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Nickel-catalyzed direct synthesis of dialkoxymethane ethers†
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Abstract. A simple and efficient method for the preparation of dialkoxymethane ethers (oxymethylene ethers)
from alcohols and paraformaldehyde in the presence of commercially available nickel(II) salt is described. The
reaction proceeds readily under neutral, solvent-free conditions using paraformaldehyde as a C1 source. The
present strategy has a broad substrate scope including aliphatic (both primary and secondary) and aromatic
alcohols and provides a benign method for the preparation of symmetrical dialkoxymethanes in good yields (up
to 89%).
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1. Introduction

Ethers constitute the most diverse family of organic
compounds and are ubiquitous in many natural prod-
ucts and pharmaceuticals.1 The extent to which they
can be utilized as an organic intermediate in contempo-
rary science depends on the selectivity and efficiency
of the processes for their preparation from simple
feedstock chemicals. Consequently, there are various
synthetic routes that have been documented to access
symmetrical as well as unsymmetrical ethers, rang-
ing from the classical Williamson ether synthesis2 to
recent transition-metal catalyzed cross-coupling reac-
tions employing alcohols.3

In recent years, the dialkoxymethane (oxymethylene
ether) has been gaining increasing interest because of
its advantageous properties as fuel additives for combus-
tion engines (e.g., dimethoxymethane, DMM).4 Further
various biologically significant compounds, for exam-
ple, Miloxacin (antibacterial agent)5 and Cephalotaxine
(antiviral and antitumor agent)6 contain the dialkoxy-
methanemotif. The dialkoxymethane and its derivatives
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have been used as a source for the synthesis of
plasticizers, and monomers for cross-linking agents.7

In addition, they have been used as an intermedi-
ate for the preparation of drug-related compounds
such as anti-HIV-1 drug (TNK-651),8 microbicidally
active drug (YML-220) for infected MT-4 cells,9 port-
manteau inhibitors against reverse transcriptase (RT),
and the inhibitor of HIV-1 Integrase (IN), etc.10,11

The use of dialkoxymethane as reagents for the N -
alkoxymethylation of secondary amides in the pres-
ence of Lewis acids12 and Brønsted acids13 has also
been reported. Given their importance, the develop-
ment of efficient, benign strategies for the synthesis of
dialkoxymethane is a central research area in synthetic
chemistry (Figure1).

The general strategy for the preparation of dialkoxy-
methanes involves the condensation reaction of
toxic formaldehyde with alcohols under acidic condi-
tions.9,14,15 Several methods including NaH/dibro
momethane,9 montmorillonite/dichloromethane in
NaOH/H2O mixture,14c Me3SiC1/Me2SO14a with
alcohol have been reported. The Cu-NHC-catalyzed
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Figure 1. Dialkoxymethane as intermediates in the synthesis of drug-related molecules.

preparation of dialkoxymethanes from dichloromethane
with alcohols has been reported by Zhan et al.14j A het-
erogeneous Kaolinite (a clay mineral of alumina and
silica) catalyzed preparation of dialkoxymethanes using
paraformaldehyde has also been reported; however, it
requires high temperature and a long reaction time.14e

Very recently, Klankermayer et al., demonstrated the
catalytic conversion of CO2 (20 bar) and H2 (60
bar) in the presence of alcohols into dialkoxymethane
ethers in a multistep reaction using a well-defined
ruthenium-triphos catalyst and aluminium triflate as a
Lewis acidic co-catalyst. The achieved turnover num-
bers were about 200 TONs for methanol and varied
from 50 to 120 TONs for the higher aliphatic alco-
hols.16 However, most of these methods suffer from
several disadvantages such as (i) the use of a stoi-
chiometric amount of hazardous halogenated reagents

resulting in copious waste, (ii) operate under acidic
or basic conditions and elevated reaction temperature
(∼120◦C), (iii) require longer reaction times, and (iv)
often take place in harmful organic solvents.14 Hence,
it would be appealing to develop a mild and environ-
mentally benign synthesis of dialkoxymethane ethers
under neutral conditions and to avoid the use of toxic
organic solvents. Here, we report a simple, efficient
method for the preparation of dialkoxymethanes from
alcohols and paraformaldehyde (which is cheap and
stable at ambient conditions as well as exhibits low-
toxicity; for selected examples of paraformaldehyde
used as a C-1 source),17 in the presence of a commer-
cially available nickel(II) salt. The reaction proceeds
readily under mild, neutral and solvent-free condi-
tions in a short period of reaction time. To the best
of our knowledge, there are no reports that describe
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Scheme 1. Various strategies for the preparation of dialkoxymethanes.

the nickel-catalyzed synthesis of dialkoxymethanes
(Scheme1).

2. Experimental

2.1 Materials and methods

All catalytic experiments were carried out using standard
Schlenk techniques. The reagents and solvents used were
chemically pure and analytical grade, and the solvents were
dried according to standard procedures. Alcohols were dis-
tilled under vacuum. Nickel salts (purchased from Sigma-
Aldrich) and paraformaldehyde were used without additional
purification. Column chromatography was performed with
SiO2 (Silicycle Siliaflash F60 (230-400 mesh)). 1H NMR
(200, 400 or 500 MHz),13C{1H} NMR (50 or 100 MHz)
spectra were recorded on the NMR spectrometer. Deuterated
chloroform was used as the solvent, and chemical shift values
(δ) are reported in parts per million relative to the residual
signals of this solvent [δ 7.26 for 1H (chloroform-d), δ 77.2
for13C{1H} (chloroform-d). Abbreviations used in the NMR
follow-up experiments are as follows: br, broad; s, singlet; d,
doublet; t, triplet; q, quartet; m, multiplet. GC analysis was
carried out using an HP-5 column (30 m, 0.25 mm, 0.25μm).
Mass spectrawere obtained on aGCMS-QP5000 instruments
with ionization voltages of 70 eV. High-resolution mass spec-
tra (HRMS) were obtained by fast atom bombardment (FAB)
using a double focusing magnetic sector mass spectrome-
ter and electron impact (EI) ionization technique (magnetic
sector-electric sector double focusing mass analyzer).

2.2 Synthesis of Ni-Octane thiolate

To 500 mg of nickel(II) acetylacetonate (or nickel(II)acetate)
taken in an eppendorf tube of 2 mL capacity, 900μL of
octanethiol was added and the tube was shaken vigorously.
The reaction mixture turned black instantaneously. The mix-
ture was washed thoroughly with ethanol, and the black
productwas air-dried at room temperature. Theobtainedblack

powder goes readily into organic solvents such as chloro-
form, toluene, CCl4, etc. The powder was characterized using
PXRD and TEM analysis and the data is consistent with the
literature compound.18

2.3 Synthesis of Ni 3S2 Sheets

Nickel octanethiolate powder sample was heated in a tube-
furnace equipped with Argon gas flowmaintaining a constant
temperature of 750◦C and at a constant gas flow rate of 2
mL/sec for 6 h. After heating for 6 h, the sample was cooled
to room temperature and the final product was collected and
characterized by PXRD and TEM (see Supporting Informa-
tion).

2.4 General procedure for the preparation of
dialkoxymethane ethers from alcohols

In an oven-dried screw cap reaction tube (15mL), alcohol (0.5
mmol), paraformaldehyde (1mmol) andNiBr2 (5mol%)were
added under a gentle stream of argon. The reaction mixture
was stirred at 80◦C in an oil bath for 2 h. After completion
of the reaction, the mixture was allowed to cool at room tem-
perature, and the reaction was subsequently quenched with
water (10 mL) followed by the extraction with ethyl acetate
(3× 10 mL). The organic layer was separated and dried over
anhydrous Na2SO4. Evaporation of the solvent under reduced
pressure gave the crude product, which was chromatographed
on silica gel using pet. ether and EtOAc (98:2) as an eluent to
afford the desired dialkoxymethanes.All the compoundswere
completely characterized, and the spectroscopic data with
copies of spectra are provided in the Supporting Information.

2.5 Homogeneity test

An alcohol (0.5 mmol), paraformaldehyde (1 mmol), NiBr2
(5 mol%), and one drop of mercury were taken in a round-
bottom flask and stirred at 80◦C temperature. After 2 h, the
reaction mixture was allowed to cool to room temperature.
The reaction products were analyzed with gas chromatogra-
phy using m-xylene as an internal standard, and the product
were confirmed by GC-MS.
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Table 1. Optimization condition for the synthesis of dialkoxymethanesa.

Entry Nickel catalyst Solvent Temp (◦C) Yield of 2a (%)b

1 Ni-Octane thiolate — 80◦C 41
2 Ni3S2 nano-sheet — 80◦C 14
3 NiBr2 — 80◦C 80 (71)c

4 NiBr2 + DPPE — 80◦C 24
5 NiBr2 + BPy — 80◦C 11
6 NiBr2 + Pyridine — 80◦C Trace
7 — — 80◦C n.d
8 NiCl2 — 80◦C 67b

9 Ni(acac)2 — 80◦C n.d
10 NiCp2 — 80◦C n.d
11 Ni(OAc)2 — 80◦C 23
12 Ni[PPh3]4 — 80◦C n.d
13 NiBr2 Toluene 80◦C n.d
14 NiBr2 Acetonitrile 80◦C Trace
15 NiBr2 THF 80◦C Trace
16 NiBr2 — rt n.d
17 NiBr2 — 50◦C 26
18 NiBr2 — 110◦C 67
19 NiBr2 + Hg — 80◦C 70

aReaction condition: Benzyl alcohol 1a (0.5 mmol), (HCHO)n (1.0 mmol), cat.[Ni] (5 mol%), heated at 80◦C in an oil bath
for 2 h under argon atm (entries 3–19).
bYields were determined by GC using m-xylene as an internal standard.
cIsolated yields. n.d not detected.

3. Results and Discussion

Nickel based catalysts have gained significant atten-
tion in sustainable chemical synthesis owing to the
Nickel abundance, economical and versatile reactiv-
ity.19 Optimization studies on the nickel-catalyzed direct
synthesis of dialkoxymethane ethers are summarized in
Table 1. Initially, the catalytic activity of Ni-Octane
thiolate was tested using benzyl alcohol (1a) as a
model substrate and paraformaldehyde as a C-1 source.
Thus, treatment of benzyl alcohol (0.5 mmol) with
paraformaldehyde (1 mmol) at 80◦C for 8 h with a cat-
alytic amount of Ni-Octane thiolate under solvent-free
conditions, resulted in 41% of bis(benzyloxy)methane
2a (Table 1, entry 1). Under identical conditions Ni3S2

nano-sheets (after pyrolysis of Ni-Octane thiolate at
750◦C) gave only 14% of the desired product (Table 1,
entry 2). Encouraged by these preliminary results, next
we have examined several nickel catalysts for this trans-
formation.Notably,withNiBr2 (5mol%), the reaction of
benzyl alcohol with paraformaldehyde at 80◦C in an oil
bath for 2 h resulted 71% isolated yield of 2a (Table 1,
entry 3). Next, the activity of in situ generated nickel
complexes (LnNi) was studied. In this regard, a series
of monodentate (PPh3 and (o-Tolyl)3P) and bidentate

ligands (phosphine and nitrogen-based ligands) were
tested using nickel(II) bromide as the catalyst precursor
(Table 1, entries 4–6). However, almost all of the lig-
ands we examined gave quite low catalytic activity with
less than 25% yield of the desired product 2a. Next, we
have investigated the impact of key reaction parameters
for the desired transformation. The effect of different
nickel catalyst precursors was also explored, and other
nickel(II) and nickel(0) catalysts showed less reactiv-
ity under regular conditions (Table 1, entries 8–12).
Using 2 mol% of NiBr2 under the regular conditions,
2a was obtained in 65% yield and no reaction was
observed in the absence of nickel(II) bromide (Table 1,
entry 7). The solvent dependency of the same reac-
tion was carried out (Table 1, entries 13–15). Notably,
an excess of paraformaldehyde inhibited this transfor-
mation. Thus, using 5 eq. of paraformaldehyde under
optimized reaction conditions gave only 21% of 2a. By
lowering the temperature, we obtained the product in
lower yield (Table 1, entries 16–18) and formation of 2a
was not observed at room temperature. An increase of
the reaction time did not increase the yield of the product
significantly. Indeed, themercury poisoning experiment
indicates the homogeneous nature of the present nickel
catalysis systems (Table 1, entry 19). Gratifyingly, these
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Table 2. Nickel-catalyzed synthesis of dialkoxymethanes: scope of alcoholsa.

aReaction condition: Alcohol 1 (0.5 mmol), (HCHO)n (1.0 mmol), NiBr2 (5 mol%), heated at 80◦C in an oil bath for 2 h;
isolated yields are given in the parenthesis.
bBased on GC analysis using m-xylene as an internal standard.
c2 mol% of NiBr2.

optimal conditions employed a readily available nickel
catalyst and paraformaldehyde as C1-source and pro-
ceeded readily at a moderate temperature under neutral
conditions with the generation of water as the sole by-
product. Indeed, the solvent-free conditionwas regarded
as the best for the cost and ecological benefits. This
representative transformation helps tomanifest the prac-
tical value that this method may offer for rapid and
reliable access of dialkoxymethanes under very mild,
eco-benign conditions.
With an optimized the catalytic system in hand

(Table 1), next, we have studied the versatility of
this new approach towards the synthesis of dialkoxy-
methanes. As shown in Table 2, the developed strategy
is general and compatible with various alcohols includ-
ing aliphatic (both primary and secondary) and aromatic
alcohols and provides a benign method for the prepara-
tion of symmetrical dialkoxymethanes in good yields
with a shorter reaction time. In general, benzyl alcohol
containing no substituents and electron-donating sub-
stituents were found to proceed with higher yields than
thosewith electron-withdrawing substituents (-NO2 and

–F) under optimized reaction conditions. The reason
would be that in presence of an electron-donating group
like methoxy at ortho and para positions increases
the electron density and thus facilitates the insertion
reaction with the nickel complex. Indeed, reactions
with various ortho-, meta-, and para-substituted ben-
zyl alcohols proceeded smoothly under our optimized
conditions and gave the desired product in moderate to
good yields. Aliphatic primary and alicyclic secondary
alcohols were also well tolerated for this transforma-
tion and gave the desired products in moderate yields
(product 2l in 55%, 2m in 49% and 2n in 51% isolated
yields).

4. Conclusions

In conclusion, a facile nickel-catalyzed synthesis of
dialkoxymethanes under neutral conditions is reported
using cheap, commercially available NiBr2. Employing
this readily available nickel catalyst andparaformaldehy-
de as C1-source, a variety of alcohols with wide
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substrate scope (aliphatic primary and secondary, and
aromatic alcohols) were efficiently converted into dialk-
oxymethanes in moderate to good yields (up to 89%)
under benign conditions. Solvent-free conditions, mod-
erate temperature, shorter reaction times, and economic
viability of the catalyst are the key features of the present
protocol.

Supplementary Information (SI)

Full characterization details, copies of NMR (1H and 13C
NMR) spectra, HRMS data for all the compounds are pre-
sented in Supplementary Information, which is available at
www.ias.ac.in/chemsci.
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