SYNTHESIS OF SOME MONODEOXYFLUORINATED METHYL AND 4-NITROPHENYL α -D-MANNOBIOSIDES AND A RELATED 4-NITRO-PHENYL α -D-MANNOTRIOSIDE*

SHAHEER H. KHAN[†], RAKESH K. JAIN, SAEED A. ABBAS[‡], AND KHUSHI L. MATTA**

Department of Gynecologic Oncology, Roswell Park Memorial Institute, Elm and Carlton Streets, Buffalo, New York 14263 (U.S.A.)

(Received June 1st, 1989; accepted for publication, August 9th, 1989)

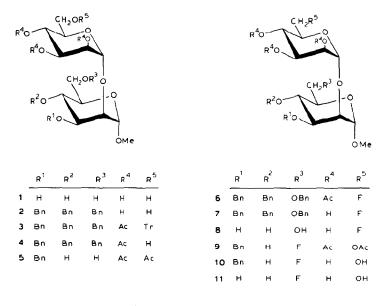
ABSTRACT

Treatment of methyl 3,4,6-tri-O-benzyl-2-O-(2,3,4-tri-O-acetyl- α -D-mannopyranosyl)- α -D-mannopyranoside with N, N-diethylaminosulfur trifluoride (Et_2NSF_3) , followed by O-deacetylation and catalytic hydrogenolysis, afforded methyl 2-O-(6-deoxy-6-fluoro- α -D-mannopyranosyl)- α -D-mannopyranoside (8). Methyl 6-deoxy-6-fluoro-2-O- α -D-mannopyranosyl- α -D-mannopyranoside (11) was similarly obtained from methyl 3-O-benzyl-2-O-(2,3,4,6-tetra-O-acetyl- α -Dmannopyranosyl- α -D-mannopyranoside. 1,2,3,4-Tetra-O-acetyl-6-deoxy-6-fluoro- β -D-mannopyranose (13), used for the synthesis of the 4-nitrophenyl analogs of 8 and 11, as well as their 3-O-linked isomers, was obtained by treatment of 1,2,3,4tetra-O-acetyl-B-D-mannopyranose with Et₂NSF₃. Treatment of 13 with 4-nitrophenol in the presence of tin(IV) chloride, followed by sequential O-deacetylation, isopropylidenation, acetylation, and cleavage of the acetal group, afforded 4-nitrophenyl 4-O-acetyl-6-deoxy-6-fluoro- α -D-mannopyranoside (18). Treatment of 13 with HBr in glacial acetic acid furnished the 6-deoxy-6-fluoro bromide 19. Glycosylation of diol 18 with 20 gave 4-nitrophenyl 4-O-acetyl-6-deoxy-6-fluoro-3-O- (21) and -2-O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl)- α -D-mannopyranoside (23) in the ratio of $\sim 2:1$, together with a small proportion of a branched trisaccharide. 4-Nitrophenyl 4,6-di-O-acetyl- α -D-mannopyranoside was similarly glycosylated with bromide 19 to give 4-nitrophenyl 4,6-di-O-acetyl-3-O- and -2-O-(2,3,4-tri-Oacetyl-6-deoxy-6-fluoro- α -D-mannopyranosyl)- α -D-mannopyranoside. The various di- and tri-saccharides were O-deacetylated by Zemplén transesterification.

^{*}Synthetic Studies in Carbohydrates, Part LXVI. For Part LXV, see ref. 1. Presented, in part, at the Seventh Annual Chemistry Graduate Students' Symposium, SUNY at Buffalo, NY, May 24–25, 1989. This investigation was supported by Grant No. GM-31425 from the National Institute of General Medical Sciences and, in part, by CA-35329 from the National Cancer Institute, U.S. Public Health Services.

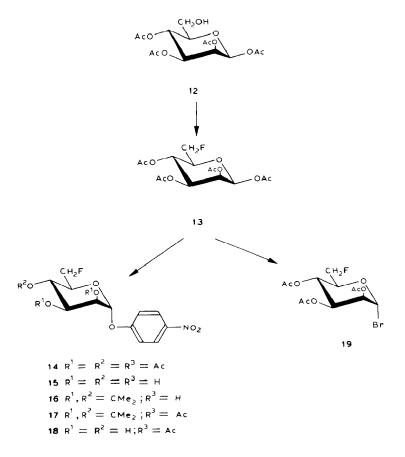
[†]Predoctoral Research Fellow.

^{*}Present address: Glycomed Inc., 860 Atlantic Avenue, Alameda, California 94501 (U.S.A.). **To whom correspondence should be addressed.


INTRODUCTION

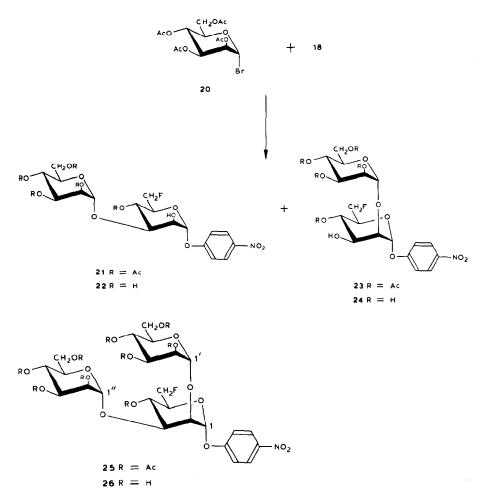
D-Mannose 6-phosphate is now generally considered to be an essential part of a recognition marker involved in the targeting of the newly synthesized lysosomal enzymes to lysosomes². Thus, in our study of lysosomal-enzyme targeting, we³ explored the use of various D-mannobiosides as acceptor-substrate for GlcNAc-*P*transferase. Of all the mannobiosides studied, methyl 2-*O*- α -D-mannopyranosyl- α -D-mannopyranoside (1) was found to be the preferred acceptor for this enzyme. However, it was of interest to establish the site of phosphorylation in 1. To this end, we employed two monodeoxyfluorinated analogs of 1, and showed that phosphorylation occurs at the terminal D-mannopyranosyl groups⁴. In that communication, we briefly described the synthesis of the two disaccharides, methyl 2-*O*-(6deoxy-6-fluoro- α -D-mannopyranosyl)- α -D-mannopyranoside (8) and methyl 6deoxy-6-fluoro-2-*O*- α -D-mannopyranosyl- α -D-mannopyranoside (11). We describe herein in more detail the synthesis of these two disaccharides and also that of their 4-nitrophenyl counterparts, their O-3-linked isomers, as well as a related 2,3-substituted trisaccharide.

By analogy to recent studies on amyloglucosidase (EC. 3.2.1.3, AMP) inhibitors⁵, it is possible that such compounds may also prove useful as inhibitors for the α -D-mannosidases that are involved in the processing of N-glycosyl-linked glycoproteins. The implication of this on studies related to the HIV-envelope glycoproteins cannot be overlooked⁶.


RESULTS AND DISCUSSION

of methyl 3,4,6-tri-O-benzyl-2-O- α -D-mannopyranosyl- α -D-Treatment mannopyranoside³ (2) with chlorotriphenylmethane, followed by acetylation and chromatography, afforded amorphous methyl 3,4,6-tri-O-benzyl-2-O-(2,3,4-tri-Oacetyl-6-O-triphenylmethyl- α -D-mannopyranosyl)- α -D-mannopyranoside (3) in 82% yield, the ¹H-n.m.r. spectrum of which was consistent with the structure assigned. Hydrolysis of the triphenylmethyl group of 3 with hot, 80% aqueous acetic acid gave methyl 3,4,6-tri-O-benzyl-2-O-(2,3,4-tri-O-acetyl-\alpha-D-mannopyranosyl)- α -D-mannopyranoside (4) in 66% yield. Treatment of 4 with N, N-dicthylaminosulfur trifluoride (Et₂NSF₃) according to literature procedure⁷, followed by purification of the crude product by chromatography, provided methyl 3,4,6-tri-O-benzyl-2-O-(2,3,4-tri-O-acetyl-6-deoxy-6-fluoro- α -D-mannopyranosyl)- α -Dmannopyranoside (6) in 67% yield. O-Deacetylation of 6 with 2:1:1 (v/v) methanol-triethylamine-water gave, in 93% yield, the benzylated disaccharide 7. which was hydrogenolyzed to furnish the disaccharide methyl 2-O-(6-deoxy-6fluoro- α -D-mannopyranosyl)- α -D-mannopyranoside (8). The ¹⁹F-n.m.r. spectrum of 8 was consistent with the structure expected: doublets of triplets were observed at ϕ -233.5, with spacings of 47.3 and 26.7 Hz, attributable to the coupling of F-6 with H-6 and H-5, respectively.

For the synthesis of methyl 6-deoxy-6-fluoro-2-O- α -D-mannopyranosyl- α -D-mannopyranoside (11), methyl 3-O-benzyl-2-O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl)- α -D-mannopyranoside⁸ (5) was treated with Et₂NSF₃, as described for 4 (to give 6), to afford after chromatography the 6-monodeoxyfluorinated derivative 9, which was O-deacetylated to yield amorphous methyl 3-O-benzyl-6-deoxy-6-fluoro-2-O- α -D-mannopyranosyl- α -D-mannopyranosyl- α -D-mannopyranosyl- α -D-mannopyranoside (10). Hydrogenolysis of the benzyl groups of 10 furnished the desired disaccharide 11, the ¹⁹F-n.m.r. spectrum of which was in accord with the structure proposed.


For the synthesis of the isomeric disaccharides 22 and 24, or 29 and 31, a diol system such as 18 or its nonfluorinated counterpart 27 can serve as a precursor, provided that the pairs of isomeric disaccharides are readily separable. This approach entailed the preparation of the glycosyl acceptor, 4-nitrophenyl 4-O-acetyl-6-deoxy-6-fluoro- α -D-mannopyranoside (18), and the glycosyl donor, 2,3,4-tri-Oacetyl-6-deoxy-6-fluoro- α -D-mannopyranosyl bromide (19). Both 18 and 19 were readily obtained from a common precursor, namely, 1,2,3,4-tetra-O-acetyl-6deoxy-6-fluoro- β -D-mannopyranose⁹ (13), obtained by treatment of the known¹⁰ 1,2,3,4-tetra-O-acetyl- β -D-mannopyranose (12) with N,N-diethylaminosulfur trifluoride (Et₂NSF₃) in Diglyme. Treatment of 13 with 4-nitrophenol in boiling dichloromethane in the presence of tin(IV) chloride afforded, in 60% yield, crystalline 14. It was O-deacetylated with Amberlyst A-26 (OH⁻) in methanol¹¹, and then converted into a 2.3-O-isopropylidene acetal 16 by reaction with 2,2-dimethoxypropane-acetone in the presence of 4-toluenesulfonic acid. Acetylation of 16, followed by cleavage of the 2,3-O-acetal group with aqueous trifluoroacetic acid in chloroform, then gave the desired 18. For the preparation of 19, compound 13 was treated, in the cold, with 31% hydrobromic acid in glacial acetic acid in dichloromethane-acetic anhydride. Bromide 19 was obtained in 86% yield as an amorphous

solid. Its ¹H-n.m.r. spectrum exhibited a low-field (δ 6.33) one-proton doublet with a small (~1 Hz) spacing, suggesting that it existed almost exclusively as the α anomer. Its ¹⁹F-n.m.r. spectrum contained doublets of triplet at ϕ -230 (J ~48.8 and 25.5 Hz), in agreement with the presence of a fluorine atom at C-6.

When diol 18 was treated with 2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl bromide (20) in acetonitrile and in the presence of mercury(II) cyanide-mercury(II) bromide, substantial diglycosylation occurred; trisaccharide 25, and disaccharides 21 and 23 were obtained in 19, 23, and 4.5% yields, respectively. However, when glycosylation of diol 18 was conducted in warm 1:1 benzene-nitromethane as solvent, the disaccharides 21 and 23 were obtained in a ratio of 2:1, and very little diglycosylation occurred. Crystalline 21, as well as amorphous 23 and 25, were all analytically pure, and had ¹H-n.m.r. spectra in support of their expected structures (see Experimental section). O-Deacetylation of 21, 23, and 25 furnished the disaccharides 22, 24, and trisaccharide 26, in 68, 73, and 52% yield, respectively, the ¹³C- and ¹⁹F-n.m.r. spectra of which were consistent with the structures assigned.

Glycosylation of 4-nitrophenyl 4,6-di-O-acetyl- α -D-mannopyranoside¹² (27) with bromide 19 in warm 1:1 benzene–nitromethane in the presence of mercury(II)

cyanide-mercury(II) bromide afforded the $(1\rightarrow 3)$ -linked disaccharide 28, and the $(1\rightarrow 2)$ -linked disaccharide 30 in 28.5 and 11.4% yield, respectively; very little diglycosylation occurred (t.l.c.). However, when acetonitrile was used as solvent, the overall yield of the isomeric disaccharides was substantially decreased. The ratio (5:1) of the two isomeric disaccharides 28 and 30 was similar to that observed for the products of the analogous reaction of 20 and 18 (to give 21 and 23).

O-Deacetylation of **28** and **30** in a manner analogous to that described for **21** (to give **22**) then furnished the desired disaccharides, 4-nitrophenyl 3-*O*- (**29**) and 2-*O*-(6-deoxy-6-fluoro- α -D-mannopyranosyl)- α -D-mannopyranoside (**31**), in 68 and 58% yield, respectively. The ¹⁹F- and ¹³C-n.m.r. spectra of both compounds were consistent with the structures assigned (see Experimental section and Table I).

¹³C-N.m.r. assignments. — The ¹³C-n.m.r. resonances for the methyl α -D-mannobiosides 8 and 11 were assigned by comparing their spectra with each other and with that of methyl 2-O- α -D-mannopyranosyl- α -D-mannopyranoside³ (1) (see

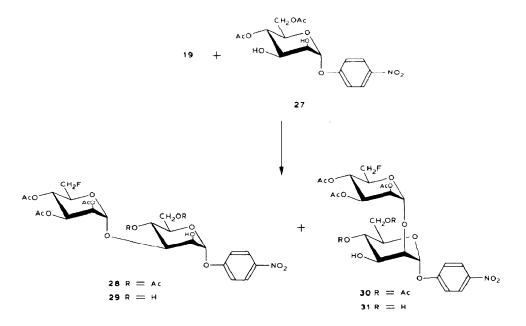


Table I). In the ¹³C-n.m.r. spectrum of **8**, the signals for C-1 and C-1' were observed at δ 100.80 and 103.73, whereas their counterparts in the spectrum of **11** occurred at δ 101.08 and 103.69, in agreement with α -D configurations at all of the anomeric centers. The signal for C-6' in the ¹³C-n.m.r. spectrum of **8**, and that for C-6 in the spectrum of **11** were observed at δ 83.97 and 83.72, respectively, thereby showing noticeable downfield shifts by comparison to their counterparts in the spectrum of the parent disaccharide **1**. Both signals resonated as doublets ($J \sim 167.5$ Hz) because of substitution with fluorine atoms. The resonances for C-4' (δ 66.93) and C-5' (δ 73.21) in the ¹³C-n.m.r. spectrum of **8**, and for C-4 (δ 66.98) and C-5 (δ 72.65) in the spectrum of **11** were all shifted slightly upfield (0.75–0.89 p.p.m.), and resonated as doublets with spacings of 7.2–17.4 Hz, also because of the presence of fluorine atoms at C-6 and C-6'.

In the case of the disaccharides 22, 24, 29, and 31, and the trisaccharide 26, the ¹³C-n.m.r. assignments were made by comparing their spectra with each other and with those of 4-nitrophenyl 6-deoxy-6-fluoro- α -D-mannopyranoside (15) (see Table I) and the parent disaccharides 4-nitrophenyl 2-O- and 3-O- α -D-mannopyranosyl- α -D-mannopyranoside¹³. Similar trends were observed for the effect of substitution on the chemical shifts of the various carbon resonances. Thus, in the ¹³C-n.m.r. spectra of 22, 24, 26, 29, and 31, the resonances for C-1 were in the range of δ 96.42–98.38, in agreement with an α -D configuration for C-1 bearing a 4-nitrophenyl group. The resonances for C-1' of 22, 24, 26, 29, and 31, and for C-1" of 26 were all in the range of δ 102.22–102.80, in agreement with an α -D configuration at the interglycosidic linkages. The occurrence at low field of the signals attributable to C-3 (δ 77.40) of 22, C-2 (δ 77.50) of 24, C-2 and C-3 (δ 76.33 and

TABLE I

Residue or group	Compd.	C-1	C-2	C-3	C-4	C-5	C-6
α-D-ManpOMe	1	100.1	79.3	70.8	67.8	73.4	61.9
α -D-Man p -(1 \rightarrow 2)		103.0	71.7	71.7	67.8	74.1	61.8
α-D-ManpOMe	8	100.80	79.97	71.53	68.24	74.01	62.22
6-F- α -D-Man p -(1 \rightarrow 2)		103.73	71.53	71.17	66.93	73.21	83.97
					(7.2)	(17.4)	(167.4)
6-F-α-D-ManpOMe	11	101.08	79.58	71.32	66.98	72.65	83.72
					(7.5)	(17.4)	(167.5)
α -D-Man p -(1 \rightarrow 2)		103.69	71.46	71.67	68.14	74.65	62.36
$6-F-\alpha-D-ManpOC_6H_4NO_2-4$	15	98.49	70.39	69.57	75.17	73.40	82.41
					(6.8)	(17.3)	(169.8)
6-F-α-D-ManpOC ₆ H ₄ NO ₂ -4	22	98.38	68.70	77.40	64.03	73.35	82.08
					(6.9)	(17.5)	(169.3)
α -D-Manp-(1 \rightarrow 3)		102.22	70.20	70.73	67.12	73.88	61.15
6-F- α -D-ManpOC ₆ H ₄ NO ₂ -4	24	96.59	77.50	69.51	65.17	73.04	82.10
					(6.2)	(17.2)	(170.0)
α -D-Manp-(1 \rightarrow 2)		102.80	70.67	69.98	67.11	74.48	61.42 [´]
6-F- α -D-ManpOC ₆ H ₄ NO ₂ -4	26	96.42	76.33	77.54	64.51	73.15	82.04
					(7.6)	(17.5)	(170.6)
α -D-Manp-(1 \rightarrow 2)		102.75	70.36	70.89	67.12	74.57	61.39 [°]
α -D-Manp-(1 \rightarrow 3)		102.56	70.81	70.20	67.12	74.76	61.56
α -D-ManpOC ₆ H ₄ NO ₂ -4	29	98.59	70.49	77.83	65.40	75.52	60.67
6-F- α -D-Manp- $(1\rightarrow 3)$		103.46	70.06	70.06	65.61	71.91	82.89
					(5.0)	(17.4)	(169.0)
α -D-Manp-OC ₆ H ₄ NO ₂ -4	31	97.13	76.83	69.83	66.66	75.45	60.84 [´]
6-F- α -D-Man p - $(1\rightarrow 2)^2$		102.33	70.48	69.83	65.52	72.24	83.21
					(6.1)	(15.8)	(169.2)

^aAt 100.6 MHz for solutions in $({}^{2}H_{3})Me_{2}SO$ with Me₄Si as the internal standard; except for compounds **1**, **8**, and **11**, which were recorded at 25.2 MHz and the solvent was D₂O with Me₄Si as the external standard. All spectra were recorded at ~25°, and the aromatic and OMe resonances are not shown. ^bIn hertz in parentheses.

77.54, respectively) of **26**, C-3 (δ 77.83) of **29**, and C-2 (δ 76.83) of **31** was a clear indication that these carbon atoms were sites of glycosylation. In the ¹³C-n.m.r. spectra of **22**, **24**, and **26**, the resonance for C-6 was observed at low field (δ 82) with spacings of ~170 Hz because of substitution with a fluorine atom at this position. A similar situation was also observed for C-6' of **29** and **31**. Similarly, the signals for both C-5 and C-4 of **22**, **24**, and **26** occurred as doublets with spacings of 17.2–17.5 Hz for the former, and 6.2–7.6 Hz for the latter, and an exactly analogous picture was also observed for C-5' and C-4' of **29** and **31**.

EXPERIMENTAL

General methods. — Melting points were determined with a Fisher-Johns apparatus and are uncorrected. Optical rotations were measured at $\sim 25^{\circ}$ with a Perkin-Elmer 241 polarimeter. N.m.r. spectra were recorded at $\sim 250^{\circ}$; ¹H-n.m.r.

spectra with a Varian EM-390 instrument operating at 90 MHz; ¹⁹F-n.m.r. spectra either with a Varian EM 390, or with a Varian XL-100, or a Bruker AM-400 instrument, at 84.7, 94.1, and 376.4 MHz, respectively; and ¹³C-n.m.r. spectra with a Varian XL-100 or a Bruker AM-400 instrument at 25.2 and 100.6 MHz, respectively. The chemical shifts (δ and ϕ) are reported downfield from those of Me₄Si and CFCl₃, respectively.

T.1.c. was conducted on aluminum sheets, precoated with 0.2-mm layers of Silica Gel 60F-25 (E. Merck, Darmstadt, Germany); the components were located either by exposure to u.v. light or by spraying with 5% H₂SO₄ in ethanol (or both) and heating. Preparative t.1.c. was conducted on 20×20 cm glass sheets, precoated with 1-mm layers of silica gel (Analtech, New York, U.S.A.), and applying u.v. detection. Silica gel used for column chromatography was Baker Analyzed (60–200 mesh). All proportions of solvents are v/v. Unless otherwise indicated, the following solvent systems were used for chromatography: (A) 13:6:1 chloroformmethanol-water, (B) 9:1 chloroform-methanol, and (C) 4:1 chloroform-acetone. Solutions in organic solvents were dried with anhydrous Na₂SO₄. Pyridine and benzene were dried over KOH and Na, respectively. Dichloromethane was dried over 4A molecular sieves. Nitromethane and acetonitrile were distilled from P₂O₅ immediately before use. Elemental analyses were performed by Robertson Laboratory, 29 Samson Ave., Madison, New Jersey 07940.

Methyl 3,4,6-tri-O-benzyl-2-O-(2,3,4-tri-O-acetyl-6-O-triphenylmethyl- α -D-mannopyranosyl)- α -D-mannopyranoside (3). — A mixture of methyl 3,4,6-tri-O-benzyl-2-O- α -D-mannopyranosyl- α -D-mannopyranoside³ (2; 3 g) and chloro-triphenylmethane (6 g) in pyridine (100 mL) was stirred overnight at 60°. Acetic anhydride (25 mL) was then added and the stirring was continued for 2 h at the same temperature. The mixture was cooled to room temperature and poured, with stirring, into ice-water. The solid that separated was filtered off, thoroughly washed with cold water, dried, and chromatographed (2:1 hexane-ethyl acetate) to give 3 (4.3 g, 82%), amorphous powder, $[\alpha]_D^{25}$ +43° (c 0.6, chloroform); ¹H-n.m.r. (CDCl₃): δ 7.03–7.45 (m, 30 H, arom.), 3.24 (s, 3 H, OMe), 2.09, 1.84, and 1.60 (s, 3 H each, 3 OAc).

Anal. Calc. for C₅₉H₆₂O₁₄: C, 71.20; H, 6.29. Found: C, 70.98; H, 6.05.

Methyl 3,4,6-tri-O-benzyl-2-O-(2,3,4-tri-O-acetyl- α -D-mannopyranosyl)- α -D-mannopyranoside (4). — A suspension of 3 (3.8 g) in 80% aqueous acetic acid (150 mL) was heated for 1 h at 80°. After conventional processing, the crude product was chromatographed (1:49 acetone–chloroform) to give 4 (1.9 g, 66%), a syrup, $[\alpha]_D^{25}$ +40.5° (c 1.0, chloroform); ¹H-n.m.r. (CDCl₃): δ 7.03–7.33 (m, 15 H, arom.), 3.27 (s, 3 H, OMe), 2.06 (s, 3 H, OAc), and 1.87 (s, 6 H, 2 OAc).

Anal. Calc. for C₄₀H₄₈O₁₄: C, 63.81; H, 6.44. Found: C, 63.67; H, 6.35.

Methyl 3,4,6-tri-O-benzyl-2-O-(2,3,4-tri-O-acetyl-6-deoxy-6-fluoro- α -D-mannopyranosyl)- α -D-mannopyranoside (6). — A solution of 4 (1.5 g, 2 mmol) in dry Diglyme (25 mL) was added with stirring, in small portions, to a cold (-20°, bath) solution of N,N-diethylaminosulfur trifluoride (Et₂NSF₃; 1.0 mL, 8.2 mmol) in Diglyme (20 mL), and stirring was continued for 20 min at -20° . The mixture was allowed to warm to room temperature, and stirring was continued for additional 5 h. After the usual processing, the crude product was purified by chromatography (chloroform) to afford syrupy 6 (1 g, 66.5%), $[\alpha]_D^{25}$ +43° (*c* 0.5, chloroform); ¹H-n.m.r. (CDCl₃): δ 7.09–7.33 (m, 15 H, arom.), 3.33 (s, 3 H, OMe), 2.09 (s, 3 H, OAc), and 1.99 (s, 6 H, 2 OAc).

Anal. Calc. for C₄₀H₄₇FO₁₃: C, 63.64; H, 6.29. Found: C, 63.60; H, 5.95.

Methyl 3,4,6-tri-O-benzyl-2-O-(6-deoxy-6-fluoro- α -D-mannopyranosyl)- α -D-mannopyranoside (7). — Compound 6 (0.9 g) was stirred overnight at room temperature in 2:1:1 (v/v) methanol-triethylamine-water (120 mL). The mixture was concentrated with coevaporation of toluene and the residue was chromatographed. Elution with 1:49 methanol-chloroform afforded 7 (0.7 g, 93%), amorphous, $[\alpha]_D^{26}$ +48.5° (c 1.0, chloroform); ¹H-n.m.r. (CDCl₃): δ 7.06–7.36 (m, 15 H, arom.) and 3.33 (s, 3 H, OMe).

Anal. Calc. for $C_{34}H_{41}FO_{10} \cdot 0.5H_2O$: C, 64.02; H, 6.65. Found: C, 63.88; H, 6.60.

Methyl 2-O-(6-deoxy-6-fluoro- α -D-mannopyranosyl)- α -D-mannopyranoside (8). — A mixture of compound 7 (0.4 g) and 10% Pd–C (0.4 g) in glacial acetic acid (30 mL) was shaken under H₂ at ~345 kPa for 2 days at room temperature. The suspension was processed conventionally and the crude product was chromatographed. Elution with solvent A furnished amorphous 8 (0.2 g, 91%), $[\alpha]_D^{26}$ +51° (c 1.3, water; ¹⁹F-n.m.r. (D₂O): ϕ -233.47 (dt, $J_{F-6',H-6a',6b'}$ 47.30, $J_{F-6',H-5'}$ 26.70 Hz, F-6'); ¹³C-n.m.r., see Table I.

Anal. Calc. for C₁₃H₂₃FO₁₀: C, 43.79; H, 6.46. Found: C, 43.37; H, 6.46.

Methyl 3-O-benzyl-6-deoxy-6-fluoro-2-O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl)- α -D-mannopyranoside (9). — Compound 5 (ref. 8; 5.4 g, 8.8 mmol) was allowed to react with Et₂NSF₃ (2.4 mL, 19.65 mmol), as described for 4 (to give 6), to give after chromatography (7:3 hexane-ethyl acetate) amorphous 9 (2.5 g, 48%), $[\alpha]_D^{25}$ +48° (c 1.4, chloroform); ¹H-n.m.r. (CDCl₃): δ 7.10–7.29 (m, 5 H, arom.), 3.36 (s, 3 H, OMe), and 2.10–1.79 (cluster of s, 12 H, 4 OAc).

Anal. Calc. for $C_{28}H_{37}FO_{14} \cdot H_2O$: C, 52.98; H, 6.20. Found: C, 52.94; H, 5.95.

Methyl 3-O-benzyl-6-deoxy-6-fluoro-2-O- α -D-mannopyranosyl- α -D-mannopyranoside (10). — Compound 9 (1.9 g) was O-deacetylated as described for 6 (to give 7) to give after chromatography (solvent B) 10 (1.2 g, 87%), amorphous, $[\alpha]_D^{26}$ + 36° (c 0.9, chloroform).

Anal. Calc. for C₂₀H₂₉FO₁₀: C, 53.56; H, 6.53. Found: C, 53.47; H, 6.77.

Methyl 6-deoxy-6-fluoro-2-O- α -D-mannopyranosyl- α -D-mannopyranoside (11). — Compound 10 (0.6 g) was hydrogenolyzed in 4:1 (v/v) ethanol-glacial acetic acid (30 mL), as decribed for 7 (to give 8), to give after chromatography (solvent A) 11 (0.45 g, 90%), amorphous, $[\alpha]_D^{25}$ +55° (c 1.5, water); ¹⁹F-n.m.r. (D₂O): ϕ -234.06 (ddt, $J_{F-6,H-6a,6b}$ 47.50, $J_{F-6,H-5}$ 30.50, $J_{F-6,H-4}$ 3.0 Hz, F-6); ¹³C-n.m.r., see Table I.

Anal. Calc. for C₁₃H₂₃FO₁₀: C, 43.79; H, 6.46. Found: C, 43.38; H, 6.20.

1,2,3,4-Tetra-O-acetyl-6-deoxy-6-fluoro-β-D-mannopyranose (13). — A solution of 1,2,3,4-tetra-O-acetyl-β-D-mannopyranose¹⁰ (12; 6 g, 17.23 mmol) in dry Diglyme (50 mL) was slowly introduced with stirring into a cold (-10°, bath) solution of Et₂NSF₃ (8.6 mL, 70.43 mmol) in Diglyme (50 mL). After 1 h at -10° , the mixture was allowed to warm to room temperature, and stirring was continued for an additional 5 h. It was then poured into ice–water and extracted with chloro-form (~300 mL). The chloroform solution was repeatedly washed with water, dried, and concentrated to a yellowish syrup, which showed (t.1.c., solvent *C*) the presence of a major product migrating faster than 12, a trace of 12, as well as some slower-migrating contaminants. The crude product was chromatographed (1:1 chloroform–hexane→chloroform) to afford 13 (2.5 g, 42%), m.p. 114–116° (chloroform–ether), $[\alpha]_{D}^{24} - 13.5^{\circ}$ (*c* 1.1, chloroform); ¹H-n.m.r. (CDCl₃): δ 5.90 (s, 1 H, H-1), 4.47 (dd, 2 H, $J_{H-6a,6b,F-6} \sim 46.5$, $J_{H-6a,6b,H-5} \sim 4$ Hz, H-6a,6b), 2.27, 2.17, 2.13, and 1.97 (s, 3 H each, 4 OAc); ¹⁹F-n.m.r. (CDCl₃): ϕ +229.35 (dt, $J_{F-6,H-6a,6b} \sim 47.60$, $J_{F-6,H-5} \sim 21.60$ Hz, F-6).

Anal. Calc. for C₁₄H₁₉FO₉: C, 48.00; H, 5.47; Found: C, 48.19; H, 5.37.

4-Nitrophenyl 2,3,4-tri-O-acetyl-6-deoxy-6-fluoro- α -D-mannopyranoside (14).

— A mixture of **13** (3.5 g, 10 mmol), 4-nitrophenol (1.39 g, 10 mmol) and SnCl₄ (2.4 mL, 20.51 mmol) in dichloromethane (10 mL) was boiled for 4 h in an atmosphere of N₂. After cooling to room temperature, the mixture was diluted with dichloromethane (100 mL), and successively washed with water, saturated aqueous NaHCO₃, water, dried, and concentrated. The crude product was chromatographed (3:1 chloroform-hexane→chloroform) to give **14** (2.59 g, 60%), m.p. 171–173° (from 2-propanol), $[\alpha]_D^{24}$ +120.5° (*c* 1.0, chloroform); ¹H-n.m.r. (CDCl₃): δ 8.20 and 7.16 (d, 2 H each, $J \sim 9$ Hz, arom.), 5.60 (s, 1 H, H-1), 4.40 (dd, 2 H, $J_{H-6a,6b,F-6} \sim 48$, $J_{H-6a,6b,H-5} \sim 4$ Hz, H-6a,6b), 2.16 (s, 3 H, OAc), and 2.03 (s, 6 H, 2 OAc).

Anal. Calc. for C₁₈H₂₀FNO₁₀: C, 50.35; H, 4.69; N, 3.26. Found: C, 50.12; H, 4.58; N, 3.16.

4-Nitrophenyl 6-deoxy-6-fluoro- α -D-mannopyranoside (15). — A mixture of 14 (2.56 g) and Amberlyst A-26 (OH⁻) anion-exchange resin (0.35 g) in methanol (60 mL) was stirred overnight at room temperature. T.I.c. (solvent B) then showed that the reaction was complete. The resin was filtered off and thoroughly washed with methanol, and the combined filtrates were concentrated to give a solid. Crystallization from ethanol afforded 15 (1.7 g, 92%), m.p. 161–162°, $[\alpha]_D^{24}$ +155° (c 1.1, methanol); ¹H-n.m.r. [(²H₃)Me₂SO]: δ 8.17 and 7.24 (d, 2 H each, $J \sim 9$ Hz, arom.) and 5.60 (d, 1 H, $J \sim 1$ Hz, H-1); ¹⁹F-n.m.r. [(²H₃)Me₂SO]: ϕ -230.81 (dt, $J_{F-6,H-6a,6b}$ 47.9, $J_{F-6,H-5}$ 25.7 Hz, F-6).

Anal. Calc. for C₁₂H₁₄FNO₇: C, 47.53; H, 4.65; N, 4.62. Found: C, 47.50; H, 4.50; N, 4.49.

4-Nitrophenyl 6-deoxy-6-fluoro-2,3-O-isopropylidene- α -D-mannopyranoside (16). — A mixture of 15 (1.58 g) and 4-toluenesulfonic acid monohydrate (0.3 g) in

acetone (25 mL) and 2,2-dimethoxypropane (25 mL) was stirred overnight at room temperature. T.l.c. (solvent C) showed the presence of a major product, fastermigrating than **15**, together with small proportions of faster- and slower-migrating contaminants. The acid was neutralized with a few drops of tricthylamine, the mixture was concentrated, the residue was partitioned between chloroform and water, dried, and concentrated to give a solid, which crystallized from dichloromethane-ether-hexane to afford **16** (1.49 g, 83%), m.p. 103–104°, $[\alpha]_D^{24}$ +123° (c 1.2, chloroform); ¹H-n.m.r. (CDCl₃): δ 8.20 and 7.13 (d, 2 H each, J 9 Hz, arom.), 5.83 (s, 1 H, H-1), and 1.53 and 1.37 (s, 3 H each, CMe₂).

Anal. Calc. for C₁₅H₁₈FNO₇: C, 52.48; H, 5.28; N, 4.08. Found: C, 52.24; H, 5.11; N, 4.07.

4-Nitrophenyl 4-O-acetyl-6-deoxy-6-fluoro-2,3-O-isopropylidene- α -D-mannopyranoside (17). — A solution of 16 (1 g) in 1:2 acetic anhydride-pyridine (15 mL) was stirred overnight at room temperature. It was then concentrated with coevaporation of toluene. Crystallization from dichloromethane-ether furnished 17 (1.1 g, 98%), m.p. 152–154°, $[\alpha]_D^{24}$ +96° (c 1.0, chloroform); ¹H-n.m.r. (CDCl₃): δ 8.19 and 7.15 (d, 2 H each, $J \sim 9$ Hz, arom.), 5.84 (s, 1 H, H-1), 2.09 (s, 3 H, OAc), and 1.57 and 1.39 (s, 3 H each, CMe₂).

Anal. Calc. for C₁₇H₂₀FNO₈: C, 52.98; H, 5.23; N, 3.64. Found: C, 52.74; H, 4.95; N, 3.57.

4-Nitrophenyl 4-O-acetyl-6-deoxy-6-fluoro- α -D-mannopyranoside (18). — A solution of 17 (1.11 g) in trifluoroacetic acid (4 mL), water (0.2 mL), and chloroform (30 mL) was stirred for 2 h at room temperature. It was then concentrated with coevaporation of toluene. The residue crystallized from ethyl acetate–ether–hexane to afford 18 (0.93, 94%), m.p. 155–157°, $[\alpha]_D^{24}$ +164° (c 1.3, chloroform); ¹H-n.m.r. (CDCl₃): δ 8.15 and 7.12 (d, 2 H each, J 9 Hz, arom.), 5.65 (d, 1 H, J ~1 Hz, H-1), and 2.08 (s, 3 H, OAc).

Anal. Calc. for C₁₄H₁₆FNO₈: C, 48.69; H, 4.67; N, 4.06. Found: C, 48.91; H, 4.54; N, 3.95.

2,3,4-Tri-O-acetyl-6-deoxy-6-fluoro- α -D-mannopyranosyl bromide (19). — A cold (0°, bath) stirred solution of **13** (3 g) in dichloromethane (10 mL) and acetic anhydride (1.2 mL) was treated with a 31% solution of HBr in glacial acetic acid (14.4 mL) for 30 min. It was then allowed to warm to room temperature, and the stirring was continued for an additional 3.5 h. The mixture was cooled, diluted with chloroform (~150 mL), and shaken with ice-water. The chloroform solution was successively washed with ice-cold water, cold saturated NaHCO₃, and cold water, dried, and concentrated (30°, bath) to give a yellowish syrup, which was dissolved in a small volume of ether. Addition of hexane caused the precipitation of **19** (2.73, 86%), amorphous, $[\alpha]_{D}^{25} + 145^{\circ}$ (c 2.7, chloroform); ¹H-n.m.r. (CDCl₃): δ 6.33 (d, 1 H, $J \sim 1$ Hz, H-1), 4.53 (dd, 2 H, $J_{H-6a,6b,F-6} \sim 48$, $J_{H-6a,6b,H-5} \sim 4$ Hz, H-6a,6b), and 2.20, 2.13, and 2.03 (s, 3 H each, 3 OAc); ¹⁹F-n.m.r. (CDCl₃): ϕ -229.93 (dt, $J_{F-6,H-6a,6b} \sim 48.80$, $J_{F-6,H-5} \sim 25.50$ Hz, F-6).

4-Nitrophenyl 4-O-acetyl-6-deoxy-6-fluoro-3-O- (21) and -2-O-(2,3,4,6-tetra-

O-acetyl- α -D-mannopyranosyl)- α -D-mannopyranoside (23), and 4-nitrophenyl 4-Oacetyl-6-deoxy-6-fluoro-2,3-di-O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl)- α -Dmannopyranoside (25). - (a) In 1:1 benzene-nitromethane as solvent. A mixture of **18** (0,86 g, 2.5 mmol), powdered Hg(CN)₂ (0.33 g, 1.31 mmol), HgBr₂ (0.5 g, 1.39 mmol), and powdered 4A molecular sieves (1 g) in 1:1 benzene-nitromethane (70 mL) was boiled until ~20 mL of the solvent had distilled off. After cooling to room temperature, a solution of 2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl bromide (20; 1.2 g, 2.9 mmol) in 1:1 benzene-nitromethane (6 mL) was added, and the stirring was continued for 21 h at 45–48°. T.I.c. (solvent C) then showed the presence of two major products, both faster-migrating than 18; a small portion of 18, as well as some slower and some faster-migrating compounds, were also present. More portions of 20 (0.6 g, 1.25 mmol) in 1:1 benzene-nitromethane (4 mL), Hg(CN)₂ (0.17 g, 0.67 mmol), and HgBr₂ (0.25 g, 0.69 mmol) were added, and stirring was continued for an additional 20 h at the same temperature. The mixture was cooled and filtered (Celite), the solids were thoroughly washed with benzene, and the filtrate and washings were combined and diluted with benzene to a total volume of \sim 250 mL. The solution was successively washed with water, M KI solution, saturated aqueous NaHCO₃, and water, dried, and concentrated. The crude product was chromatographed $[1:3 \rightarrow 1:1 \text{ ethyl acetate-petroleum ether}]$ (b.p. 40-60°)] to give first (0.12 g) a mixture of **21** (see below) and a faster-migrating product having identical chromatographic mobility with 25 (see below), but which was neither separated nor characterized at this stage. On concentration, the fraction eluted next gave a residue which was dissolved in a small volume of dichloromethane. Addition of ether-hexane caused the crystallization of **21** (0.35 g,21%), m.p. 170–173°, $[\alpha]_{D^3}^{23}$ +74° (c 0.52, chloroform); ¹H-n.m.r. (CDCl₃): δ 8.13 and 7.10 (d, 2 H each, J ~9 Hz, arom.), 5.66 (br. s, 1 H, H-1), 2.13 and 2.06 (s, 6 H each, 4 OAc), and 1.96 (s, 3 H, OAc).

Anal. Calc. for C₂₈H₃₄FNO₁₇: C, 49.70; H, 5.07; N, 2.07. Found: C, 49.77; H, 5.10; N, 2.11.

Continued elution gave a mixture (0.1 g) of **21** and **23**. The last fractions contained chromatographically homogeneous, amorphous **23** (0.16 g, 9.5%), $[\alpha]_D^{23} + 53^\circ$ (c 0.43, chloroform); ¹H-n.m.r. (CDCl₃): δ 8.20 and 7.19 (d, 2 H each, $J \sim 9$ Hz, arom.), 5.90 (s, 1 H, H-1), 2.15 (s, 6 H, 2 OAc), and 2.07, 1.99, and 1.95 (s, 3 H each, 3 OAc).

Anal. Calc. for C₂₈H₃₄FNO₁₇: C, 49.70; H, 5.07; N, 2.07. Found: C, 49.65; H, 5.20; N, 2.15.

(b) In acetonitrile as solvent. A mixture of 18 (0.86 g, 2.5 mmol), bromide 20 (1.2 g, 2.9 mmol), powdered Hg(CN)₂ (0.33 g, 1.3 mmol), and HgBr₂ (0.5 g, 1.39 mmol) in dry acetonitrile (20 mL) was stirred for 5 h at room temperature. The solvent was evaporated under diminished pressure, the residue was suspended in chloroform, and the suspension was filtered (Celite). The combined filtrate and washings were processed as described above. After concentration, the residue was chromatographed (chloroform \rightarrow 1:49 acetone–chloroform) to give first amorphous

25 (0.48 g, 10%), $[\alpha]_D^{25}$ +62° (c 0.43, chloroform); t.l.c. (solvent C): R_F 0.47 (identical with that of the faster-migrating compound just described); ¹H-n.m.r. (CDCl₃): δ 8.18 and 7.16 (d, 2 H each, $J \sim 9$ Hz, arom.), 5.83 (s, 1 H, H-1), and 2.15–1.93 (cluster of s, 27 H, 9 OAc).

Anal. Calc. for C₄₂H₅₂FNO₂₆: C, 50.15; H, 5.21; N, 1.39. Found: C, 49.93; H, 4.93; N, 1.31.

Eluted next was chromatographically pure **21** (0.35 g). The last fraction (0.17 g) contained a mixture of **21** and **23**. Preparative thin-layer chromatography of the latter compound (solvent C) gave **21** (0.04 g, combined yield, 23%) and **23** (0.075 g, 4.5%).

4-Nitrophenyl 6-deoxy-6-fluoro-3-O- α -D-mannopyranosyl- α -D-mannopyranoside (22). — Compound 21 (0.3 g) in 0.02M methanolic sodium methoxide (40 mL) was stirred overnight at room temperature. T.l.c. (solvent A) showed the disappearance of 21 and the presence of a slower-migrating product; some slower-migrating contaminants (undetectable in u.v. light) were also present. The base was neutralized with a few drops of glacial acetic acid, the mixture concentrated to dryness, and the residue was redissolved in methanol. After treatment with Amberlite 1R-120 (H⁺) resin and filtration (Celite), the combined filtrate and washings were concentrated to a small volume. Addition of ether-hexane caused the precipitation of amorphous 22 (0.14 g, 68%), $[\alpha]_D^{24}$ +155.5° (c 0.8, methanol); ¹⁹F-n.m.r. [(²H₃)Me₂SO]: ϕ -231.37 (dt, $J_{F-6,H-6a,6b}$ 47.70, $J_{F-6,H-5}$ 25.2 Hz, F-6); ¹³C-n.m.r., see Table I.

Anal. Calc. for C₁₈H₂₄FNO₁₂: C, 46.45; H, 5.19; N, 3.01. Found: C, 46.44; H, 5.10; N, 2.92.

4-Nitrophenyl 6-deoxy-6-fluoro-2-O-α-D-mannopyranosyl-α-D-mannopyranoside (24). — Compound 23 (0.07 g) was subjected to Zemplén transesterification, as described for 21 (to give 22) to furnish 24 (0.035 g, 73%), amorphous, $[\alpha]_D^{25}$ +81° (c 0.6, methanol); ¹⁹F-n.m.r. [(²H₃)Me₂SO]: ϕ -231.30 (dt, $J_{F-6,H-6a,6b}$ 47.75, $J_{F-6,H-5}$ 26.47 Hz, F-6); ¹³C-n.m.r., see Table I.

Anal. Calc. for C₁₈H₂₄FNO₁₂: C, 46.45; H, 5.19; N, 3.01. Found: C, 46.52; H, 5.22; N, 2.99.

4-Nitrophenyl 6-deoxy-6-fluoro-2,3-di-O- α -D-mannopyranosyl- α -D-mannopyranoside (26). — Compound 25 (0.4 g) in methanol (40 mL) was treated with M sodium methoxide in methanol (1 mL) overnight at room temperature. T.l.c. (5:4:1 chloroform-methanol-water) then showed the disappearance of 25 and the presence of a slower-migrating product; some slower- and some faster-migrating contaminants were also present. After processing, as described for 21 (to give 22), the crude product was chromatographed. Elution with solvent A and lyophilization gave amorphous 26 (0.13 g, 52%), $[\alpha]_D^{25}$ +106° (c 0.8, water); ¹⁹F-n.m.r. [(²H₃)Me₂SO]: ϕ +231.73 (dt, $J_{F-6,H-6a,6b}$ 47.63, $J_{F-6,H-5}$ 25.72 Hz, F-6); ¹³C-n.m.r.; see Table I.

Anal. Calc. for C₂₄H₃₄FNO₁₇·1.5H₂O: C, 44.04; H, 5.70; N, 2.14. Found: C, 44.00; H, 5.47; N, 2.06.

4-Nitrophenvl 4,6-di-O-acetyl-3-O- (28) and -2-O-(2,3,4-tri-O-acetyl-6-deoxy-6-fluoro- α -D-mannopyranosyl)- α -D-mannopyranoside (30). — (a) In 1:1 benzene– nitromethane as solvent. A stirred mixture of 4-nitrophenyl 4,6-di-O-acetyl-a-Dmannopyranoside¹² (27; 0.2 g, 0.52 mmol), powdered Hg(CN)₂ (0.07 g, 0.27 mmol), and HgBr₂ (0.11 g, 0.3 mmol) in 1:1 benzene-nitromethane (40 mL) was boiled until ~ 20 mL of the solvent had distilled off. After cooling to room temperature, a solution of bromide 19 (0.24 g, 0.65 mmol) in 1:1 benzene-nitromethane (2 mL) was added, and the stirring was continued for 25 h at 40–45°. T.l.c. (solvent C) showed the presence of two major products, both faster-migrating than 27; a small proportion of 27, as well as some faster- and some slower-migrating compounds were also present. More of 19 [0.12 g, 0.33 mmol, in 1:1 benzene-nitromethane (2 mL)], powdered Hg(CN)₂ (0.03 g, 0.14 mmol), and HgBr₂ (0.05 g, 0.15 mmol) were added, and stirring was continued for an additional 8 h at 40-45°. After processing, the crude product was chromatographed $(1:3 \rightarrow 1:1 \text{ ethyl acetate})$ petroleum ether) to give first a mixture (~ 0.05 g) of 28 and a faster-migrating compound (detectable under u.v. light; which was neither separated nor further characterized). Eluted next was 28 (0.1 g, 28.5%), m.p. 149-151° (dichloromethaneether), $[\alpha]_{D}^{23} + 96^{\circ}$ (c 0.7, chloroform); ¹H-n.m.r. (CDCl₃): δ 8.19 and 7.17 (d, 2 H each, J ~9 Hz, arom.), 5.67 (s, 1 H, H-1), and 2.15-1.95 (cluster of s, 15 H, 5 OAc).

Anal. Calc. for C₂₈H₃₄FNO₁₇: C, 49.78; H, 5.07; N, 2.07. Found: C, 49.79; H, 5.00; N, 2.07.

Continued elution gave a mixture (0.04 g) of **28** and **30**, followed by chromatographically homogeneous (solvent C) **30** (0.09 g, 11%), obtained as an amorphous solid by addition of ether into its solution in dichloromethane, $[\alpha]_D^{25} + 69^\circ$ (c 0.6, chloroform); ¹H-n.m.r. (CDCl₃): δ 8.17 and 7.10 (d, 2 H each, $J \sim 9$ Hz, arom.), 5.95 (s, 1 H, H-1), and 2.12–1.97 (cluster of s, 15 H, 4 OAc).

Anal. Calc. for C₂₈H₃₄FNO₁₇: C, 49.78; H, 5.07; N, 2.07. Found: C, 49.52; H, 5.33; N, 2.02.

(b). In acetonitrile as solvent. A mixture of 27 (1 g, 2.6 mmol), bromide 19 (1.12 g, 3.0 mmol), powdered Hg(CN)₂ (0.34 g, 1.35 mmol), HgBr₂ (0.53 g, 1.46 mmol), and powdered 4A molecular sieves (2 g) in dry acetonitrile (20 mL) was stirred for 15 h at room temperature. After processing as described earlier, the crude product was chromatographed (chloroform \rightarrow 1:24 acetone-chloroform) to give pure (t.l.c., solvent C) 28 (0.24 g, 14%), followed by a mixture of 28 and 30 (~0.12 g). This fraction was subjected to p.t.l.c. with 9:1 chloroform-acetone (double irrigation) to furnish 28 (0.025 g; combined yield 15%) and 30 (0.055 g, 3%).

4-Nitrophenyl 3-O-(6-deoxy-6-fluoro- α -D-mannopyranosyl)- α -D-mannopyranoside (29). — Compound 28 (0.15 g) was O-deactylated with 0.03M methanolic sodium methoxide (20 mL), as described for 21 (to give 22), to afford 29 (0.07 g, 68%), m.p. 232–234° (95% ethanol–ethyl acetate–hexanc), $[\alpha]_D^{24}$ +167° (c 0.56, methanol); ¹⁹F-n.m.r. [(²H₃)Me₂SO]: ϕ –230.52 (dt, $J_{\text{F-6',H-6a',6b'}}$ 47.98, $J_{\text{F-6',H-5'}}$ 26.77 Hz, F-6'); ¹³C-n.m.r., see Table I.

Anal. Calc. for $C_{18}H_{24}FNO_{12} \cdot 0.5H_2O$: C, 45.57; H, 5.31; N, 2.95. Found: C, 45.85; H, 4.92; N, 2.80.

4-Nitrophenyl 2-O-(6-deoxy-6-fluoro- α -D-mannopyranosyl)- α -D-mannopyranoside (31). — Compound 30 (0.1 g) in methanol (20 mL) was treated with M methanolic sodium methoxide (0.4 mL) under stirring overnight at room temperature. The mixture was then processed as described for 21 (to give 22), and the crude product was chromatographed (solvent $B \rightarrow 6:2:1$ ethyl acetate-2-propanol-water) to furnish amorphous 31 (0.04 g, 58%), $[\alpha]_D^{24} + 100^\circ$ (c 0.5, methanol); ¹⁹F-n.m.r. [(²H₃)Me₂SO]: ϕ -229.45 (dt, $J_{F-6',H-6a',6b'}$ 47.45, $J_{F-6',H-5'}$ 24.57 Hz, F-6'); ¹³C-n.m.r., see Table I.

Anal. Calc. for $C_{18}H_{24}FNO_{12} \cdot H_2O$: C, 44.72; H, 5.42; N, 2.90. Found: C, 44.36; H, 5.05; N, 2.94.

ACKNOWLEDGMENTS

The authors thank Dr. J. L. Alderfer and Dr. A. K. Sarkar for valuable discussions. They are also grateful to Mr. Conrad F. Piskorz and Mr. R. Locke, Jr. for their valuable technical assistance, and to Mr. B. Wollman, Mr. J. Potienko, and Dr. S. D. Soni for recording most of the ¹³C- and ¹⁹F-n.m.r. spectra. One of us (S.H.K.) thanks Roswell Park Memorial Institute for a predoctoral research fellowship.

REFERENCES

- 1 S. H. KHAN, S. A. ABBAS, AND K. L. MATTA, Carbohydr. Res., 193 (1989) 125-140.
- 2 M. L. REITMAN AND S. KORNFELD, J. Biol. Chem., 256 (1981) 4275-4281; 11 977-11 980.
- 3 R. MADIYALAKAN, M. S. CHOWDHARY, S. S. RANA, AND K. L. MATTA, Carbohydr. Res., 152 (1986) 183-194.
- 4 R. MADIYALAKAN, R. K. JAIN, AND K. L. MATTA, Biochem. Biophys. Res. Commun., 142 (1987) 354-358.
- 5 K. BOCK AND H. PEDERSEN, Acta Chem. Scand., Ser. B., 42 (1988) 75-85.
- 6 G. W. J. FLEET, A. KARPAS, R. A. DWEK, L. E. FELLOWS, A. S. TYMS, S. PETURSSON, S. K. NAMGOONG, N. G. RAMSDEN, P. W. SMITH, J. C. SON, F. WILSON, D. R. WITTY, G. S. JACOB, AND T. W. RADEMACHER, *FEBS Lett.*, 237 (1988) 128–132.
- 7 M. SHARMA AND W. KORYTNYK, Tetrahedron Lett., 6 (1977) 573-576; P. J. CARD, J. Org. Chem., 48 (1983) 393-395; P. KOVÁČ, Carbohydr. Res., 153 (1986) 168-170.
- 8 T. TAKEDA, I. KAWARASKI, AND Y. OGIHARA, Carbohydr. Res., 89 (1981) 301-308.
- 9 M. SHARMA, R. J. BERNACKI, AND W. KORYTNYK, ACS Symp. Ser., (1988) 191-206.
- 10 D. D. REYNOLDS AND W. L. EVANS, J. Am. Chem. Soc., 62 (1940) 66-69.
- 11 L. A. REED, III, P. A. RISBOOD, AND L. GOODMAN, J. Chem. Soc., Chem. Commun., (1981) 760-761.
- 12 M. S. CHOWDHARY, R. K. JAIN, S. S. RANA, AND K. L. MATTA, Carbohydr. Res., 152 (1986) 323-328.
- 13 G. EKBORG AND C. P. J. GLAUDEMANS, Carbohydr. Res., 134 (1984) 83-87.