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An efficient and regioselective introduction method of 2-methylpyridines to the secondary position of
Baylis–Hillman adducts has been developed. A base treatment of 2-methylpyridinium salt of Baylis–Hill-
man bromide generated N-allylenamine intermediate which underwent a facile 3-aza-Cope rearrange-
ment under mild conditions to produce the product.

� 2011 Elsevier Ltd. All rights reserved.
Chemical transformations of Baylis–Hillman adducts have re-
ceived much attention during the last two decades. Various cyclic
and acyclic compounds have been prepared from Baylis–Hillman
adducts by a variety of chemical transformations.1 One of the use-
ful transformations of Baylis–Hillman adducts starts from the for-
mation of amine salts of Baylis–Hillman bromides.2 As shown in
Scheme 1, a DABCO salt of Baylis–Hillman bromide has been fre-
quently used for the introduction of a nucleophile at the secondary
position of a Baylis–Hillman adduct.2 Some nitrogen atom-contain-
ing heterocycles, such as pyridine can form the corresponding salts
with Baylis–Hillman bromide, and the salts were used as interme-
diates for the synthesis of more complex substances.3 As an exam-
ple, Basavaiah et al. reported a reaction between the Baylis–
Hillman bromide and pyridine in the presence of K2CO3 to afford
indolizine derivative via the consecutive salt formation and 1,5-
cyclization of in situ generated nitrogen ylide.3a Subsequently a
ll rights reserved.
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Scheme
similar approach was applied to the bromide of Baylis–Hillman ad-
ducts of isatin by Shanmugam et al.3b

During our continuous studies on chemical transformations of
Baylis–Hillman adducts, we were interested in the introduction
of a 2-pyridylmethyl moiety into the Baylis–Hillman adduct.4 The
synthesis was carried out previously via a sequential introduction
of allyl 2-pyridylacetate into Baylis–Hillman adduct, and a palla-
dium-catalyzed decarboxylative protonation protocol, as shown
in Scheme 2. However, both secondary and primary adducts, 3a
and 4a, were produced as a 1:1 mixture.4 In order to introduce a
2-pyridylmethyl moiety directly into the Baylis–Hillman adducts,
we examined the reaction of Baylis–Hillman bromide 1a and pico-
line (2a) instead of using allyl 2-pyridylacetate. At the outset of our
experiments, the reaction of 1a and 2a was performed in the pres-
ence of Pd(OAc)2/PPh3/Cs2CO3 in CH3CN (reflux, 2 h), based on the
recent palladium-catalyzed CAH functionalization of picoline
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Table 1
One-pot synthesis of pyridylmethyl derivativesa

1a 2a-h+ 3a-h
CH3CN

reflux, 1 h

K2CO3

reflux, 3 h

Ph
COOMe

N

3a (77)

Ph
COOMe

N

3b (82)

Ph
COOMe

N

3c (89)

Ph
COOMe

N

3d (73)

Ph
COOMe

N

3e (83)

Ph
COOMe

N

3f (80)b

Me

Ph
COOMe

N

3g (85)b

Ph

Ph
COOMe

N

3h (69)c

a Conditions: (i) 1a (1.0 equiv), 2a–h (2.0 equiv), CH3CN, reflux,
1 h; (ii) K2CO3 (2.0 equiv), reflux, 3 h.
b Single isomer (syn/anti was not determined) was formed.
c Salt formation (step i) required 4 h.
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derivatives.5 A secondary adduct 3a was formed as a major product
(62%) along with a trace amount of 4a (<5%). Very interestingly, the
reaction of 1a and 2a (Cs2CO3, CH3CN, reflux, 3 h) showed the same
results (64% of 3a and 4% of 4a) without a palladium catalyst. Thus,
we examined regioselective introduction of 2-pyridylmethyl moi-
ety at the secondary position of a Baylis–Hillman adduct to obtain
3a (Scheme 2).

A few trials revealed that formation of N-cinnamylpicolinium
salt I was crucial for the clean reaction and high yield of 3a before
the treatment with a base, as shown in Scheme 3. As noted above
4a was formed together, albeit in low yield, when we ran the reac-
tion of 1a and 2a in the presence of a base from the starting point
of the reaction. In addition, the use of K2CO3 was sufficient as a
base. Under the optimized conditions, formation of the primary ad-
duct 4a was not observed in any trace amount and the yield of 3a
increased to 77%.6 Based on the above results, the reaction mecha-
nism for the formation of 3a could be proposed, as also shown in
Scheme 3. Refluxing a mixture of 1a and 2a (1a:2a = 1:2) in CH3CN
for 1 h generated N-cinnamylpicolinium salt I. Treatment of I with
a base afforded a resonance-stabilized enamine intermediate II.
Subsequent 3-aza-Cope rearrangement7,8 of this enamine afforded
the product 3a. In the reaction, we did not observe the formation of
indolizine derivative 5 that could be produced via the nitrogen
ylide intermediate III.3a

Encouraged by the results, we carried out the reactions of 1a,
as a representative example, with various pyridine derivatives,
2,5-lutidine (2b), 2,3-lutidine (2c), 5-ethyl-2-picoline (2d), 2,3,5-
trimethylpyridine (2e), 2-ethylpyridine (2f), 2-benzylpyridine
(2g) and 1-methylisoquinoline (2h). The results are summarized
in Table 1. The corresponding pyridinium salts were formed quan-
titatively by refluxing the mixture of 1a and 2a–h in CH3CN for 1–
4 h. After the formation of salt, addition of K2CO3 and maintaining
the reaction mixture under refluxing conditions for 3 h furnished
the desired products 3b–h in good yields (69–89%).



Table 2
One-pot synthesis of pyridylmethyl derivativesa

2a-d+ 3i-l
1. CH3CN, reflux, 1 h

Ph
CN 1b

Br
2. K2CO3, reflux, 3 h

Ph
CN

N

3i (68)

Ph
CN

N
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Ph
CN

N

3k (78)

Ph
CN

N

3l (70)

a Conditions: (i) 1b (1.0 equiv), 2a–d (2.0 equiv), CH3CN,
reflux, 1 h; (ii) K2CO3 (2.0 equiv), reflux, 3 h.
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It is interesting to note that 3f and 3g were obtained as single
isomers although we did not confirm their syn/anti stereochemis-
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try. Isoquinoline derivative 3h was obtained in a moderate yield
(69%) although somewhat longer reaction time (4 h) was required
for the salt formation with 2h, presumably due to its lower
nucleophilicity than the other 2-methylpyridine derivatives 2a–g.
However, the reactions of 1a with 2-methylquinoline, 8-methyl-
quinoline and 2,6-lutidine failed due to their sluggish salt
formations. The reaction of a Baylis–Hillman bromide 1b, bearing
a nitrile moiety, showed the same reactivity with that of 1a. As
summarized in Table 2, we performed the reactions with four
pyridine derivatives 2a–d and obtained 3i–l in good yields
(68–78%).

The reaction of 1a and 4-picoline (2i) produced the same type
product 3m in 56% yield, as shown in Scheme 4. However, the reac-
tion mechanism for the formation of 3m is thought to be some-
what different from that of 3a–l. Deprotonation of N-
cinnamylpicolinium salt IV at the 4-methyl group produced dien-
amine intermediate V. Nucleophilic substitution reaction of IV
with dienamine V generated VI, and the following nucleophilic dis-
placement of VI with 2i afforded the product 3m along with IV.

Similarly, the reaction of 1a and 2,4-lutidine (2j) produced two
products, 3n and 6, as shown in Scheme 5. Compound 3n was
formed via salt formation, deprotonation at the 2-methyl group,
and subsequent aza-Cope rearrangement as in the cases of 3a–l.
The formation of compound 6 (as a 1:1 diastereomeric mixture)
could be explained via salt formation, deprotonation at the 4-
methyl group, nucleophilic substitution reaction as in Scheme 4
to form VII, deprotonation at the 2-methyl group, and the final
aza-Cope rearrangement.

The reactions of picoline (2a) failed completely under the same
conditions when we use cinnamyl bromide or allyl bromide in-
stead of Baylis–Hillman bromide. The results implied that the
cyclization of II leading to 3a might be a stepwise Michael-type
addition and elimination of a pyridyl moiety (an intramolecular
SN20 type reaction) of the former canonical structure instead of
aza-Cope rearrangement of the latter canonical structure,8 as
shown in Scheme 6. However, further studies must be needed for
a detail reaction mechanism.

In summary, a base treatment of various 2-methylpyridinium
salts of Baylis–Hillman bromides generated N-allylenamine inter-
mediates. The intermediates underwent a facile 3-aza-Cope rear-
rangement under mild conditions to produce 2-pyridylmethyl-
substituted Baylis–Hillman adducts, regioselectively.
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