#### Accepted Manuscript

Title:  $BiVO_4/g-C_3N_4$  composite visible-light photocatalyst for effective elimination of aqueous organic pollutants

Author: Jie Zhao Jinghui Yan Huaijie Jia Shaowei Zhong Xinyan Zhang Lei Xu



| PII:           | S1381-1169(16)30360-0                               |
|----------------|-----------------------------------------------------|
| DOI:           | http://dx.doi.org/doi:10.1016/j.molcata.2016.08.025 |
| Reference:     | MOLCAA 10012                                        |
| To appear in:  | Journal of Molecular Catalysis A: Chemical          |
| Received date: | 23-6-2016                                           |
| Revised date:  | 22-8-2016                                           |
| Accepted date: | 24-8-2016                                           |

Please cite this article as: Jie Zhao, Jinghui Yan, Huaijie Jia, Shaowei Zhong, Xinyan Zhang, Lei Xu, BiVO4/g-C3N4 composite visible-light photocatalyst for effective elimination of aqueous organic pollutants, Journal of Molecular Catalysis A: Chemical http://dx.doi.org/10.1016/j.molcata.2016.08.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

<AT>BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composite visible-light photocatalyst for effective elimination of aqueous organic pollutants

<AU>Jie Zhao, Jinghui Yan, Huaijie Jia, Shaowei Zhong, Xinyan Zhang<sup>\*</sup> ##Email##zhangxinyan@hotmail.com##/Email##, Lei Xu<sup>\*\*</sup> ##Email##xul646@163.com##/Email##

 $\langle AU \rangle$ 

<AFF>School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, PR China

<PA>\*Corresponding authors: Tel/ Fax: +86-431-8558-312 <PA>\*\*Corresponding

authors: Tel/ Fax: +86-431-8558-3152.

<ABS-Head><ABS-HEAD>Graphical abstract <ABS-P> <ABS-P><xps:span class="xps\_Image">fx1</xps:span>

<ABS-HEAD>Highlights ► BiVO4/g-C<sub>3</sub>N<sub>4</sub> composite photocatalysts were synthesized by sonification method. ► 10 wt.% BiVO4/g-C<sub>3</sub>N<sub>4</sub> catalyst exhibited excellent degradation efficiency towards RhB or PNP. ► Enhanced activity of BiVO4 is ascribed to better optical untilization, adsorption ability and lower electron-hole pairs recombination rate. ► 'OH radical is also active species in BiVO4/g-C<sub>3</sub>N<sub>4</sub>-based visible-light system. ► 10 wt.% BiVO4/g-C<sub>3</sub>N<sub>4</sub> showing great potential for aqueous organic contaminants elimination in future applications.

#### <ABS-HEAD>Abstract

<ABS-P>BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composite photocatalysts were successfully synthesized by

sonification and the chemical structures of BiVO4/g-C3N4 heterostructures are

characterized systematically. The photocatalytic activity of BiVO4/g-C3N4 for

rhodamine B (RhB) and p-nitrophenol (PNP) degradation is evaluated under visible

light irradiation. It has been found that the novel BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composites exhibit

excellent catalytic activities towards RhB and PNP degradation, and these BiVO4/g-

C<sub>3</sub>N<sub>4</sub> composites are much more active compared with that of pure g-C<sub>3</sub>N<sub>4</sub>. Activity

enhancement after BiVO<sub>4</sub> introducing is mainly attributed to the better optical

absorption ability over the well contacted structure in heterojunctions, good adsorption ability of organic contaminants and lower recombination rate of electronhole pairs. In addition, in BiVO4/g-C<sub>3</sub>N<sub>4</sub>-based visible-light system •OH radical, not active in pure g-C<sub>3</sub>N<sub>4</sub> system, is also found to be active species for pollutants degradation, which maybe another evidence for the enhanced photocatalytic activity by BiVO<sub>4</sub> introduction. Furthermore, the most active 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> photocatalyst exhibits enough catalytic stability in recycle test, showing great potential as cost-effective heterogeneous visible-light photocatalyst for aqueous organic contaminants elimination in future applications.

<KWD>Keywords: G-C<sub>3</sub>N<sub>4</sub>; Photocatalysis; Heterostructure; BiVO<sub>4</sub>; Sonification

#### <H1>1. Introduction

In recent times, the increasing environmental issues have become great threaten to the modern society. Photocatalytic technology based on semiconductor photocalysis has been regarded as a promising alternative for environmental remediation, since it has the property of energy saving, avoidance of re-contamination and excellent photocatalytic property for organic pollutants degradation [1]. Of all photocatalysis reported, TiO<sub>2</sub> has probably attracted most attention because of its no toxicity, high durability and good photocatalytic performance. Nevertheless, the wide band gap of TiO<sub>2</sub> makes it only responsive to ultraviolet light, occupying below 4% of the solar spectrum. This drawback of TiO<sub>2</sub> greatly restricts its practical applications in environmental and energy area [2]. Consequently, lots of research have been carried

out to improve the solar light utilization level of photocatalysts, for instance to develop materials with visible light sensitivity and thus good photocatalysts activities for pollutants degradation under visible light irradiation [3]. In this aspect,  $g-C_3N_4$ (graphite-like carbon nitride) emerges and has drawn increasing concern because it has high visible light absorption ability, good stability, and excellent visible-light photocatalytic activity on organic dyes removal [3-5]. Furthermore, the chemical component of g-C<sub>3</sub>N<sub>4</sub> is inexpensive carbon and nitrogen and its preparation route is easy to implement [5]. All these features facilities its practical applications in organic pollutants elimination. However, g-C<sub>3</sub>N<sub>4</sub> still suffers from high recombination rate of photo-generated electron-hole pairs, which is an inherent and unavoidable defect of semiconductor based photocatalysis and this drawback greatly restricted the improvement in photocatalytic performance of g-C<sub>3</sub>N<sub>4</sub> [6]. Consequently, great efforts have been made to enhance its charge separation efficiency and hence to increase its visible light photocatalytic activity. Several methods have been developed, including preparation of g-C<sub>3</sub>N<sub>4</sub> with different morphology [7], doption of impurities components [8-9] and formation of composite structures [10-12]. Compared with other methods, forming composite heterojunction could utilize the structure merits of  $g-C_3N_4$ , i.e. large specific surface area and open texture with two-dimensional planar conjugation, and being a good supporter for other composite, thus efficient in improving visible light response. Several kinds of semiconductors have been reported to add to g-C<sub>3</sub>N<sub>4</sub> and form a heterojunction system, such as ZnWO<sub>4</sub>, Bi<sub>2</sub>WO<sub>6</sub> and CdS, etc [10-12]. It is reported that there is synergistic effects between the  $g-C_3N_4$  and

other materials with suitable band position and the recombination rate of photogenerated electron-hole pairs could be effectively suppressed in the composite heterojunction [10-12].

On the other hand, recently, monoclinic BiVO<sub>4</sub>, as a novel nontoxic and chemically stable semiconductor, has attracted increasing interests for its excellent photocatalytic performance for O<sub>2</sub> evolution under visible light irradiation [13]. BiVO<sub>4</sub> is found highly response to visible light because of its narrow band-gap of 2.42 eV[14], and could utilize visible light directly without modification. All these properties suggest that BiVO<sub>4</sub> would be a probable material with great promise for fabricating composite with other materials [4], although the photocatalytic efficiency of pure BiVO<sub>4</sub> in organic pollutants degradation is usually not satisfied enough due to its poor adsorption ability. Meanwhile, the energy levels of g-C<sub>3</sub>N<sub>4</sub> and BiVO<sub>4</sub> are wellmatched overlapping band-structures (both of the valence and construction band levels of BiVO<sub>4</sub> is lower than that of g-C<sub>3</sub>N<sub>4</sub>) which make it highly possible to form BiVO<sub>4</sub> doped g-C<sub>3</sub>N<sub>4</sub> heterojunction with excellent transfer and separation ability of electron-hole pairs in the heterojunction structure[15]. Furthermore, g-C<sub>3</sub>N<sub>4</sub> has twodimensional open structure and very large specific surface area, which would provide the BiVO<sub>4</sub> anchored g-C<sub>3</sub>N<sub>4</sub> heterojunction with great dispersity and excellent adsorption ability, thus improved photocatalytic performance [4]. Indeed, most recently, a C<sub>3</sub>N<sub>4</sub>-BiVO<sub>4</sub> heterojunction have been successfully prepared by mixing and heating method of  $C_3N_4$  and BiVO<sub>4</sub> or hydrothermal route [16-17]. Nevertheless, the chemical status of contact interface of the obtained heterojunction is greatly relied

on the heating process involved, thus influence their photocatalytic performance. Motivated by this, we further research the preparation of BiVO<sub>4</sub> loaded C<sub>3</sub>N<sub>4</sub> heterojunction by sonification method, which is superior in simple operation, green chemical process and especially good dispersion of component[18]. Furthermore, till now, there is not report on ultrasound assisted preparation of C<sub>3</sub>N<sub>4</sub>-BiVO<sub>4</sub> heterojunction yet as far as we know. The current study indicates that the novel C<sub>3</sub>N<sub>4</sub> -BiVO<sub>4</sub> composite photocatalyst could be successfully prepared by facile sonification method and exhibited excellent photocatalytic performance under visible light irradiation, showing great potential as cost-effective heterogeneous visible-light photocatalyst for aqueous organic contaminants elimination in future applications. Furthermore, the possible photocatalytic reaction mechanism on the C<sub>3</sub>N<sub>4</sub>-BiVO<sub>4</sub> heterojunction surface has been proposed based on systematical characterization results..

<H1>2. Experimental

<H2>2.1. Photocatalysts preparations

The pure g-C<sub>3</sub>N<sub>4</sub> was prepared according the literature reported following the typical procedure [5]: urea was heated to 250 and kept for 1 h, to 350 and kept for 2 h and finally to 550 and kept for 2 h in a semi-closed alumina crucible with a cover. The product was thoroughly washed and dried at 80 overnight.

Pure Monoclinic BiVO<sub>4</sub> was prepared by hydrothermal method:  $Bi(NO_3)_3 \cdot 5H_2O$ (1.21275 g) was added into 5 mL HNO<sub>3</sub> (4 mol/L) and vigorously stirred for 30 min, which was named solution A. NH<sub>4</sub>VO<sub>3</sub> (0.2925 g) was put into concentrated 2 mol/L

NaOH(5 mL) solution(named as solution B) and stirred for 30 min. Subsequently, Solution B was added into solution A and stirred for another 1 h. After adjusting the acidity to pH 6, the mixture was transferred into a Teflon-lined stainless steel autoclave and heated to 150 and kept for 12 h, and then cooled down naturally. The yellow solid was thoroughly washed and dried at 80 overnight.

The BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composite with BiVO<sub>4</sub> loading varied from 10-30% was prepared by the typical procedure as follows: certain amounts of BiVO<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub> were mixed in appropriate amount of distilled water, which was stirred for 10 min. Then the mixture was subjected to ultrasound irradiation for 1 h at  $30\pm0$  using a water and ice mixture. The composites were dried thoroughly in 80 overnight. Finally, the composites were collected and named as x wt.% BiVO<sub>4</sub>/ g-C<sub>3</sub>N<sub>4</sub>, where x represents the BiVO<sub>4</sub> loading.

<H2>2.2. Material Characterization

The X-ray diffraction patterns were measured on a Rigaku powder diffractometer (D/MAX-RB, Cu K $\alpha$ ,  $\lambda$ =1.5418 Å). FTIR spectra were obtained on the spectrometer (SHIMADZU FTIR-8400S). X-ray photoelectron spectroscopies were measured on a VG-ADES 400 IR spectrometer. The scanning electron microscope (SEM) images were determined by a JSM-6480 SEM spectrometer. The transmission electron microscope (TEM) images were determined by a TEM -2100F spectrometer. Nitrogen adsorption/desorption graphs were measured by a Micromeritics ASAP 2020M instrument. UV–Vis/DRS were carried out by the spectrometer (Cary 500 UV-Vis-NIR). Photoluminescence spectra were determined by a Varian Cary Eclipse

spectrometer. The samples were excited at a wavelength of 365 nm to measure the emission spectrum. Photocurrent measurements were measured on a CHI 630E electrochemical station.

<H2>2.3. Photocatalytic measurements

Photocatalytic degradation of RhB and PNP were conducted in a quartz photoreactor. The light source was provided by a PLS-SXE300 Xe lamp, and the light intensity was set at 150 mW cm<sup>-2</sup>. Before Xe lamp irradiation, a suspension was obtained by mixing the solid catalyst (150 mg) and aqueous RhB solution (20 mg L<sup>-1</sup>, 100 mL) or PNP solution (10 mg L<sup>-1</sup>, 100 mL). The suspension was ultrasonicated for 10 mins and then stirred in the dark for 120 mins to achieve good dispersion and adsorptiondesorption equilibrium between RhB molecules or PNP molecules and the catalyst. The concentrations of RhB or PNP in the reaction systems were measured using a Cary 500 UV-Vis-NIR spectrophotometer at  $\lambda = 553$  nm and  $\lambda = 317$  nm, respectively.

#### <H1>3. Results and Discussion

#### <H2>3.1 Characterization of the materials

As presented in Fig. 1, X-ray diffraction (XRD) spectra of pure g-C<sub>3</sub>N<sub>4</sub> and BiVO<sub>4</sub> materials showed the typical diffraction peaks ascribed to graphitic stacking structure of g-C<sub>3</sub>N<sub>4</sub> and amonoclinic scheelite structure (PDF#14-0688) of BiVO<sub>4</sub>, indicating the target materials are successfully synthesized [19]. While for the series of BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> photocatalysts, both their characteristic structure patterns presented, which proved that BiVO<sub>4</sub> has been successfully introduced into g-C<sub>3</sub>N<sub>4</sub> with their

structure well preserved, respectively. Meanwhile, with the increasing of BiVO<sub>4</sub> loading from 10%-30%, the diffraction peaks of  $g-C_3N_4$  weakened, which may be due to the covering by the stronger diffraction patterns of BiVO<sub>4</sub> at higher loadings. Similar results have been reported by other research, that no typical crystalline peaks of g-C<sub>3</sub>N<sub>4</sub> could be observed when the content of BiVO<sub>4</sub> on g-C<sub>3</sub>N<sub>4</sub> is above 20% [20]. The surface areas of the BiVO4 loaded g-C<sub>3</sub>N<sub>4</sub> were semblable ( $24-32 \text{ m}^2/\text{g}$ ) and similar with that of the pure  $g-C_3N_4$  (42 m<sup>2</sup>/g), suggesting the structure and large specific surface areas of pure g-C<sub>3</sub>N<sub>4</sub> were well sustained after BiVO<sub>4</sub> deposition. The FT-IR spectra of BiVO<sub>4</sub> doped g-C<sub>3</sub>N<sub>4</sub> materials are shown in Fig. 2. For pure g- $C_3N_4$ , sharp peak at 810 cm<sup>-1</sup> was found revealing the existence of heptazine units in the prepared g-C<sub>3</sub>N<sub>4</sub>. The bands located from 1640 to 1208 cm<sup>-1</sup> and the broad absorption peaks located from 3300 to 3000 cm<sup>-1</sup> are ascribed to the typical stretching modes of CN heterocycles and the stretching vibration of N-H bonds, respectively [21-23]. All these adsorption is the typical spectra for g-C<sub>3</sub>N<sub>4</sub>, in consistent with other literatures [21-23]. On the other hand, the pure BiVO<sub>4</sub> only showed one broad peak at 750 cm<sup>-1</sup>, which is also in line with the reported BiVO<sub>4</sub> FT-IR spectra, corresponding to the vibration of Bi-V bonds [24]. While for the series of BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> photocatalysts, all characteristic absorption bands of pure BiVO4 and g-C<sub>3</sub>N4 (stronger) appeared; with the increasing BiVO<sub>4</sub> loading, the characteristic absorption bands of pure BiVO<sub>4</sub> increased to some extent. This IR results combined with the XRD results, indicate that, after the adopting of BiVO<sub>4</sub> on g-C<sub>3</sub>N<sub>4</sub> by sonification the structural integrity of  $g-C_3N_4$  and BiVO<sub>4</sub> remains intact in the heterostructures.

The microstructures of asprepared BiVO<sub>4</sub> deposited g-C<sub>3</sub>N<sub>4</sub> are revealed by TEM and SEM images (Fig. 3). SEM image of pure  $g-C_3N_4$  displays a platelet-like morphology with a smooth surface (Fig. 3(a)). Obvious stacked pore structure was found between the platelet. Also, the TEM image (Fig. 3(b)) has shown that g-C<sub>3</sub>N<sub>4</sub> is almost transparent, indicating its few-layer structure. On the other hand, the pure BiVO<sub>4</sub>, which was well crystallized in the autoclave, was a polyhedral irregular particles with size of about hundred of nm to 1-2  $\mu$ m as shown in Fig. 3(c) and (d). After introducing of BiVO<sub>4</sub>, the sheet structure of g-C<sub>3</sub>N<sub>4</sub> keeps well with irregular nanoparticles of BiVO<sub>4</sub> abundantly scattered (Fig. 3(e) and (f)). This result further confirmed the XRD finding that BiVO4 have been successfully deposited on g-C<sub>3</sub>N4 and formed compressed heterojunctions composites instead of a simple physical mixture of each other. The well touched structure of the composites with an intimate interface will be benefit for the efficient charge transmission between BiVO<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub> in visible light excitation, and thus improved their photocatalytic activity. The XPS spectra of BiVO<sub>4</sub> doped g-C<sub>3</sub>N<sub>4</sub> composites are presented in Fig. 4. The result indicates that main surface elements are C1s, N1s for pure g-C<sub>3</sub>N<sub>4</sub>, and Bi4f, V2p, and O1s for pure BiVO<sub>4</sub>, respectively. After BiVO<sub>4</sub> introduced to g-C<sub>3</sub>N<sub>4</sub>, 10 wt.% BiVO4/g-C<sub>3</sub>N<sub>4</sub> exhibited all of the above elements but V2p. Basically, the C1s binding (Fig. 4B) of pure g-C<sub>3</sub>N<sub>4</sub> and 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> is quite similar. However, N1s spectra (Fig. 4C) of g-C<sub>3</sub>N<sub>4</sub> and 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> presents obvious difference. The first and the second contribution of N1s binding energy for pure g-C<sub>3</sub>N<sub>4</sub> located at 398.1 eV and 399.1 eV, corresponding to sp2-hybridized

nitrogen (C=N–C) and tertiary nitride (N-C<sub>3</sub>) group of g-C<sub>3</sub>N<sub>4</sub> [25]. As for 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composite, the N-C<sub>3</sub> binding energy shifts to higher level (about 1.2 eV). This may be caused by the interaction with BiVO<sub>4</sub> inducing C1s and N1s orbitals of g-C<sub>3</sub>N<sub>4</sub> to the inner shift [20]. Furthermore, Bi 4f spectra over g-C<sub>3</sub>N<sub>4</sub> and 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> (Fig. 4D) clearly presented the Bi 4f binding energies of pure BiVO<sub>4</sub>, greatly shift to lower binding energy (about 0.6 eV) after BiVO<sub>4</sub> deposition on g-C<sub>3</sub>N<sub>4</sub>. These XPS analysis confirmed the above XRD and TEM results and clearly proved that compressed heterojunctions composites have been formed between g-C<sub>3</sub>N<sub>4</sub> and BiVO<sub>4</sub> instead of a simple physical mixture.

Fig. 5 illustrates the UV-Vis spectra of the BiVO4-g-C<sub>3</sub>N<sub>4</sub> composites. As shown, the absorption edge of g-C<sub>3</sub>N<sub>4</sub> is about 460 nm, and the bandgap is estimated to be 2.7 eV, in accordance with the literature results [26]. Pure BiVO<sub>4</sub> have much stronger absorption bands in visible-light and UV regions with steeper shape compared with g-C<sub>3</sub>N<sub>4</sub>, indicating a direct energy band gap [27]. As estimated, the absorption edge of pure BiVO<sub>4</sub> is around 525 nm, and its band gap is calculated to be 2.36 eV, also in accordance with the literature [28]. Meanwhile, the series of BiVO<sub>4</sub>-doped g-C<sub>3</sub>N<sub>4</sub> all shows strong absorption in visible-light and UV regions, with the adsorption range between absorption edge of pure BiVO<sub>4</sub> (525 nm) and g-C<sub>3</sub>N<sub>4</sub> (460 nm). All of the band gaps of BiVO<sub>4</sub>-doped g-C<sub>3</sub>N<sub>4</sub> were slightly less than that of pure g-C<sub>3</sub>N<sub>4</sub> (2.7 eV); the band gaps of the 10 wt.%, 20 wt.%, and 30 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> are estimated to be 2.67, 2.63, and 2.60 eV, respectively. These results indicate that after introducing of BiVO<sub>4</sub>, the absorption edges of BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composites are shifted

to longer wavelength i.e. extend towards visible light range, which implies better optical absorption ability.

#### 3.2Photocatalytic performance

The photocatalytic activities of BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> materials for RhB and PNP degradation are presented in Fig.6. As shown, all the samples reached the adsorptiondesorption equilibrium for RhB molecules at about 30 min and the 10 wt.% BiVO4/g-C<sub>3</sub>N<sub>4</sub> sample has shown the highest adsorption rate of RhB (ca. 20%), almost twice of that of other photocatalysts (all at about 10%). After light on, pure BiVO<sub>4</sub> showed negligible low activity for RhB degradation, and pure g-C<sub>3</sub>N<sub>4</sub> showed moderate high activity with RhB 50% degraded within 35 min. However, the BiVO4 deposited g-C<sub>3</sub>N<sub>4</sub> materials all exhibited much higher activity than C<sub>3</sub>N<sub>4</sub>, with 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> highest and 20 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> and 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> almost equally followed. This result indicate that the introducing of small amount of BiVO4 could greatly increased the catalytic activities of C<sub>3</sub>N<sub>4</sub> materials, and 10 wt.% BiVO<sub>4</sub>/g- $C_{3}N_{4}$  exhibit the super photocatalytic activity with RhB 50% degraded within 10 min and complete degradation within 40 min. To further illustrate performance of the trace amount of BiVO4 on the photocatalytic activity improvement of g-C<sub>3</sub>N4 materials and found out the optimized doping level of BiVO4, the photocatalytic activity of g-C<sub>3</sub>N4 samples with lower BiVO<sub>4</sub> doping level than 10%, such as 5% and 7% are evaluated. As shown in Fig. S1, 10 wt.% BiVO4/g-C<sub>3</sub>N4 still exhibited the highest activity among the three catalysts, followed by 7 wt.% BiVO4/g-C<sub>3</sub>N<sub>4</sub> and 5 wt.% BiVO4/g-C<sub>3</sub>N<sub>4</sub>, respectively. This result indicates that 10% BiVO4 is the optimized doping on the

photocatalytic activity improvement of  $g-C_3N_4$  materials under the experiment condition, and it has showed high photocatalytic activity and great potential for further application, hence the followed discussion mainly concentrated on 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> material.

As shown in Fig. 6d, the characteristic adsorption of RhB (at 513 nm) over 10 wt.% BiVO4/g-C<sub>3</sub>N<sub>4</sub> under visible-light irradiation decreased constantly with extended irradiation time, with the RhB adsorption hardly observed after 40 min visible-light irradiation. Furthermore, this result is further confirmed by the RhB degradation rate calculated (Fig. 6c). The degradation rate of the catalysts followed the order: 10 wt.% BiVO4/g-C<sub>3</sub>N<sub>4</sub> (0.09307 min<sup>-1</sup>) > 20 wt.% BiVO4/g-C<sub>3</sub>N<sub>4</sub> (0.07172 min<sup>-1</sup>) > 30 wt.% BiVO4/g-C<sub>3</sub>N<sub>4</sub> (0.0658 min<sup>-1</sup>) > g-C<sub>3</sub>N<sub>4</sub> (0.02463 min<sup>-1</sup>) >BiVO4 (0.0425 min<sup>-1</sup>). The 10 wt.% BiVO4/g-C<sub>3</sub>N<sub>4</sub> has about 4.8 times of degradation rate of pure g-C<sub>3</sub>N<sub>4</sub> clearly proved the acitivity enhancement effect of BiVO<sub>4</sub> introducing.

For better evaluation of the visible-light catalytic property of these composites, Fig.6B showed photocatalytic performance of BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> materials for the degradation of PNP, which is UV light insensitive. It is turned out the PNP degradation performance over these BiVO<sub>4</sub> deposited g-C<sub>3</sub>N<sub>4</sub> catalysts is very similar with that of RhB degradation process. As shown in Fig. 6(b), with the introducing of BiVO<sub>4</sub>, the photocatalysts exhibited much higher PNP conversion compared with pure g-C<sub>3</sub>N<sub>4</sub>. Also especially, 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> exhibited the highest photocatalytic activity, with PNP completely degraded within 120 min. Combined these degradation results of BiVO<sub>4</sub> and PNP, it could be concluded that the

introducing of BiVO<sub>4</sub> have greatly improved the catalytic activity of C<sub>3</sub>N<sub>4</sub> materials and 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> photocatalyst exhibited the extraordinarily high photocatalytic activity for the organic pollutant degradation.

The high photocatalytic activity of 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> for the organic pollutant degradation motivated us to test its durability, which is also a crucial factor for the practical applications. Recycling reactions profiles (Fig. 7) showed that RhB can be completely degraded within 40 min in each cycle and no obvious activities decrease in catalytic activity was observed in the recycling reactions. Extraordinarily, the high photocatalytic activity and good stability of 10 wt.% BiVO4/g-C3N4 for RhB degradation were comparable to or even superior to the most applied TiO<sub>2</sub> based photocatalysts [29-30]. As shown in the Fig. S2, under the same experiment conditions, the activity of 10 wt.% BiVO4/g-C3N4 is much higher than pure TiO2 photocatalysts. Thus, 10 wt.% BiVO4/g-C<sub>3</sub>N4 seems great promising as a costeffective photocatalyst for organic pollutant degradation in future application. <H2>3.3 Role of BiVO<sub>4</sub> in photocatalytic activity enhancement on g-C<sub>3</sub>N<sub>4</sub> The above characteristic results including XRD, FTIR and TEM/SEM clearly confirmed that BiVO<sub>4</sub> have been successfully deposited on the surface of g-C<sub>3</sub>N<sub>4</sub> and formed well touched heterojunctions composites. The intimate interface between BiVO<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub> in the composites greatly benefits for their UV-Vis absorption. As shown in UV-VIS DRS, the absorption edges of BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunctions are prolonged towards visible light range, usually representative of better optical absorption ability [31]. The RhB decomposition results confirmed that the introducing

of BiVO<sub>4</sub> have greatly improved the catalytic activity of C<sub>3</sub>N<sub>4</sub> catalysis. Thus, better optical absorption ability due to the well contacted structure in heterojunctions composites may play the first and most important role in the improvement of photocatalytic activity of g-C<sub>3</sub>N<sub>4</sub>. Furthermore, the heterojunctions composites, especially 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> has much larger BET-surface area (32.0  $m^2/g$ ) than that of pure BiVO<sub>4</sub> (1.9  $m^2/g$ ), indicating that the deposition of BiVO<sub>4</sub> on g-C<sub>3</sub>N<sub>4</sub> greatly increased its adsorption of organic contaminants and thus improve its photocatalytic activity. However, the BET-surface area could not be the only factor deciding the adsorption performance of BiVO4/g-C<sub>3</sub>N<sub>4</sub> materials. As shown in Fig.6a, before light irradiation, the 10 wt.% BiVO4/g-C3N4 sample, although has lower BET area than pure g-C<sub>3</sub>N<sub>4</sub>, already has shown much higher RhB adsorption rate (almost twice) compared with that of pure g-C<sub>3</sub>N<sub>4</sub> and their RhB adsorption results all in consistent with their final photocatalytic performance under visible-light irradiation. Thus, we could deduce that there must be additional special adsorption effect over 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> besides simple physical adsorption. Hence, compared with pure g-C<sub>3</sub>N<sub>4</sub>, BiVO<sub>4</sub> deposited g-C<sub>3</sub>N<sub>4</sub> exhibited better adsorption ability of organic contaminants, which would be another reason contributed for its high activity. Finally, the photoluminescence (PL) spectra of BiVO4 deposited g-C3N4 is taken, as it is demonstrated that the separation efficiency of electron-hole pairs of the photocatalysts, revealed by fluorescence intensity in the PL spectra, is usually a very important factor influencing their activities [32]. Higher photocatalytic activity was usually associated with the photocatalysis exhibited lower fluorescence intensity,

which is representative of less recombination rate of photo-induced electron-hole pairs [20]. As shown in Fig. 8, PL emission intensities of the 10 wt.% BiVO4/g-C3N4 is significantly lower than that of pure g-C<sub>3</sub>N<sub>4</sub>, suggesting the charge carriers recombination process of  $g-C_3N_4$  can be suppressed in the presence of BiVO<sub>4</sub>, and this may be another important factor for the improved photocatalytic activity after BiVO<sub>4</sub> introducing. This deduction is also directly proved by photoelectrochemistry test, which could intuitionally display the complicated processes of generation, separation and migration of electrons and holes pairs [20]. During photoelectrochemistry test, the one with prompt photocurrent response corresponded to fast generation, separation and transportation of the photogenerated electrons in the light system [20]. As shown in Fig.9, all tested materials (as working electrodes) present sharp increased photocurrent responses immediately after light irradiation is on, and the photocurrents intensity are kept well during three cycles of light on-off intermittent irradiation. The 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>/ITO electrodes present the highest photocurrent intensity, indicating the lowest electron-hole recombination rate. This result combined the photoluminescence spectra of BiVO4 deposited g-C<sub>3</sub>N<sub>4</sub> (Fig. 8) clearly demonstrated that low electron-hole recombination rate plays an important role in the photoactivity enhancement after BiVO4 introducing.

<H2>3.4 Possible photocatalytic mechanism of BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>

The high photocatalytic activity and stability of 10wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> for RhB degradation motivated us to investigate its photocatalytic mechanism in depth for

better application and understanding its activity enhancement further. Accordingly, free radical and hole captive test were carried out to identified the active species in the photocatalytic process of RhB degradation over pure g-C<sub>3</sub>N<sub>4</sub> and 10wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>. As demonstrated by previous literatures [33,34], 1,4-benzoquinone (BQ), ethylene diamine tetraacetic acid (EDTA) and isopropyl alcohol (IPA) are used as  $^{\circ}O_{2^{-}}$ , hv<sub>B</sub><sup>+</sup> and  $^{\circ}OH$  scavengers, respectively.

For the process over pure g-C<sub>3</sub>N<sub>4</sub> (Fig.10(a)), the presence of BQ ( $^{\circ}O_2^{-}$  scavenger) and EDTA ( $h_{VB}^+$  scavenger) have great inhibition effect on the RhB degradation rate, while the presence of IPA ( $^{\circ}OH$  scavenger) has no obvious change for RhB degradation. These results indicate that  $^{\circ}O_2^-$  and  $h_{VB}^+$  play a major and minor role, respectively, in the photocatalytic RhB oxidization over g-C<sub>3</sub>N<sub>4</sub>, while  $h_{VB}^+$  hardly contributes. On the other hand, these scavengers displayed quite different influence on RhB degradation over the 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>. As shown in Fig.10(b), besides  $^{\circ}O_2^-$  and  $h_{VB}^+$ ,  $^{\circ}OH$  is also active for BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> photocatalytic process, which also corroborate the enhanced photocatalytic activity of BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>.

Based on the above analysis, a possible photocatalytic mechanism of the BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composites is proposed (Fig. 11). Both the redox potential of the valence band ( $E_{VB} = 2.36 \text{ eV}$ ) and the conduction band ( $E_{CB} = 0 \text{ eV}$ ) of BiVO<sub>4</sub> are more positive than those of g-C<sub>3</sub>N<sub>4</sub> ( $E_{VB} = 1.4 \text{ eV}$  and  $E_{CB} = -1.3 \text{ eV}$ ). The pure g-C<sub>3</sub>N<sub>4</sub> and BiVO<sub>4</sub> can both be excited and produce photo-excited electrons and holes under visible light irradiation. Since the CB potential of g-C<sub>3</sub>N<sub>4</sub> is lower than that of BiVO<sub>4</sub>, the electrons in the CB of the g-C<sub>3</sub>N<sub>4</sub> would transfer to the CB of BiVO<sub>4</sub>. Similarly, the

VB potential of BiVO<sub>4</sub> is higher than that of g-C<sub>3</sub>N<sub>4</sub>, the holes in the VB of BiVO<sub>4</sub> would migrate to the VB of g-C<sub>3</sub>N<sub>4</sub>. As a consequence, the matching band potentials between BiVO<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub> could effectively restrain the recombination of photogenerated electron–hole and improve the separation efficiency, which greatly promoted the photocatalytic degradation of RhB.

The electrons in the process of transferring from the CB of g-C<sub>3</sub>N<sub>4</sub> to the CB of BiVO<sub>4</sub> could reduce O<sub>2</sub> to  $O_2^-$ , which together with the holes contributed on RhB degradation. Meanwhile, in the presence of water OH radical is generated as the following possible reactions, and also plays an important role in RhB degradation: hvB<sup>+</sup>+OH<sup>-</sup> $\rightarrow OH$  (1)

$$e^{+}O_{2} \rightarrow \bullet O_{2}^{-}; \bullet O_{2}^{-} + H^{+} \rightarrow HO_{2}^{\bullet}; 2HO_{2}^{\bullet} \rightarrow H_{2}O_{2} + O_{2}; H_{2}O_{2} + \bullet O_{2}^{-} \rightarrow \bullet OH + OH^{-} + O_{2} (2)$$

$$H_{2}O + h_{VB}^{+} \rightarrow H_{2}O_{2} + 2H^{+}; H_{2}O_{2} + h_{VB}^{+} \rightarrow 2^{\bullet}OH (3)$$

#### <H1>4. Conclusions

BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> heterostructure were facilely fabricated by a simple sonification method and were found to be highly active towards RhB and PNP degradation. Moreover, compared with the pure g-C<sub>3</sub>N<sub>4</sub>, these BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composites are much more active. The enhanced photocatalytic activity after BiVO<sub>4</sub> introducing to g-C<sub>3</sub>N<sub>4</sub> is mainly attributed to the better optical absorption ability over the well contacted structure in heterojunctions, good adsorption ability of organic contaminants and lower recombination level of electron-hole pairs. In addition, over BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>, besides  $O_2^-$  and  $h_{VB}^+$  species (both active in BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> and pure g-C<sub>3</sub>N<sub>4</sub> system),

•OH radical is also found to be active species for pollutants degradation; while in pure

g-C<sub>3</sub>N<sub>4</sub> system it hardly contributes. This result also corroborates the improved

catalytic activity of 10 wt.% BiVO4/g-C3N4. Furthermore, the most active 10 wt.%

BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> photocatalyst exhibits enough catalytic stability, showing great

potential as cost-effective heterogeneous visible-light-driven photocatalyst for the

purification of aqueous organic pollutants in future applications.

#### Acknowledgments

This work was financially supported by the Science and Technology Development

Plan of Jilin Province (20140101162JC; 20120346; 20140520150JH) and National

Natural Science Funds for Young Scholar (21307007).

#### <REF>References

#### <BIBL>

[1] Y.X. Yang, Y.G. Guo, F.Y. Liu, X. Yuan, Y.H. Guo, S.Q. Zhang, W. Guo, M.X. Huo,
[1] Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst, Appl. Catal. B: Environ. 142-143 (2013) 828-837.

[2] D.Q. Zhang, G.S. Li, J.C.;1; Yu, Inorganic Materials for Photocatalytic Water Disinfection, J. Mater. Chem. 20 (2010) 4529-4536.

[3] T.T. Li, L.H. Zhao, Y.M. He, J. Cai, M.F. Luo, J.F. Lin,;1; Synthesis of g-C<sub>3</sub>N<sub>4</sub>/SmVO<sub>4</sub> composite photocatalyst with improved visible light photocatalytic activities in RhB degradation, J. Appl. Catal. B: Environ. 129 (2013) 255-263.
[4] Y.L. Tian, B.B. Chang, Z.C. Yang, B.C. Zhou, F.N. Xi and X.P. Dong,;1; Graphitic carbon nitride-BiVO<sub>4</sub> heterojunctions: simple hydrothermal synthesis and high photocatalytic performances, RSC. Adv. 4 (2014) 4187.
[5] S.C. Yan, Z.S. Li, Z.G. Zou,;1; Photodegradation performance of g-C<sub>3</sub>N<sub>4</sub>

fabricated by directly heating melamine, Pubs. Acs. Org. 25 (2009) 10397-10401. [6] S.M. Wang, D.L. Li, C. Sun, S.G. Yang, Y. Guan, H. He, 1; Synthesis and characterization of g-C<sub>3</sub>N<sub>4</sub>/Ag<sub>3</sub>VO<sub>4</sub> composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation, Appl.Catal. B: Environ. 1144 (2014): 885-892.

[7] P. Niu, L.L. Zhang, G. Liu, H.M. Cheng, 1; Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater. 22(2012): 4763-4770.

[8] C.C. Han, L. Ge, C. F. Chen, Y.J. Li, X.L. Xiao, Y.N. Zhang, L.L. Guo,;1; Novel visible light induced Co<sub>3</sub>O<sub>4</sub>-g-C<sub>3</sub>N<sub>4</sub> heterojunction photocatalysts for efficient degradation of methyl orange, Appl. Catal. B: Environ. 147(2014): 546-553.
[9] X. H. Li, J.S. Chen, X.C. Wang, J.H. Sun,;1; Metal-free activation of dioxygen by graphene/g-C<sub>3</sub>N<sub>4</sub> nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons, J. Am. Chem. Soc. 133 (2011):8074-8077.

[10] L.M. Sun, X. Zhao, C.J. Jia, Y.X. Zhou, X.F. Cheng, P. Li, W.L. Fan,;1; Enhanced visible-light photocatalytic activity of g-C<sub>3</sub>N<sub>4</sub>-ZnWO<sub>4</sub> by fabricating a heterojunction: investigation based on experimental and theoretical studies, J. Mater. Chem. 22 (2012): 23428-23438.

[11] L. Ge, C.C. Han, J. Liu, 1; Novel visible light-induced g-C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>WO<sub>6</sub> composite photocatalysts for efficient degradation of methyl orange, Appl. Catal. B. Environ. 108-109(2011):100-107.

[12] F.J. Zhang, X.Z. Xie, S.F. Zhu, J. Liu, J. Zhang, S.F. Mei, W. Zhao,;1; A novel photofunctional g-C<sub>3</sub>N<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub> bulk heterojunction for decolorization of RhB, Chem. Eng. J. 228 (2013): 435

[13] A. Kudo,;1; Development of photocatalyst material for water splitting, Int. J. Hydrogen Energy 31 (2006) 197-202.

[14] L. Chen, Q. Zhang, R. Huang, S. Yin, S. Luo and C. T. Au, 1; Porous peanut-like Bi<sub>2</sub>O<sub>3</sub>-BiVO<sub>4</sub> composites with heterojunctions: one-step synthesis and their photocatalytic properties, Dalton Trans. 2012, 41, 9513-9518.

[15] M.L. Guan, S.W. Hu, Y.J. Chen, S.M. Huang, 1; From hollowolive-shaped BiVO<sub>4</sub> to n-p core-shell BiVO<sub>4</sub>@Bi<sub>2</sub>O<sub>3</sub> microspheres controlled synthesis and enhanced visible-light-responsive photocatalytic properties, Inorg. Chem. 50(2011): 800-805.

[16] Y.X. Ji, J.F. Cao, L.Q. Jiang, Y.H. Zhang, Z.G. Yi.;1; G-C<sub>3</sub>N<sub>4</sub>/BiVO<sub>4</sub> composites with enhanced and stable visible light photocatalytic activity. J. All. Com. 590 (2014) 9-14.

[17] F. Guo, W.L. Shi, X. Lin, G.B. Che, J.;1; Hydrothermal synthesis of graphitic carbon nitride-BiVO<sub>4</sub>composites with enhanced visible light photocatalytic activities and the mechanism study, Phys. Chem. Solids 75(2014) 1217-1222.

[18] Y.Vafeian, M. Haghighi, S. Aghamohammadi, 1; Ultrasound assisted dispersion of different amount of Ni over ZSM-5 used as nanostructured catalyst for hydrogen production via CO<sub>2</sub> reforming of methane, Energ. Convers. Manage. 76(2013) 1093-1103.

[19] W. Liu, M.L. Wang, C.X. Xu, S.F. Chen, X.L. Fu,;1; Significantly enhanced visible-light photocatalytic activity of g-C<sub>3</sub>N<sub>4</sub> via ZnO modification and the mechanism study, J Mol Catal A-Chem. 368-369 (2013) 9-15.

[20] M. Ou, Q. Zhong, S.L. Zhang, 1; Synthesis and characterization of g-

C<sub>3</sub>N<sub>4</sub>/BiVO<sub>4</sub> composite photocatalysts with improved visible-light-driven

photocatalytic performance. J Sol-Gel Sci. Technol. 72(2014):443-454.

[21] S.C. Yan, Z.S. Li, Z.G. Zou, 1; Photodegradation Performance of g-C<sub>3</sub>N<sub>4</sub>

[22] J.H. Liu, T.K. Zhang, Z.C. Wang, G. Dawson, W. Chen, 1; Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, J. Mater. Chem. 21 (2011) 14398-14401.

[23] P. Niu, G. Liu, H.M. Cheng, 1; Nitrogen Vacancy-Promoted Photocatalytic Activity of Graphitic Carbon Nitride, J. Phys. Chem. C 116 (20) (2012) 11013-11018.
[24] Z.M. Fang, Q. Hong, Z.H. Zhou, S.J. Dai, W.Z. Weng, H.L. Wan, 1; Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method, Catal. Lett. 61 (1999) 39-44.

[25] X.J. Wang, Q. Wang, F.T. Li, W.Y. Yang, Y. Zhao, Y.J. Hao, S.J. Liu,;1; Novel BiOCl-C<sub>3</sub>N<sub>4</sub> heterojunction photocatalysts: in situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities. Chem. Eng. J. 234 (2013): 361-371.

[26] X.C. Wang, S. Blechert, M. Antonietti,;1; Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis, ACS Catal. 2 (2012) 1596-1606.

[27] H.M. Luo, A.H. Mueller, T.M. McCleskey, A.K. Burrell, E. Bauer, Q.X. Jia,;1; Structural and photoelectrochemical properties of BiVO<sub>4</sub> thin films, J. Phys. Chem. C. 112 (2008): 6099-6102.

[28] Y. Wang, X.C. Wang, M. A. Angew, 1; Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry, Chem. Int. Ed. 51 (2012) 68-69.

[29] M.D. Hernandez-Alonso, F. Fresno, S. Suarez, J.M. Coronado,;1; Development of alternative photocatalysts to TiO<sub>2</sub>: challenges and opportunities, Energy Environ. Sci. 2 (2009) 1231-1257.

[30] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, 1; Nano-photocatalytic materials: Possibilities and challenges, Adv. Mater. 24 (2012) 229-251.
[31] C. Zhang, Y.F. Zhu, 1; Synthesis of square Bi<sub>2</sub>WO<sub>6</sub> nanoplates high-activity visible -light-driven photocatalysts. Chem. Mater. 17(2005): 3537-3545.

[32] X.L. Fu, W.M. Tang, L. Ji, S.F. Chen, 1; V<sub>2</sub>O<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> composite photocatalyst: preparation, characterization, and the role of Al<sub>2</sub>O<sub>3</sub>, Chem. Eng. J. 180(2012)170-177.
[33] C.S. Pan, Y.F. Zhu, 1; New type of BiPO<sub>4</sub> oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye, Environ. Sci. Technol. 44 (2010) 5570-5574.

[34] C.C. Chen, Q. Wang, P.X. Lei, W.J. Song, W.H. Ma, J.C. Zhao, 1; Photodegradation of Dye Pollutants Catalyzed by Porous K<sub>3</sub>PW<sub>12</sub>O<sub>40</sub> under Visible Irradiation, Environ. Sci. Technol. 40(2006) 3965-3970.

#### </BIBL>

<Figure>Fig. 1 XRD patterns of g-C<sub>3</sub>N<sub>4</sub>, BiVO<sub>4</sub> and BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> materials.

<Figure>Fig. 2 FT-IR spectra of g-C<sub>3</sub>N<sub>4</sub>, BiVO<sub>4</sub> and BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> materials.

<Figure>Fig. 3 SEM images of g-C<sub>3</sub>N<sub>4</sub> (a), BiVO<sub>4</sub> (c), 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> (e)

and TEM pictures of g-C<sub>3</sub>N<sub>4</sub> (b), BiVO<sub>4</sub> (d), 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>(f).

<Figure>Fig. 4 High-resolution XPS of (A) g-C<sub>3</sub>N<sub>4</sub>, BiVO<sub>4</sub> and 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>; (B) C 1*s*, (C) N 1*s* and (D) Bi 4f binding energy regions.<Figure>Fig. 5 UV-Vis/DRS (a) and the band gaps (b) of g-C<sub>3</sub>N<sub>4</sub>, BiVO<sub>4</sub> and BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> materials.

<Figure>Fig. 6 Adsorption and photocatalytic property of BiVO<sub>4</sub> deposited g-C<sub>3</sub>N<sub>4</sub> materials towards the degradation of RhB (a) and PNP (b); 400 nm <  $\lambda$  < 780 nm. (c) is the 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> corresponding reactive constant towards the degradation of RhB. (d) are the UV-Vis absorption spectra of RhB solution as a function of irradiation time during the photocatalytic process over the 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>. Catalyst amount 100 mg;  $c_0 = 20$  mg L<sup>-1</sup>, 10 mg L<sup>-1</sup>; volume 100 mL. <Figure>Fig. 7 Recycling experiments over the 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> for RhB degradation of under visible-light irradiation. Catalyst amount 100 mg;  $c_0 = 20$  mg L<sup>-1</sup>; volume 100 mL; 400 nm <  $\lambda$  < 780 nm.

<Figure>Fig. 8 Room temperature PL spectra of g-C<sub>3</sub>N<sub>4</sub> and 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> under the excitation wavelength of 356 nm.

<Figure>Fig. 9 Photocurrent responses of g-C<sub>3</sub>N<sub>4</sub> and 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> electrodes in 0.01 mol L<sup>-1</sup> Na<sub>2</sub>SO<sub>4</sub> electrolyte solution under Xe irradiation. <Figure>Fig. 10 The effect of scavengers on catalytic activity of g-C<sub>3</sub>N<sub>4</sub> (a) and 10 wt.% BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> (b) towards the degradation of RhB. Catalyst amount 100 mg;  $c_0$ = 20 mg L<sup>-1</sup>; volume 100 mL; 400 nm <  $\lambda$  < 780 nm.

<Figure>Fig. 11 Proposed reaction scheme for photocatalytic process over BiVO<sub>4</sub> deposited g-C<sub>3</sub>N<sub>4</sub> composites under visible-light irradiation. TDENDOFDOCTD