymers 1a and 4 were
assigned on the basis of their Flack parameters [24], which
refined to respectively 0.05(10) and —0.03(9) [25].
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