Reactions of 3-alkylsulfanyl-2-arylazo-3-(1-azacycloalk-1-yl)acrylonitriles with maleimide

N. P. Belskaya,^{a*} A. V. Koksharov,^a T. G. Deryabina,^b O. S. Eltsov,^a P. A. Slepukhin,^b and V. A. Bakulev^a

 ^aFirst Russian President B. N. El'tsin Ural State Technical University, 19 ul. Mira, 620002 Ekaterinburg, Russian Federation. Fax: +7 (343) 374 5483. E-mail: belska@mail.ustu.ru
 ^bI. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 20 ul. S. Kovalevskoi, 620041 Ekaterinburg, Russian Federation

Reactions of 2-arylazo-3-(1-azacycloalk-1-yl)-3-methylsulfanylacrylonitriles with maleimide in benzene gave octahydropyrrolo[3,4-*a*]pyrrolizines $2\mathbf{a}-\mathbf{c}$, decahydro-2,7a-diazacyclopenta[*a*]indene $2\mathbf{e}$, and decahydro-5-oxa-2,7a-diazacyclopenta[*a*]indene $2\mathbf{f}$ as a result of 1,3-dipolar cycloaddition. In a similar reaction with 3-allylsulfanyl-2-arylazo-3-(1-azacycloalk-1-yl)acrylonitriles **3**, dipolar cycloaddition and intramolecular cyclization competed to give a mixture of compounds **2** (major products) and 1,4,6,7,8,8a-hexahydropyrrolo[2,1-*c*]-1,2,4triazines **4b**-**d**, 1,6,7,8,9,9a-hexahydro-4*H*-pyrido[2,1-*c*]-1,2,4-triazine **4e**, and 1,4,6,7,9,9ahexahydro-1,4-oxazino[3,4-*c*]-1,2,4-triazine **4f** (minor products).

Key words: 1,2-diaza-1,3-butadienes, pyrrolidine, piperidine, morpholine, maleimide, 1,3-dipolar cycloaddition, intramolecular cyclization.

1,2-Diazabuta-1,3-dienes easily react with various dienophiles to give pyridazines (hetero-Diels—Alder reaction).¹ Earlier,^{2,3} we have found that the presence of terminal *S*-alkyl- and 1-azacycloalkyl groups in a diazadiene system radically changes the chemical properties of these compounds. 3-Alkylsulfanyl-2-arylazo-3-(pyrrolidin-1yl)acrylonitriles react as latent dipoles to give products of intramolecular and intermolecular cyclization. The goal of the present work was to study the influence of the structure of the starting compounds on their tendency toward 1,3-dipolar cycloaddition with maleimide, determine the scope of the earlier discovered transformations, and obtain new heterocyclic compounds.

Reactions of 2-arylazo-3-(1-azacycloalk-1-yl)-3-methylsulfanylacrylonitriles 1a - e with an excess of maleimide were carried out in benzene at 50 °C (Scheme 1). The products were isolated by filtration or by liquid chromatography. Structures 2 were determined from spectroscopic and X-ray diffraction data.

The IR spectra of tricyclic compounds $2\mathbf{a}-\mathbf{c},\mathbf{e}$ show absorption bands at 2200 cm⁻¹ (CN) and 1705–1710 cm⁻¹ (stretching vibrations of two CO groups). The ¹H NMR spectra of the pyrrolo[3,4-*a*]pyrrolizines **2** obtained contain a double set of signals of all proton-containing groups. The most characteristic signals indicating the formation of cycloadducts **2a**-**c**,**e** are two doublets at δ 4.7–5.20 (1 H, J=8.5–8.8 Hz), two doublets of doublets at δ 3.6–3.8 (J=8.5–8.8 Hz, J=10.0–10.3 Hz), a doublet of triplets at δ 4.4–4.8, and a broadened singlet at δ 11.52–11.7

Reagents and conditions: benzene, 50 °C.

(NH proton of the pyrrole ring). The number of the protons of the azacycloalkane fragment is reduced by unity,

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 816-820, April, 2010.

1066-5285/10/5904-0833 © 2010 Springer Science+Business Media, Inc.

all the signals for this fragment being shifted downfield. Their multiplicity and positions suggest the participation of this fragment in the transformation under study. The structures of products **2** were convincingly confirmed, and some of their structural features were revealed, by singlecrystal X-ray diffraction study of product **2b**. The general view of its molecule is shown in Fig. 1; selected bond lengths and bond angles are listed in Table 1.

The presence of a system of conjugated double bonds in structure **2b** results in substantial deviations of their lengths from standard values. For instance, the length of the formally single N(2)—C(8) bond is nearly equal to the length of the double C(8)—C(16)bond (1.3859(16) and 1.3864(17) Å); the single bonds C(9)—C(8) and C(1)—N(1) are close in length (1.4264(19) and 1.4242(17) Å, respectively) and are substantially shorter than normal single bonds. The conjugation system N(4)C(9)C(16)C(8)N(2)N(1) is planar: the deviations of the atoms from the mean-square plane do not exceed 0.01 Å. The benzene ring makes an angle of 24.4° with the conjugation plane. According to X-ray diffraction data, 1,3-dipolar cycloaddition yields an *endo*-adduct, namely, the *E*-isomer of pyrrolopyrrolizine **2b**.

The presence of a double set of signals for the protoncontaining groups in the ¹H NMR spectra of tricyclic cycloadducts **2** suggest that these compounds exist as two isomers about the exocyclic double C=C bond. The 2D NOESY spectrum of compound **2a** shows a cross peak of the *ortho*-proton of the aromatic ring and a proton at the C(6) atom of the pyrrolidine fragment, which is possible only in the Z-isomer of this compound.

It should be noted that the yields of cycloadducts **2** decrease considerably with strengthening of the electrondonating properties of the substituent in the aromatic ring. We failed to isolate a product of a reaction of maleimide

2a (Z-izomer)

Fig. 1. Structure **2b** with atomic thermal displacement ellipsoids (50% probability) from X-ray diffraction data.

with compound **1d** containing the electron-donating methoxy group (Table 2).

Reactions with S-allyl derivatives of 2-arylazo-3-(1azacycloalk-1-yl)acrylonitriles (3a-f) gave minor products along with pyrrolo[3,4-*a*]pyrrolizines 2a-f (Scheme 2, see Table 1). The compounds obtained were separated by liquid chromatography and identified as pyrrolotriazines 4b-d, 1,6,7,8,9,9a-hexahydro-4H-pyrido[2,1-*c*]-1,2,4triazine 4e, and 1,4,6,7,9,9a-hexahydro-[1,4]oxazino[3,4-*c*]-1,2,4-triazine 4f using spectroscopic techniques.

The formation of bicyclic triazines **4** in the transformations of 3-allylsulfanyl-2-arylazo-3-(1-azacycloalk-1yl)acrylonitriles in various solvents have been noted earlier.³ With strengthening of the electron-donating properties of the substituent in the aromatic ring of the starting reagents 3a-d, the content of intramolecular cyclization products **4** in the reaction mixture increases, while the

Table 1. Selected bond lengths (d) and bond angles (ω) in structure **2b**

Bond length	d∕Å	Angle	ω/deg
N(1) - N(2)	1.2675(14)	C(16) - N(5) - C(10)	132.64(11)
N(1) - C(1)	1.4242(17)	N(1) - N(2) - C(8)	115.55(11)
N(2) - C(8)	1.3859(16)	N(2) - N(1) - C(1)	112.11(11)
N(5)-C(16)	1.3143(15)	N(2) - C(8) - C(16)	116.68(11)
N(5)-C(10)	1.4670(17)	N(2) - C(8) - C(9)	120.43(11)
N(5) - C(13)	1.4654(17)	N(5)-C(10)-C(11)	102.84(11)
N(4) - C(9)	1.1434(16)	N(5) - C(16) - C(8)	128.19(12)
O(2)-C(17)	1.1977(17)	N(5) - C(16) - C(15)	108.61(11)
O(1)-C(18)	1.1952(17)	N(4) - C(9) - C(8)	177.62(15)
N(3) - C(18)	1.3719(19)	O(1) - C(18) - N(3)	124.47(15)
N(3)-C(17)	1.371(2)	O(1) - C(18) - C(15)	128.77(14)
C(2) - C(7)	1.484(2)	O(2) - C(17) - N(3)	124.96(16)
F(3) - C(7)	1.334(2)	O(2) - C(17) - C(14)	127.58(15)
F(2)-C(7)	1.3233(17)	N(3) - C(18) - C(15)	106.75(13)
F(1) - C(7)	1.327(2)	N(3) - C(17) - C(14)	107.44(13)
C(8)-C(16)	1.3864(17)		. ,
C(8)-C(9)	1.4264(19)		

Reagents and conditions: benzene, 50 °C.

yields of pyrrolopyrrolizines **2** decrease (see Table 2). As with the S-methyl derivative, we did not isolate a cycloadduct of 3-allylsulfanyl-2-(4-methoxyphenylazo)-3-(pyrrolidin-1-yl)acrylonitrile **3d** with maleimide (the corresponding pyrrolopyrrolizine **2d**).

Thus, the reactions of 3-alkylsulfanyl-2-arylazo-3-(1-azacycloalk-1-yl)acrylonitriles **1** and **3** with maleimide follow the 1,3-dipolar cycloaddition mechanism leading to octahydropyrrolo[3,4-*a*]pyrrolizines $2\mathbf{a}-\mathbf{d}$, 1,3-di-oxodecahydro-2,7a-diaza- and 1,3-dioxodecahydro-5-oxa-2,7a-diazacyclopenta[*a*]indenes $2\mathbf{e}$, **f**, similar to the earlier discovered reactions with *N*-methyl- and *N*-phen-

 Table 2. Yields of the products of the reactions of 3-alkylsulfanyl-2-arylazo-3-(1-azacycloalk-1-yl)acrylonitriles 1 and 3 with maleimide

1, 3	Yield (%)		1, 3	Yield (%)	
	2	4		2	4
1a	70	0	1d	TLC*	0
3a	75	0	3d	TLC*	30
1b	57	0	1e	44	0
3b	54	TLC*	3e	22	40
1c	55	0	3f	38	16
3c	35	20			

* These products were detected using TLC: for compound 2d, $R_{\rm f}$ 0.35 (ethyl acetate); for compound 4b, $R_{\rm f}$ 0.65 (chloroform—acetone, 30:1).

ylmaleimides. However, the cycloaddition with maleimide proceeds more slowly than that with its N-substituted derivatives; the reaction rate becomes comparable with the rate of an alternative reaction (intramolecular cyclization). The structures of the starting reagents **1** and **3** are crucial for the efficiency of 1,3-dipolar cycloaddition. Introduction of electron-donating substituents into the aromatic ring or replacement of the pyrrolidine substituent by the piperidine/morpholine fragment lowers the yields of cycloadducts but is favorable for the intramolecular cyclization of 3-allylsulfanyl-2-arylazo-3-(1-azacycloalk-1yl)acrylonitriles, thus increasing the yields of the corresponding fused 1,2,4-triazines **4**.

Experimental

¹H and ¹³C NMR spectra were recorded on Bruker WM-250 and Bruker AVANCE II 400 instruments (250.13 and 400.00 MHz (¹H) and 100.00 MHz (¹³C)) in DMSO-d₆ with Me₄Si as the internal standard. IR spectra were recorded on a UR-20 spectrometer (in KBr pellets). Mass spectra were measured on a Varian MAT 311A instrument (EI, 70 eV). The course of the reactions was monitored and the purity of the compounds obtained was checked by TLC on Sorbfil UV-254 plates in ethyl acetate, chloroform—acetone (30:1), and chloroform—hexane—acetone (5:4:1). Products were separated and purified by liquid chromatography on silica gel (0.035—0.070 mm, 60 Å, Acros Organics).

3-Alkylsulfanyl-2-arylazo-3-(1-azacycloalk-1-yl)acrylonitriles 1 and 3 were prepared as described earlier.¹ The structures ofpyrrolotriazines 4b—d were confirmed by comparing their physicochemical characteristics with those of authentic samples.³

Preparation of compounds 2a—f (generat procedure). A solution of 3-alkylsulfanyl-2-arylazo-3-(1-azacycloalk-1-yl)acrylonitrile **1** or **3** (0.5 mmol) and maleimide (0.145 g, 1.5 mmol) in benzene was kept at 50 °C for 7—40 h (TLC). The solvent was removed under reduced pressure and the residue was separated by liquid chromatography with chloroform—hexane—acetone (5:4:1) as an eluent.

2-(1,3-Dioxooctahydropyrrolo[3,4-a]pyrrolizin-4-ylidene)-**2-(4-nitrophenylazo)acetonitrile (2a)**, m.p. 236–238 °C, R_f 0.26 (ethyl acetate). IR, v/cm^{-1} : 2960 (CH₂); 2200 (CN); 1720 (CO). ¹H NMR, δ: 11.76, 11.66 (both s, 1 H, NH); 8.29, 7.70, 8.28, 7.91 (AA'XX' and AA'XX', 4 H, Ar, J = 9.3 Hz); 5.19, 4.85 (both d, 1 H, CH, J = 8.4 Hz); 4.65–4.56 (m, 1 H, CH); 3.92–3.76 (m, 2 H, CH); 3.73, 3.70 (both dd, 1 H, CH, J = 8.4 Hz, J = 9.7 Hz); 2.31–2.13 (m, 2 H, CH₂); 2.08–1.98 (m, 1 H, CH); 1.57–1.39 (m, 1 H, CH). The mixture of the cis- and trans-isomers in a ratio of 1 : 1. ¹³C NMR, δ: 176.6 (CO); 174.7 (CO); 174.6 (CO); 173.8 (CO); 161.3 (C_{Ar}); 158.0 (C_{Ar}); 157.7 (C(4)); 157.1 (C(4)); 146.5 (C_{Ar}); 146.4 (C_{Ar}); 136.1 (C_{Ar}); 125.9 (C_{Ar}); 125.6 (C_{Ar}); 123.0 (C_{Ar}); 122.7 (C_{Ar}); 115.2 (CN); 114.9 (CN); 105.9 (C(2['])); 104.5 (C(2')); 72.0 (C(8a)); 71.6 (C(8a)); 60.0 (C(3a)); 59.9 (C(3a)); 50.1 (C(6)); 46.8 (C(6)); 42.3 (C(8b)); 41.9 (C(8b));27.9 (C(7)); 27.7 (C(7)); 27.3 (C(8)); 27.1 (C(8)). MS, *m*/*z* (*I*_{rel} (%)): 366 [M]⁺ (25.5). Found (%): C, 55.69; H, 3.79; N, 22.75. C₁₇H₁₄N₆O₄. Calculated (%): C, 55.74; H, 3.85; N, 22.94.

2-(1,3-Dioxooctahydropyrrolo[3,4-*a*]pyrrolizin-4-ylidene)-2-(2-trifluoromethylphenylazo)acetonitrile (2b), m.p. 296–298 °C, $R_{\rm f}$ 0.30 (ethyl acetate). IR, v/cm⁻¹: 2960 (CH₂); 2195 (CN); 1710 (CO). ¹H NMR, δ : 11.80, 11.65 (both s, 1 H, NH); 7.98 (d, 1 H, Ar, J = 7.8 Hz); 7.77 (dd, 1 H, Ar, J = 8.4 Hz, J = 9.7 Hz); 7.68 (dd, 1 H, Ar, J = 7.8 Hz, J = 15.6 Hz); 7.53 (d, 1 H, Ar, J = 7.8 Hz); 7.45 (dd, 1 H, Ar, J = 7.8 Hz, J = 15.6 Hz); 7.53 (d, 1 H, Ar, J = 7.8 Hz); 7.45 (dd, 1 H, Ar, J = 7.8 Hz, J = 15.6 Hz); 5.17, 4.81 (both d, 1 H, CH, J = 8.3 Hz); 4.61–4.52 (m, 1 H, CH); 3.88–3.65 (m, 3 H, CH); 2.30–2.13 (m, 2 H, CH₂); 2.07–1.97 (m, 1 H, CH); 1.51–1.38 (m, 1 H, CH). The mixture of the *cis*-and *trans*-isomers in a ratio of 5 : 6. MS, m/z ($I_{\rm rel}$ (%)): 389 [M]⁺ (15.7). Found (%): C, 55.47; H, 3.57; N, 17.79. C₁₈H₁₄F₃N₅O₂. Calculated (%): C, 55.53; H, 3.62; N, 17.99.

2-(4-Chlorophenylazo)-2-(1,3-dioxooctahydropyrrolo[3,4-a]pyrrolizin-4-ylidene)acetonitrile (2c), m.p. 273–275 °C, R_f 0.36 (ethyl acetate). IR, v/cm⁻¹: 2960 (CH₂); 2195 (CN); 1720 (CO). ¹H NMR, δ: 11.70, 11.50 (both s, 1 H, NH); 7.74 (d, 1 H, Ar, J = 8.6 Hz; 7.53 (d, 1 H, Ar, J = 8.6 Hz); 7.45–7.34 (m, 2 H, Ar); 5.09, 4.76 (both d, 1 H, CH, J = 8.2 Hz); 4.59–4.45 (m, 1 H, CH); 3.89–3.62 (m, 3 H, CH); 2.39–2.15 (m, 2 H, CH₂); 2.15-1.99 (m, 1 H, CH); 1.59-1.38 (m, 1 H, CH). The mixture of the *cis*- and *trans*-isomers in a ratio of 2:3. ¹³C NMR, δ : 175.9 (CO); 175.8 (CO); 174.0 (CO); 173.2 (CO); 159.4 (C_{Ar}); 154.9 (C_{Ar}); 151.6 (C(4)); 151.3 (C(4)); 132.2 (C_{Ar}); 131.9 (C_{Ar}); 129.2 (C_{Ar}); 128.9 (C_{Ar}); 123.2 (C_{Ar}); 122.9 (C_{Ar}); 114.8 (CN); 114.5 (CN); 103.8 (C(2')); 102.5 (C(2')); 70.4 (C(8a)); 69.9 (C(8a)); 58.6 (C(3a)); 58.4 (C(3a)); 48.9 (C(6)); 45.9 (C(6)); 41.6 (C(8b)); 41.3 (C(8b)); 26.9 (C(7)); 26.8 (C(7)); 26.6 (C(8)); 26.4 (C(8)). MS, m/z (I_{rel} (%)): 355 [M]⁺ (23.5). Found (%): C, 57.32; H, 3.91; N, 19.55. C₁₇H₁₄ClN₅O₂. Calculated (%): C, 57.39; H, 3.97; N, 19.68.

2-(1,3-Dioxo-2,7a-diazadecahydrocyclopenta[*a*]**inden-8-ylidene**)-**2-(4-nitrophenylazo)acetonitrile (2e)**, m.p. 220–222 °C, $R_{\rm f}$ 0.48 (ethyl acetate). ¹H NMR, δ : 11.66, 11.58 (both s, 1 H, NH); 8.24, 7.82, 8.24, 7.66 (AA'XX' and AA'XX', 4 H, Ar, J = 8.8 Hz); 5.30, 4.89 (both d, 1 H, CH, J = 12.4 Hz); 5.20, 4.69 (both d, 1 H, CH, J = 9.2 Hz); 4.24 (dt, 1 H, CH₂, J = 11.6 Hz, J = 2.8 Hz); 3.78, 3.73 (both dd, 1 H, CH, J = 9.6 Hz, J = 10.4 Hz); 3.45–3.32 (m, 1 H, CH₂); 2.17–2.08 (m, 1 H, CH₂); 1.99–1.92 (m, 1 H, CH₂); 1.90–1.83 (m, 1 H, CH₂); 1.68–1.57 (m, 2 H, CH₂); 1.37–1.28 (m, 1 H, CH₂). The mixture of the *cis*- and *trans*-isomers in a ratio of 3 : 7. MS, m/z ($I_{\rm rel}$ (%)): 380 [M]⁺ (10.2). Found (%): C, 56.93; H, 4.36; N, 21.99. C₁₈H₁₆N₆O₄. Calculated (%): C, 56.84; H, 4.24; N, 22.09.

2-(1,3-Dioxo-5-oxa-2,7a-diazaoctahydrocyclopenta[*a*]inden-8-ylidene)-2-(4-nitrophenylazo)acetonitrile (2f), m.p. 269–271 °C, R_f 0.35 (ethyl acetate). ¹H NMR, δ : 11.66, 10.79 (both s, 1 H, NH); 8.25, 7.88, 8.25, 7.70 (AA XX' and AA XX', 4 H, Ar, J = 8.8 Hz); 5.14, 5.01 (both d, 1 H, CH, J = 12.8 Hz); 4.69–4.59 (m, 1 H, CH₂); 4.35–4.23 (m, 1 H, CH₂); 4.22–4.11 (m, 1 H, CH₂); 4.02–3.91 (m, 1 H, CH₂); 3.83, 3.79 (both dd, 1 H, CH, J = 9.6 Hz, J = 10.0 Hz); 3.68–3.53 (m, 2 H, CH₂); 3.39–3.27 (m, 1 H, CH₂). The mixture of the *cis*- and *trans*isomers in a ratio of 1 : 2. MS, m/z (I_{rel} (%)): 380 [M]⁺ (10.2). Found (%): C, 53.63; H, 3.76; N, 21.83. C₁₇H₁₄N₆O₅. Calculated (%): C, 53.41; H, 3.69; N, 21.98.

1-(4-Nitrophenyl)-4-thioxo-1,6,7,8,9,9a-hexahydro-4*H***-pyrido[2,1-***c***]-1,2,4-triazine-3-carbonitrile (4e), m.p. 132–134 °C, R_f 0.88 (chloroform—acetone, 30 : 1). ¹H NMR, \delta: 8.28, 7.75 (AA'XX', 4 H, Ar, J = 9.2 Hz); 6.49 (dd, 1 H, CH, J = 10.8 Hz, J = 2.0 Hz); 5.05 (ddd, 1 H, CH₂, J = 12.8 Hz, J = 2.4 Hz, J = 2.0 Hz); 3.42 (dt, 1 H, CH₂, J = 12.4 Hz, J = 2.8 Hz); 2.17–2.05 (m, 2 H, CH₂); 2.02–1.95 (m, 1 H, CH₂); 1.86–1.73** (m, 2 H, CH₂); 1.72–1.65 (m, 1 H, CH₂). MS, m/z (I_{rel} (%)): 315 [M]⁺ (52.1). Found (%): C, 53.57; H, 4.28; N, 22.15. C₁₄H₁₃N₅O₂S. Calculated (%): C, 53.32; H, 4.16; N, 22.21.

1-(4-Nitrophenyl)-4-thioxo-1,4,6,7,9,9a-hexahydro-[1,4]-oxazino[3,4-*c***]-1,2,4-triazine-3-carbonitrile (4f)**, m.p. 232–234 °C, $R_{\rm f}$ 0.6 (chloroform—acetone, 30 : 1). ¹H NMR, δ : 8.29, 7.75 (AA'XX', 4 H, Ar, J = 9.6 Hz); 6.64 (dd, 1 H, CH, J = 10.0 Hz, J = 2.8 Hz); 5.10 (d, 1 H, CH₂, J = 11.2 Hz); 4.00 (dd, 1 H, CH₂, J = 11.2 Hz); 4.00 (dd, 1 H, CH₂, J = 11.2 Hz, J = 10.4 Hz); 3.93–3.87 (m, 1 H, CH₂); 3.83 (dd, 1 H, CH₂, J = 10.8 Hz, J = 2.4 Hz); 3.76–3.68 (m, 2 H, CH₂). MS, m/z ($I_{\rm rel}$ (%)): 317 [M]⁺ (46.3). Found (%): C, 49.43; H, 3.57; N, 22.30. C₁₃H₁₁N₅O₃S. Calculated (%): C, 49.21; H, 3.49; N, 22.07.

X-ray diffraction analysis of compound 2b was carried out according to a standard procedure at 295(2) K on an Xcalibur 3 automatic four-circle diffractometer equipped with a CCD detector (λ (Mo-K), graphite monochromator, ω scan mode, scan step 1.0°, crystal—detector distance 50 mm). No absorption correction was applied because of negligible absorption. The structure was solved by the direct methods with the SHELXS97 program⁴ and refined by the SHELXL97 program⁵ by the leastsquares method in the anisotropic (isotropic for H atoms) fullmatrix approximation on F^2 . The hydrogen atoms were located from a difference electron-density map and refined using a riding model with dependent thermal parameters. The H(3) atom at the N(3) atom was refined independently. The X-ray diffraction

 Table 3. Crystallographic parameters and the data collection statistics for compound 2b

Parameter	Value	
Molecular formula	$C_{18}H_{14}F_{3}N_{5}O_{2}$	
Molecular weight	389.34	
Temperature/K	295(2)	
Crystal system	Monoclinic	
Space group	$P2_1/n$	
a/Å	15.3784(17)	
b/Å	7.6382(8)	
c/Å	16.519(2)	
α/deg	90	
β/deg	116.624(12)	
γ/deg	90	
$V/Å^3$	1734.6(4)	
Ζ	4	
$d_{\rm calc}/{\rm g~cm^{-3}}$	1.491	
μ/mm^{-1}	0.123	
Scan range/deg	$2.96 \le \theta \le 28.29$	
Scan completeness (%)	98.8	
Number of measured	4257	
reflections (R_{int})	(0.0354)	
Number of reflections with $I \ge 2\sigma(I)$	2356	
Number of parameters refined	257	
S	1.000	
R_1 (for $I > 2\sigma(I)$)	0.0423	
wR_2 (for $I > 2\sigma(I)$)	0.0839	
R_1 (for all reflections)	0.0957	
wR_2 (for all reflections)	0.0922	
Residual electron	0.202/-0.172	
density/e Å ⁻³ , ρ_{max}/ρ_{min}		

data obtained have been deposited with the Cambridge Crystallographic Data Center (CCDC No. 726 716) and can be made available free upon request on www.ccdc.cam.ac.uk/data_request/ cifwww.ccdc.cam.ac.uk/data_request/cif. Selected crystallographic parameters and the data collection statistics for compound **2b** are summarized in Table 3. Selected bond lengths and bond angles in structure **2b** are given in Table 1.

This work was financially supported by the Russian Foundation for Basic Research (Project Nos 08-03-00376_a and 08-03-92208 GFEN_a).

References

1. O. A. Attanasi, L. De Crescentini, P. Filippone, F. Mantellini, R. Perrulli, S. Santeusanio, *ARKIVOC*, 2002, 274.

- T. G. Deryabina, N. P. Belskaia, M. I. Kodess, W. Dehaen, S. Toppet, V. A. Bakulev, *Tetrahedron Lett.*, 2006, 47, 1853.
- N. P. Belskaia, T. G. Deryabina, A. V. Koksharov, M. I. Kodess, W. Dehaen, A. T. Lebedev, V. A. Bakulev, *Tetrahedron Lett.*, 2007, 48, 9128.
- 4. G. M. Sheldrick, *SHELXS97, Program for the Solution of Crystal Structure*, University of Göttingen, Göttingen, Germany, 1997.
- 5. G. M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structure, University of Göttingen, Göttingen, Germany, 1997.

Received April 1, 2009; in revised form September 30, 2009