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man bromide generated N-allylenamine intermediate which underwent a facile 3-aza-Cope rearrange-
ment under mild conditions to produce the product.
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Chemical transformations of Baylis—Hillman adducts have re-
ceived much attention during the last two decades. Various cyclic
and acyclic compounds have been prepared from Baylis—Hillman
adducts by a variety of chemical transformations.! One of the use-
ful transformations of Baylis—Hillman adducts starts from the for-
mation of amine salts of Baylis-Hillman bromides.? As shown in
Scheme 1, a DABCO salt of Baylis-Hillman bromide has been fre-
quently used for the introduction of a nucleophile at the secondary
position of a Baylis-Hillman adduct.2 Some nitrogen atom-contain-
ing heterocycles, such as pyridine can form the corresponding salts
with Baylis-Hillman bromide, and the salts were used as interme-
diates for the synthesis of more complex substances.> As an exam-
ple, Basavaiah et al. reported a reaction between the Baylis—
Hillman bromide and pyridine in the presence of K,CO3 to afford
indolizine derivative via the consecutive salt formation and 1,5-
cyclization of in situ generated nitrogen ylide.>* Subsequently a

similar approach was applied to the bromide of Baylis-Hillman ad-
ducts of isatin by Shanmugam et al.3?

During our continuous studies on chemical transformations of
Baylis-Hillman adducts, we were interested in the introduction
of a 2-pyridylmethyl moiety into the Baylis-Hillman adduct.* The
synthesis was carried out previously via a sequential introduction
of allyl 2-pyridylacetate into Baylis-Hillman adduct, and a palla-
dium-catalyzed decarboxylative protonation protocol, as shown
in Scheme 2. However, both secondary and primary adducts, 3a
and 4a, were produced as a 1:1 mixture. In order to introduce a
2-pyridylmethyl moiety directly into the Baylis-Hillman adducts,
we examined the reaction of Baylis-Hillman bromide 1a and pico-
line (2a) instead of using allyl 2-pyridylacetate. At the outset of our
experiments, the reaction of 1a and 2a was performed in the pres-
ence of Pd(OAc),/PPh3/Cs,CO3 in CH5CN (reflux, 2 h), based on the
recent palladium-catalyzed C—H functionalization of picoline
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derivatives.> A secondary adduct 3a was formed as a major product

(62%)_ along with a trace amount of 4a (<5%). Very interestingly, the B?ll;{;;t synthesis of pyridylmethyl derivatives®
reaction of 1a and 2a (Cs,COs3, CH5CN, reflux, 3 h) showed the same
results (64% of 3a and 4% of 4a) without a palladium catalyst. Thus, 1a + 2ah CH5ON K2COs 3a-h
we examined regioselective introduction of 2-pyridylmethyl moi- reflux, 1 h reflux, 3 h
ety at the secondary position of a Baylis—Hillman adduct to obtain = =
3a (Scheme 2). N | N |
A few trials revealed that formation of N-cinnamylpicolinium N N
salt I was crucial for the clean reaction and high yield of 3a before Ph Ph
the treatment with a base, as shown in Scheme 3. As noted above COOMe COOMe
4a was formed together, albeit in low yield, when we ran the reac- 3a (77) 3b (82)
tion of 1a and 2a in the presence of a base from the starting point 7 7
of the reaction. In addition, the use of K,COs was sufficient as a SN | Sy |
base. Under the optimized conditions, formation of the primary ad-
duct 4a was not observed in any trace amount and the yield of 3a Ph Ph
increased to 77%.° Based on the above results, the reaction mecha- COOMe COOMe
nism for the formation of 3a could be proposed, as also shown in 3c (89) 3d (73)
Scheme 3. Refluxing a mixture of 1a and 2a (1a:2a = 1:2) in CH3CN Z | = |
for 1 h generated N-cinnamylpicolinium salt I. Treatment of I with SN Me SN
a base afforded a resonance-stabilized enamine intermediate II.
Subsequent 3-aza-Cope rearrangement’-® of this enamine afforded Ph Ph
the product 3a. In the reaction, we did not observe the formation of COOMe COOMe
indolizine derivative 5 that could be produced via the nitrogen 3e (83) 31 (80)°
ylide intermediate IIL33 Z |
Encouraged by the results, we carried out the reactions of 1a, Ph SN p
as a representative example, with various pyridine derivatives, ~ |
2,5-lutidine (2b), 2,3-lutidine (2c), 5-ethyl-2-picoline (2d), 2,3,5- Ph N
trimethylpyridine (2e), 2-ethylpyridine (2f), 2-benzylpyridine COCiMe Ph
(2g) and 1-methylisoquinoline (2h). The results are summarized 39 (85) COOMe
in Table 1. The corresponding pyridinium salts were formed quan- 3h (69)°

titatively by refluxing the mixture of 1a and 2a-h in CH5CN for 1- R " - - -

4 h. After the formation of salt, addition of K,CO3 and maintainin, Conditions: (i) 1a (1.0 equiv). 2a-h (2.0 equiv), CHyCN, reflux,
‘ . ) » adg KalUs mning 1h; (ii) K,CO5 (2.0 equiv), reflux, 3 h.

the reaction mixture under refluxing conditions for 3 h furnished b Single isomer (syn/anti was not determined) was formed.

the desired products 3b-h in good yields (69-89%). ¢ Salt formation (step i) required 4 h.
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Table 2
One-pot synthesis of pyridylmethyl derivatives®
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@ Conditions: (i) 1b (1.0 equiv), 2a-d (2.0 equiv), CH5CN,
reflux, 1 h; (ii) K,CO3 (2.0 equiv), reflux, 3 h.
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It is interesting to note that 3f and 3g were obtained as single
isomers although we did not confirm their syn/anti stereochemis-
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try. Isoquinoline derivative 3h was obtained in a moderate yield
(69%) although somewhat longer reaction time (4 h) was required
for the salt formation with 2h, presumably due to its lower
nucleophilicity than the other 2-methylpyridine derivatives 2a-g.
However, the reactions of 1a with 2-methylquinoline, 8-methyl-
quinoline and 2,6-lutidine failed due to their sluggish salt
formations. The reaction of a Baylis-Hillman bromide 1b, bearing
a nitrile moiety, showed the same reactivity with that of 1a. As
summarized in Table 2, we performed the reactions with four
pyridine derivatives 2a-d and obtained 3i-1 in good yields
(68-78%).

The reaction of 1a and 4-picoline (2i) produced the same type
product 3m in 56% yield, as shown in Scheme 4. However, the reac-
tion mechanism for the formation of 3m is thought to be some-
what different from that of 3a-l1. Deprotonation of N-
cinnamylpicolinium salt IV at the 4-methyl group produced dien-
amine intermediate V. Nucleophilic substitution reaction of IV
with dienamine V generated VI, and the following nucleophilic dis-
placement of VI with 2i afforded the product 3m along with IV.

Similarly, the reaction of 1a and 2,4-lutidine (2j) produced two
products, 3n and 6, as shown in Scheme 5. Compound 3n was
formed via salt formation, deprotonation at the 2-methyl group,
and subsequent aza-Cope rearrangement as in the cases of 3a-l.
The formation of compound 6 (as a 1:1 diastereomeric mixture)
could be explained via salt formation, deprotonation at the 4-
methyl group, nucleophilic substitution reaction as in Scheme 4
to form VII, deprotonation at the 2-methyl group, and the final
aza-Cope rearrangement.

The reactions of picoline (2a) failed completely under the same
conditions when we use cinnamyl bromide or allyl bromide in-
stead of Baylis-Hillman bromide. The results implied that the
cyclization of II leading to 3a might be a stepwise Michael-type
addition and elimination of a pyridyl moiety (an intramolecular
Sn2' type reaction) of the former canonical structure instead of
aza-Cope rearrangement of the latter canonical structure® as
shown in Scheme 6. However, further studies must be needed for
a detail reaction mechanism.

In summary, a base treatment of various 2-methylpyridinium
salts of Baylis-Hillman bromides generated N-allylenamine inter-
mediates. The intermediates underwent a facile 3-aza-Cope rear-
rangement under mild conditions to produce 2-pyridylmethyl-
substituted Baylis—Hillman adducts, regioselectively.
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