

Mo₂C Modification by CO₂, H₂O, and O₂: Effects of Oxygen Content and Oxygen Source on Rates and Selectivity of *m*-Cresol Hydrodeoxygenation

Cha-Jung Chen and Aditya Bhan*[®]

Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States

Supporting Information

ABSTRACT: Vapor-phase *m*-cresol hydrodeoxygenation rates on oxygenate-modified Mo₂C catalysts prepared by pretreating fresh Mo₂C catalysts in 1 kPa of O₂, H₂O, and CO₂ at 333 K showed that (i) molecular oxygen has a higher propensity to deposit oxygen (O/Mo_{bulk} before HDO = 0.23 \pm 0.02) on fresh Mo₂C, compared to CO₂ and H₂O (O/ Mo_{bulk} before HDO \approx 0.036), as assessed from temperatureprogrammed surface reaction with H₂, and (ii) oxygen adsorbed in amounts exceeding ~0.06 \pm 0.01 of O/Mo_{bulk} poisons the metal-like sites for toluene synthesis as inferred from a 10-fold decrease in toluene synthesis rate per gram on the O₂-1 kPa (333 K)-Mo₂C compared to that on fresh

 Mo_2C , H_2O-1 kPa (333 K)- Mo_2C , and CO_2-1 kPa (333 K)- Mo_2C catalysts. Invariant turnover frequencies of toluene synthesis measured from *in situ* CO titration among the O_2 -, H_2O -, and CO_2 -modified samples demonstrate that the effect of adsorbed oxygen is independent of the oxygen source.

KEYWORDS: *m*-cresol, hydrodeoxygenation, lignin, biofuels, oxygenate-modification

1. INTRODUCTION

Transition-metal carbides have been shown to catalyze hydrodeoxygenation (HDO) reactions to convert biomassderived compounds to fuels and chemicals.¹⁻⁸ These catalysts are selective in cleaving C–O and C=O bonds at ambient H_2 pressure and low temperatures (423-623 K),^{1,2,7,9,10} such that the aromaticity of furan and benzene rings can be retained during HDO.^{10,11} Molybdenum carbides exhibit stable surfaces that vary with surface coverage of O and C, as a result of reaction environments or synthesis protocols,¹² and display heterogeneity in both bulk¹³ and surface^{14,15} compositions, and in surface structures, including distinct binding sites¹⁶⁻¹⁹ and nonstoichiometric surface compositions.^{13,20} This complexity in bulk and surface structure of molybdenum carbides is accentuated in the presence of oxygenates during HDO of bio-oil or pyrolysis vapor on the oxophilic transition-metal carbides,^{21–24} which can deposit oxygen on the catalyst. Surface oxygen species can poison the metal-like sites required for HDO²⁵ and/or generate Brønsted acid sites.²⁶

Oxygen (~4.7 × 10⁻⁴ mol g_{cat}^{-1}) and carbon (equivalent of ~1.4 × 10⁻³ mol g_{cat}^{-1} C₆ species) deposition was observed during an initial transient observed during anisole HDO on bulk β -Mo₂C that had been passivated in 1% O₂/He and pretreated in H₂ for 1 h at 723 K prior to reaction at 423 K.²⁵ Cyclohexane was observed in the effluent during this initial transient, as observed from online mass spectrometric analysis.

Oxygen deposition occurred during this transient; concurrently, cyclohexane rates dropped to almost zero and benzene was observed, suggesting that hydrogenation of benzene to cyclohexane was inhibited by oxygen deposition (see Figure 4a in ref 25). A similar effect of oxygen deposition was reported in our recent studies, noting that the hydrogenation rates of benzene and toluene on Mo_2C were irreversibly inhibited when water or methanol was co-fed (see Figure 5 in ref 10). These results demonstrate that oxygen deposition under reaction environments alters catalyst composition and function; the effect of the source of oxygen on HDO catalysis is yet unclear.

Metal-like sites were found to be involved in selective benzene synthesis (>90% C_6^+ selectivity) from vapor-phase hydrodeoxygenation of anisole on Mo₂C and W₂C catalysts, as co-feeds of carbon monoxide were noted to inhibit HDO rates under reaction conditions and turnover frequencies of benzene synthesis at 423 K (~10⁻³ mol mol_{CO}⁻¹ s⁻¹ for Mo₂C and ~10⁻⁴ mol mol_{CO}⁻¹ s⁻¹ for W₂C) were noted to be invariant with different CO co-feed pressures.^{25,27} The turnover frequency of benzene synthesis from anisole HDO on a fresh Mo₂C formulation (~1.7 × 10⁻³ mol mol_{CO}⁻¹ s⁻¹) was found to be almost the same as that on an O₂-modified Mo₂C catalyst

Received: September 27, 2016 Revised: December 17, 2016 (~1.5 × 10⁻³ mol mol_{CO}⁻¹ s⁻¹; O/Mo_{bulk} (molar ratio) = 0.075), while the benzene synthesis rate normalized per gram catalyst was three times higher on the fresh Mo₂C, indicating that the number of sites responsible for anisole HDO on Mo₂C decreases with O₂ treatment.²⁵

Oxygen-modified tungsten carbide materials prepared by exposing freshly synthesized tungsten carbides to O₂ at various temperatures have been reported to exhibit bifunctionality.^{28–} Alkane (n-hexane and n-heptane) hydrogenolysis rates on bifunctional tungsten carbides decreased concurrently with an increase of alkane isomerization rates as the extent of oxygen modification, quantified by temperature-programmed reduction (TPR) and ex situ CO chemisorption, increased.^{28,29} Sullivan et al.²⁶ reported that a \sim 30-fold increase in propylene synthesis rates per gram Mo₂C catalyst from isopropyl alcohol dehydration at 415 K was observed when O₂ co-feed was varied from 0 to 13.5 kPa. Brønsted acid sites were found to be responsible for isopropyl alcohol dehydration to propylene on Mo₂C formulations with oxygen co-feed (0-13.5 kPa), as evidenced by the invariance of propylene rates normalized to acid sites titrated in situ by 2,6-di-tert-butylpyridine.²⁶ The O 1s peak at 532.5 eV assigned to surface hydroxyl species observed from X-ray photoelectron spectroscopy (XPS) on a Mo₂C catalyst after H₂ pretreatment was correlated with the surface acidity of Mo₂C measured from temperature-programmed desorption of ammonia (NH₃-TPD).¹ These surface hydroxyl groups (O 1s peak at 532.5 eV) were also observed on spent Mo₂C catalysts from the hydrodeoxygenation of acetic acid at 623 K without exposure to air.¹ These results show that a change in site densities of metal and acid functions on tungsten carbide formulations can result from changing O₂ pretreatment conditions and the functionality of Mo₂C can be adjusted to primarily acidic by varying the O₂ co-feed pressure during the reaction.

The propensity for O_{2} , CO_{2} , and $H_{2}O$ as oxidants to oxidize pure β -Mo₂C surface was evaluated using density functional theory (DFT) calculations on β -Mo₂C (011) and (101) surfaces with mixed Mo/C terminations.³¹ The reaction energies for surface oxidation by O2, CO2, and H2O to deposit 0.125 monolayer (ML) to 1 ML of oxygen on these surfaces showed that O₂-Mo₂C reactions have a much larger enthalpy (-13 eV to -2 eV) than those of H₂O-Mo₂C and CO_2 -Mo₂C (approximately -2 eV to 0 eV or >0 eV) reactions at 0 K.³¹ However, it is still unclear (i) how the differences in the oxidation propensity of O2, CO2, and H2O translate to the amount of oxygen adsorbed on bulk Mo₂C, which may contain residual oxygen in the structure after catalyst synthesis,³² and (ii) what are the resulting consequences of oxygen loadings from different oxygen sources on HDO rates and selectivity catalyzed by Mo₂C.

We report the effects of oxygenate modification on Mo₂C for *m*-cresol HDO on Mo₂C catalysts treated in 1 kPa of O₂, CO₂, or H₂O at 333 K. Independent kinetic and *in situ* chemical titration studies showed that two distinct sites—one of which has metal-like characteristics—are involved in *m*-cresol HDO. Temperature-programmed surface reaction with H₂ (TPSR with H₂) was used to quantify the amount of oxygen incorporated in the catalyst from oxygenate treatment (O/Mo_{bulk} before HDO) and/or from *m*-cresol HDO (O/Mo_{bulk} after HDO). Molecular oxygen has a higher propensity to deposit oxygen on Mo₂C (O/Mo_{bulk} before HDO = 0.23 ± 0.02), compared to CO₂ and H₂O (O/Mo_{bulk} before HDO ≈ 0.036), as inferred from TPSR with H₂ before HDO. In situ

chemical titration and m-cresol HDO studies on fresh and oxygenate-modified Mo_2C catalysts showed that adsorbed oxygen poisons the metal-like sites responsible for *m*-cresol HDO and that the effect of adsorbed oxygen is independent of the source of oxygen.

2. MATERIALS AND METHODS

2.1. Kinetics and In Situ Chemical Titration Studies for m-Cresol HDO. 2.1.1. Catalyst Synthesis and Characterization. Molybdenum carbide catalysts were synthesized based on protocols reported in a prior report.¹⁰ Ammonium molybdate tetrahydrate (~1.2 g, Sigma, 99.98%, trace metal basis; sieved, 177-400 µm, (NH₄)₆Mo₇O₂₄·4H₂O) was loaded to a tubular quartz reactor (inner diameter (ID) of 10 mm) placed in a tube furnace (Applied Test System, Series 3210) controlled by a Watlow Temperature Controller (96 series) and was treated in a gas mixture (total flow rate of ~ 2.75 cm³ s^{-1}) of 15 vol %/85 vol % of CH₄ (Matheson, 99.97%) and H₂ (Minneapolis Oxygen, 99.999%) at ~623 K for 5 h at a ramping rate of ~ 0.06 K s⁻¹ from room temperature (RT), then treated at ~863 K for 3 h at a ramping rate of ~0.047 K s⁻¹. Passivation of the resulting material was done at RT using 1% O₂/He (Matheson, Certified Standard Purity; total flow \approx 1.67 cm³ s⁻¹) for ~2 h.

 N_2 adsorption/desorption (Micromeritics ASAP 2020) measurements at \sim 77 K were used to determine the Brunauer-Emmett-Teller (BET) surface area of Mo₂C catalysts; the sample was degassed (<10 μ m Hg) at 523 K for at least 4 h before N_2 adsorption. X-ray diffraction (XRD) (using a Bruker, Model D8 Discover, 2D X-ray diffractometer with a two-dimensional VÅNTEC-500 detector) was used to determine the bulk structure of molybdenum carbide after mcresol HDO. Two-dimensional images were collected using Cu $K\alpha$ X-ray radiation with a graphite monochromator and a 0.8 mm point collimator measured in three measurement frames at $2\theta = 25^{\circ}$, 55° , and 85° with a 900 s frame/dwell, which were then converted to one-dimensional (1D) intensity vs 2θ for analysis. Ex situ CO chemisorption (Matheson, 99.5%) uptake at 323 K for Mo₂C samples was measured using a Micromeritics ASAP 2020 instrument, in which ~0.14 g passivated Mo_2C was treated in H_2 at 723 K for 1 h, followed by degassing $(\sim 2 \ \mu m Hg)$ at 723 K for 2 h, after being evacuated at 383 K $(\sim 2 \,\mu m \text{ Hg})$ for 0.5 h. The uptake of irreversibly adsorbed CO was then obtained from the difference between two adsorption isotherms (from 100 mm Hg to 450 mm Hg at 323 K) extrapolated to zero pressure; the second isotherm was taken after the cell was degassed at $\sim 2 \mu m$ Hg to remove weakly adsorbed species. Ex situ CO chemisorption measurements were conducted within a seven-day period prior to the kinetic studies for vapor-phase *m*-cresol HDO.

X-ray photoelectron spectroscopy (XPS) measurements were performed using an SSX-100 spectrometer (Surface Science Laboratories, Inc.) with an Al K α X-ray source operating at 200 W on 1 mm × 1 mm area samples. High-resolution spectra were collected using 50 eV pass energy and 0.1 eV step⁻¹. The atomic percentages were calculated from the survey spectrum (150 eV pass energy and 1 eV step⁻¹) using the ESCA Hawk software. The lowest energy Mo 3d_{5/2} peak was used as the reference (228.0 eV for Mo₂C).^{33,34} A combination of Gaussian/Lorentzian functions with the Gaussian percentages being at 80% or higher was used for curve fitting.

2.1.2. Kinetic Studies for Vapor-Phase Hydrodeoxygenation (HDO) of m-Cresol. Steady-state vapor-phase HDO Scheme 1. Experimental Procedures Used in This Study to Investigate the Effect of Oxygenate Pretreatment on Mo_2C for Hydrodeoxygenation (HDO)

reactions of m-cresol on Mo₂C catalyst were carried out in a tubular quartz reactor (ID = 10 mm) placed in a tube furnace (Applied Test System, Series 3210), controlled by a Watlow Temperature Controller (96 series). The reaction temperature was monitored by a thermocouple inserted in the outer thermowell of the reactor. The reactant gas mixture was comprised of *m*-cresol $(0.03\%)/H_2$ (84%)/He (balance) (mol%) at a total flow rate of ~3.33 cm³ s⁻¹ and a total pressure of ~112 kPa. *m*-Cresol (Sigma, FG, \geq 98%) was added to the flow line, using a syringe pump (KD Scientific, Model 100). Reactor effluents were analyzed with a flame ionization detection (FID) device, using an online gas chromatography (GC) system (Agilent, Model 7890) with a methyl-siloxane capillary column (HP-1, 50 m \times 320 μ m \times 0.52 μ m). All passivated molybdenum carbide samples were treated in H₂ (Minneapolis Oxygen, 99.999%; ~ 1.67 cm³ s⁻¹) at 773 K (~ 0.1 K s^{-1}) for 1 h prior to reaction. All flow lines were heated to at least 398 K via resistive heating to prevent condensation of the compounds. *m*-Cresol conversion and C_6^+ product selectivity were calculated as follows:

$$m\text{-cresol conversion (\%)} = \frac{(\text{sum of moles of C in products})_{\text{out}}}{(\text{moles of C in }m\text{-cresol})_{\text{in}}} \times 100$$
(1)

$$C_6^+ \text{ product selectivity } (\%) = \frac{\text{moles of } C_6^+ \text{ product } i}{\text{moles of } C_6^+ \text{ products}} \times 100$$
(2)

2.1.3. In Situ CO Titration for Vapor-Phase Hydrodeoxygenation (HDO) of m-Cresol. In situ CO titration studies were conducted to probe the identity and density of the operational catalytic sites for m-cresol HDO on Mo_2C formulations. A co-feed of CO with Ar or He as an internal tracer (0.0125, 0.025, or 0.0375 cm³ s⁻¹ CO in 0.033 cm³ s⁻¹ Ar) was introduced to the reactant mixture after steady-state mcresol synthesis rates were observed. The transient responses of CO and Ar/He were monitored by an online mass spectrometer (MKS, Model Cirrus 200 Quadrupole mass spectrometer system). Toluene synthesis rates before and after CO co-feed were quantified by online GC.

2.2. Oxygenate Treatment Studies. 2.2.1. Oxygenate Treatment on Fresh Mo_2C . Fresh Mo_2C (~1 g_{cat}) was

synthesized following the procedures described in Section 2.1.1, and was subsequently cooled to the oxygenate treatment temperature (333, 363, or 423 K) in the same CH_4/H_2 flow. The freshly synthesized Mo₂C was then exposed to a gas stream containing the oxygenate (0.05-6 kPa)-O₂, CO₂, or H_2O — and an inert (Ar or He) at a total gas flow rate of 1.67 cm^3 s⁻¹ at ambient pressure for 2 h; the corresponding oxygenate treatment pressures are summarized in Scheme 1. Water was added to the flow lines by a syringe pump (KD Scientific, Model 100). The catalyst was then heated to 423 K in 0.5 h and held at 423 K for 1.5 h in a flow of helium (10%)/H₂ (balance) (mol %) at ambient pressure and at a total flow rate of ~ 1.83 cm³ s⁻¹ to remove any loosely bound species from the catalyst. The nomenclature for the oxygenatemodified Mo₂C catalysts reported in this work is of the form, oxygenate-treatment pressure (temperature)-Mo₂C. A freshly synthesized molybdenum carbide catalyst that was treated with 1 kPa O_2 at 333 K, for example, is denoted as O_2-1 kPa (333) K)-Mo₂C. All oxygenate-modified Mo₂C catalysts studied in this work are listed in Scheme 1.

2.2.2. m-Cresol HDO on Fresh/Oxygenate-Treated Mo₂C. Vapor-phase HDO was used as a probe reaction to study the effect of oxygenate modification on Mo₂C catalysts. The reactor setup is the same as that described in section 2.1.2. The reactant flow in all oxygenate treatment studies was comprised of *m*-cresol (1%)/He (10%)/H₂ (balance) (mol %), the total flow rate was 1.83 cm³ s⁻¹ at a total pressure of ~107 kPa and a temperature of 423 K.

2.2.3. Temperature-Programmed Surface Reaction (TPSR) with H_2 . Temperature-programmed surface reaction (TPSR) with H_2 was performed to quantify the amount of oxygen deposited on a fresh Mo₂C catalyst from oxygenate modification and on a fresh and an oxygenate-modified Mo₂C catalyst from *m*-cresol HDO at 423 K. The catalyst was heated from 423 K to 773 K in 1 h and held at 773 K for 0.5 h in a flow of helium $(10\%)/H_2$ (balance) (mol %) at a total flow rate of ~1.83 cm³ s⁻¹ at ambient pressure. The oxygen uptake on the catalyst (i) after oxygenate treatment, denoted as O/Mo_{bulk} after HDO, and (ii) after *m*-cresol HDO, denoted as O/Mo_{bulk} after HDO, was estimated by the H₂O signal monitored by an online mass spectrometer (MKS, Model Cirrus 200 Quadrupole mass spectrometer system) during the TPSR process (Figure S1 in the Supporting

Figure 1. (a) Toluene selectivity and (b) *m*-cresol conversion for *m*-cresol hydrodeoxygenation (HDO) on Mo₂C. Feed = *m*-cresol (0.04%)/H₂ (balance) (mol %) at a total pressure of ~108 kPa and at a temperature of 423 K; total flow rate ≈ 2.17 cm³ s⁻¹; 0.14 g_{cat} of Mo₂C catalyst; *ex situ* CO uptake $\approx 94 \ \mu$ mol g_{cat}⁻¹.

Figure 2. (a) Effect of (\blacksquare) H₂ pressure and (\bullet) *m*-cresol pressure on turnover frequencies (TOFs) of toluene synthesis determined by *ex situ* CO chemisorption (184–240 μ mol g_{cat}⁻¹) on Mo₂C catalysts at a total pressure of ~110 kPa and a temperature of 423 K. H₂ pressure was varied from 10 kPa to 110 kPa (balance being helium) at a *m*-cresol pressure of 0.03 kPa; the *m*-cresol pressure was varied from 0.03–1.5 at a H₂ pressure of 50 kPa (balance being helium); total flow rate ≈ 3.33 cm³ s⁻¹; ~0.02–0.06 g_{cat} of Mo₂C. (b) Temperature dependencies for TOF of toluene synthesis determined by *ex situ* CO chemisorption (236 μ mol g_{cat}⁻¹) from *m*-cresol HDO at a total pressure of ~112 kPa and a temperature of 400–450 K. *m*-Cresol pressure ≈ 0.028 kPa; total flow rate ≈ 3.33 cm³ s⁻¹; ~0.016 g_{cat} of catalyst.

Information). Water was found to be the major oxygencontaining compound eluted during TPSR, as also noted by Lee et al.²⁵ and Choi et al.³² for TPSR with H₂ on Mo₂C after anisole HDO at 423 K and TPSR with H₂ for the as-prepared Mo₂C catalysts, respectively. Scheme 1 illustrates the experimental procedures for the oxygenate treatment studies. An O/Mo_{bulk} value was obtained from eq 3.

$$O/Mo_{bulk} = \frac{\text{moles of oxygen uptake measured from TPSR}}{\text{moles of Mo in Mo}_2C \text{ sample}}$$
(3)

Independent H₂ TPSR experiments were conducted on the fresh Mo₂C, O₂-1 kPa (333 K)-Mo₂C, H₂O-1 kPa (333 K)-Mo₂C, and CO₂-1 kPa (333 K)-Mo₂C catalysts, in which, after the oxygenate treatment, the catalyst was heated to 773 K in 1 h and held at 773 K for 0.5 h, then subsequently heated to 973 K in 0.5 h and held at 973 K for 2 h in a flow of helium (10%)/H₂ (balance) (mol %) at a total flow rate of ~1.83 cm³ s⁻¹ and at ambient pressure (Figure S1).

3. RESULTS AND DISCUSSION

3.1. Kinetics and In Situ Chemical Titration Studies for *m*-Cresol HDO. 3.1.1. Kinetic Studies for Vapor-Phase *Hydrodeoxygenation (HDO) of m*-Cresol. Molybdenum carbide catalysts have been shown to selectively catalyze vapor-phase anisole HDO at 423 K and ambient H₂ pressure $(>90\% C_6^+$ selectivity for benzene and cyclohexane).^{27,35} Similar to anisole HDO on Mo₂C, high selectivity for toluene (>90% C_6^+ selectivity) was observed from *m*-cresol HDO on Mo₂C at ambient pressure and at temperatures between 423 K and 483 K for ~240 ks time-on-stream (TOS) (Figure 1a). A decrease of <5% in *m*-cresol conversion at 423 K was observed after two temperature cycles (423-483 K) were employed during the \sim 240 ks TOS (Figure 1b), demonstrating that the catalyst was stable for *m*-cresol HDO. High selectivity (>75%) to toluene from vapor-phase m-cresol HDO has also been reported under ambient pressure on Pd/Fe₂O₃ catalysts at 573 K,³⁶ Pt/H-BEA at 623 and 673 K,^{37,38} Pt/SiO₂ at 553 K,³⁹ and 10 wt % MoO_3/ZrO_2 (>99% toluene selectivity)⁴⁰ at 593 K, and at ~5 atm on Pt/TiO₂ at 623 K.⁴¹ m-Cresol conversion on these catalysts, however, decreases with TOS.³⁸

The turnover frequencies (TOFs) of toluene synthesis determined by *ex situ* CO chemisorption on Mo_2C are zero-order-dependent on *m*-cresol pressure (0.03–1.5 kPa) and are almost-half-order-dependent on H₂ pressure (10–110 kPa) (Figure 2a). The concurrent zero-order dependence on the *m*-cresol pressure and the almost-half-order dependence on H₂ pressure for toluene synthesis suggests that two distinct sites, which catalyze (i) hydrogen dissociation and (ii) *m*-cresol

Figure 3. (a) Toluene synthesis rates versus time-on-stream (TOS) and (b) normalized transient mass spectrometer signals of toluene (m/z = 91), Ar (m/z = 40), and CO (m/z = 28), as a function of time during the course of *in situ* CO titration for *m*-cresol HDO over ~4 g_{cat} of Mo₂C catalyst (75 μ mol g_{cat}⁻¹ *ex situ* CO uptake) at a total pressure of ~120 kPa and a temperature of 423 K. *m*-Cresol (0.3%)/H₂ (balance) (mol %), total flow rate \approx 3.33 cm³ s⁻¹, 28% conversion. Co-feed flow rates: 0.0125, 0.025, or 0.0375 cm³ s⁻¹ CO in 0.033 cm³ s⁻¹ Ar.

Table 1. O/Mo _{bulk} Ratio before and after <i>m</i> -Cresc	I HDO"
--	--------

	O ₂ -0.05 kPa (333 K)-Mo ₂ C ^b	O ₂ -1 kPa (333 K)-Mo ₂ C	H ₂ O-1 kPa (333 K)-Mo ₂ C	CO ₂ -1 kPa (333 K)-Mo ₂ C	fresh Mo ₂ C
O/Mo _{bulk} before HDO	0.030 ± 0.005	0.23 ± 0.02	0.038 ± 0.010	0.035 ± 0.010	0
O/Mo _{bulk} after HDO	0.054 ± 0.005	0.23 ± 0.02	0.07 ± 0.01	0.06 ± 0.01	0.05 ± 0.01
conversion (%)	~18	~1.5	~18	~18	~21
toluene synthesis rate (× 10^{-8} mol g_{cat}^{-1} s ⁻¹)	7.9	0.61	8.3	8.7	9.6
toluene TOF ($\times 10^{-3} \text{ mol mol}_{CO}^{-1} \text{ s}^{-1}$)	3.8 ± 0.8	2.1 ± 0.4	3.4 ± 0.5	4.5 ± 0.8	4.5 ± 0.7
metal-like site density $(\mu \text{mol } g_{\text{cat}}^{-1})$	21	3	25	19	21
BET surface area $(m^2 g_{cat}^{-1})$	83	76	n/a	81	96
toluene selectivity (%)	95	91	96	96	95
methylcyclohexanes ^c selectivity (%)	3	5	2	2	3
selectivity of others $^{d}(\%)$	2	4	2	2	2

^{*a*}*m*-Cresol conversion, toluene synthesis rates, turnover frequencies of toluene synthesis, toluene selectivity, methylcyclohexane selectivity, and the selectivity of others from *m*-cresol HDO on fresh Mo₂C, O₂-1 kPa (333 K)-Mo₂C, H₂O-1 kPa (333 K)-Mo₂C, CO₂-1 kPa (333 K)-Mo₂C, and O₂-0.05 kPa (333 K)-Mo₂C catalysts and their corresponding BET surface area after *m*-cresol HDO. Feed = *m*-cresol (1%)/He (10%)/H₂ (balance) (mol %) at ~107 kPa total pressure and at 423 K; total flow rate = 1.83 cm³ s⁻¹; 1 g_{cat} of catalyst. ^{*b*}O₂-0.05 kPa (333 K)-Mo₂C treatment conditions: 0.083 cm³ s⁻¹ 1% O₂/He with 1.58 cm³ s⁻¹ Ar. ^{*c*}Methylcyclohexanes is the sum of methylcyclohexane and methylcyclohexenes. ^{*d*}Others is the sum of unidentified C₆⁺ hydrocarbons having boiling points higher than 500 K, as inferred from the retention time of the species in the GC chromatogram, which were quantified using m-cresol to give upper bounds of selectivity and rate.

activation, are required for *m*-cresol HDO on molybdenum carbide catalysts in a Langmuir–Hinshelwood-type surface reaction mechanism. These results are consistent with the previously reported reaction mechanism for anisole HDO on bulk Mo₂C and W₂C catalysts.^{27,35} The apparent activation energy for toluene synthesis estimated from the Arrhenius plot (Figure 2b) between 400 K and 450 K is ~94 ± 2 kJ mol⁻¹ for *m*-cresol HDO on Mo₂C.

3.1.2. In Situ CO Titration for Vapor-Phase Hydrodeoxygenation of m-Cresol. The number of operational sites during vapor-phase m-cresol HDO was determined by *in situ* CO titration and was subsequently used to assess the TOF of toluene synthesis. A co-feed of pure CO (0.4-1.1 kPa) with Ar as an internal tracer was introduced (the shaded areas in Figure 3a) after steady-state toluene synthesis rates were observed. Toluene synthesis rates from m-cresol HDO on Mo₂C catalyst were inhibited in the presence of a CO co-feed and were recovered when the co-feed was removed, suggesting that CO is a reversible titrant for m-cresol HDO, similar to anisole HDO on Mo₂C and W₂C catalysts.^{25,27} These results suggest that metal-like sites^{42,43} are involved in Ar–OH bond cleavage.

The amount of CO adsorbed during the course of in situ titration for *m*-cresol HDO was obtained by integrating the area circumscribed by the Ar and CO signals in the mass spectrometric measurement (au_{CO}) (see Figure 3b) and multiplying it by the corresponding CO flow rate. No CO₂ signal was observed in the presence of a CO co-feed, suggesting that the water-gas-shift reaction occurs at negligible rates under the reaction conditions investigated. Less than 1% of the adsorbed CO undergoes hydrogenation reaction to form CH₄, as estimated by multiplying $\tau_{\rm CO}$ by the observed methane synthesis rates (0.7–1.2 \times 10⁻⁹ mol ${\rm g_{cat}}^{-1}$ s⁻¹) in the presence of a CO co-feed. The TOF of toluene synthesis was estimated by dividing the difference in toluene synthesis rates without and with a CO co-feed by the amount of CO adsorbed. The TOF of toluene synthesis from *m*-cresol HDO on Mo₂C is \sim (3.6 ± 0.7) \times 10⁻³ mol mol_{CO}⁻¹ s⁻¹ at 423 K, which is of the same order of magnitude as the TOF of benzene synthesis from anisole HDO on Mo₂C formulations at 423 K ($\sim 1 \times 10^{-3}$ mol $mol_{CO}^{-1} s^{-1}$,^{25,27} suggesting that the same catalytic sites cleave Ar–OH and Ar-OCH₃ bonds.

3.2. Oxygenate Treatment Studies. 3.2.1. Mo_2C Modification by CO_2 , H_2O , and O_2 . Edamoto et al.⁴⁴ showed from surface science studies that O_2 can adsorb dissociatively on a Cor Mo-terminated $Mo_2C(0001)$ surface at room temperature, as evidenced by XPS analysis in which the peaks on the C 1s and Mo 3d spectra of an O_2 -treated $Mo_2C(0001)$ surface broadened and shifted to higher binding energies, compared to those measured on a $Mo_2C(0001)$ surface without exposure to O_2 . DFT calculations from Shi et al.⁴⁵ also showed that O_2 adsorbs dissociatively and exothermically on low-index surfaces, including pure or oxygen-covered β -Mo₂C(100) and β -Mo₂C(011) surfaces with negative adsorption energies (approximately -3 eV at 0 K). Lee et al.²⁵ previously prepared an O_2 -modified bulk β -Mo₂C, using an approach similar to that reported by Ribeiro et al.^{46,47} TPSR with H₂ on the O_2 modified bulk β -Mo₂C catalyst monitored by an online mass spectrometer showed that oxygen was left behind on the surface and was removed as H₂O by H₂.

Density functional theory (DFT) calculations in studying the mechanism for water–gas-shift on Mo- or C-terminated β -Mo₂C(001) surfaces⁴⁸ and on a β -Mo₂C(001) slab⁴⁹ suggest that H₂O and CO₂ can dissociate on these surfaces. The reaction energies for O* formation from $H_2O_{(g)}$ ($H_2O_{(g)} \rightarrow O^*$ + $H_{2(\sigma)}$) on Mo- and C-terminated β -Mo₂C(001) surfaces with 0.2-1.2 monolayers of oxygen coverage were found to be -1.5eV to -5.5 eV and -0.5 eV to -1.5 eV, respectively.⁴⁸ Porosoff et al.⁵⁰ have probed and established $\overline{\text{CO}_2}$ dissociation on a model Mo₂C surface prepared by carburizing an Mo(110) substrate, using ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and TPSR experiments monitored by mass spectrometry. A C 1s peak at 283.6 eV assigned to an oxycarbide (O-Mo-C) and an O 1s peak at 531.7 eV assigned to an oxygen bonded to carbon were observed on the model Mo₂C surface both when exposed to 150 mTorr CO₂ and under CO₂ hydrogenation reaction conditions (150 mTorr CO₂ and 553 mTorr H₂ at 523 K),⁵⁰ suggesting that CO₂ is dissociated to O and CO on a $Mo_2C/Mo(110)$ surface.

The amounts of oxygen deposited from oxygenate treatment (O/Mo_{bulk} before HDO) on Mo₂C samples at 333 K with 1 kPa of O₂, H₂O, and CO₂ were quantified using TPSR with H₂ at 773 K and are summarized in Table 1. The value of O/ Mo_{bulk} before HDO is ~6 times higher on $O_2\text{-modified}\ Mo_2C$ $(O/Mo_{bulk} = 0.23 \pm 0.02)$ than that on H₂O $(O/Mo_{bulk} = 0.038)$ \pm 0.010) and CO_2-modified (O/Mo_{bulk} = 0.035 \pm 0.010) samples, demonstrating that O2 has a stronger propensity to leave behind adsorbed oxygen on a fresh Mo₂C. A temperature exotherm ($\Delta T \approx 20$ K) was observed when 1 kPa of O₂ was introduced to the fresh Mo₂C at 333 K; however, the temperature exotherm observed when introducing 1 kPa of H_2O or CO_2 to the fresh Mo_2C at 333 K was only ~2 K. These experimental observations mirror the DFT studies reported by Liu and Rodriguez,⁴⁸ in which O₂ adsorption energies on Moterminated and C-terminated pure $Mo_2C(001)$ surfaces (-8.15) eV and -5.4 eV) were found to be larger than those for H₂O adsorption (-1.52 eV and -1.33 eV) and CO₂ adsorption (-0.88 eV and -0.27 eV) on the same surfaces. Thermodynamic calculations also show that the oxidation propensity of $O_{2(g)}$ is stronger than that of $H_2O_{(g)}$ for the formation of $MoO_{2(s)}$ ($\Delta G_{rxn, 600 \text{ K}} = -1301 \text{ kJ mol}^{-1}$ vs $\Delta G_{rxn, 600 \text{ K}} = -17 \text{ kJ}$ mol⁻¹) or $MoO_{3(s)}$ ($\Delta G_{rxn, 600 \text{ K}} = -1530 \text{ kJ mol}^{-1}$ vs $\Delta G_{rxn, 600 \text{ K}} = 183 \text{ kJ mol}^{-1}$) from $Mo_2C_{(s)}^{51,52}$.

We confirmed that the majority of the oxygen added to the fresh Mo₂C catalyst from the oxygenate treatment is accounted for from TPSR with H₂ at 773 K based on the observations that (i) an amount of residual oxygen (O/Mo_{bulk} \approx 0.07; Figure S1a

in the Supporting Information) is observed on a freshly synthesized Mo₂C catalyst and it can only be removed at a temperature higher than 823 K (Figure S1a), and (ii) the values of O/Mo_{bulk} before HDO quantified from TPSR with H₂ at 773 K are comparable to those quantified via TPSR with H₂ at 973 K (±10%) after subtracting the amount of residual oxygen (O/Mo_{bulk} \approx 0.07) in a freshly synthesized Mo₂C catalyst (Table S1 in the Supporting Information). Therefore, TPSR with H₂ at 773 K is used to quantify the oxygen loadings from oxygenate modification or HDO reaction on Mo₂C in this work.

3.2.2. m-Cresol HDO on CO_2 -, H_2O -, or O_2 -Modified Mo_2C . Vapor-phase *m*-cresol HDO at 423 K was performed on fresh Mo_2C and on Mo_2C samples treated with 1 kPa of O_2 , H_2O , and CO_2 at 333 K to investigate the effects of oxygenate modification on the metal-like properties of Mo_2C . Toluene synthesis rates from *m*-cresol HDO at 423 K reported in this work (Table 1) are average values taken between 7.2–14.4 ks TOS, since the decrease in toluene synthesis rates observed in this regime is <5% on all the samples (Figure 4). Toluene

Figure 4. Toluene synthesis rates from *m*-cresol HDO over (•) fresh Mo_2C , (\triangle) H_2O-1 kPa (333 K) $-Mo_2C$, (\diamondsuit) CO_2-1 kPa (333 K) $-Mo_2C$, and (\Box) O_2-1 kPa (333 K) $-Mo_2C$ catalysts. Feed = *m*-cresol (1%)/He (10%)/H₂ (balance) (mol %) at a total pressure of ~107 kPa and a temperature of 423 K; total flow rate = 1.83 cm³ s⁻¹; 1 g_{cat} of catalyst.

synthesis rates from *m*-cresol HDO are similar on fresh Mo₂C, and H₂O and CO₂-modified Mo₂C catalysts ((8.3–9.6) × 10⁻⁸ mol g_{cat}⁻¹ s⁻¹, Table 1), suggesting that the surface environment of these catalysts is similar. However, the toluene synthesis rate on O₂-modified Mo₂C is an order of magnitude smaller (6.1×10^{-9} mol g_{cat}⁻¹ s⁻¹) than rates measured on fresh Mo₂C, and H₂O and CO₂-modified Mo₂C. The lower toluene synthesis rate on O₂-modified Mo₂C, compared to that on the fresh samples and H₂O- and CO₂-modified samples could possibly result from (i) a decrease in the surface area due to the large temperature exotherm ($\Delta T \approx 20$ K) during 1 kPa O₂ treatment and/or (ii) a change in the number and/or the identity of the active sites as discussed below and in section 3.2.3.

Brunauer–Emmett–Teller (BET) surface area measurements were performed on the spent fresh Mo₂C, O₂–1 kPa (333 K)–Mo₂C, and CO₂–1 kPa (333 K)–Mo₂C catalysts after *m*-cresol HDO, which were subsequently treated in 1% O₂/He at ~5.8 cm³ s⁻¹ for ~1 ks at RT to passivate Mo₂C, which is pyrophoric. The BET surface area (Table 1) for the spent O₂–1 kPa (333 K)–Mo₂C catalyst (76 m² g_{cat}⁻¹) is only ~20% lower than that for the spent fresh Mo₂C catalyst (96 m²

Figure 5. Toluene synthesis rates vs time-on-stream (TOS) for *m*-cresol HDO on (a) fresh Mo₂C, (b) O₂-1 kPa (333 K)-Mo₂C, (c) H₂O-1 kPa (333 K)-Mo₂C, and (d) CO₂-1 kPa (333 K)-Mo₂C catalysts. Feed = *m*-cresol (1%)/Ar (10%)/H₂ (balance) (mol %) at a total pressure of ~107 kPa and a temperature of 423 K; total flow rate = 1.83 cm³ s⁻¹; 1 g_{cat} of catalyst. CO co-feed: CO (0.5%-0.93%)/*m*-cresol (1%)/He (10%)/H₂ (balance) (mol %) at a total pressure of ~107 kPa and a temperature of 423 K; total flow rate = 1.83 cm³ s⁻¹ (CO pressure for panel (b) is 0.05-0.07 kPa).

 g_{cat}^{-1}), which cannot account for the observed 10-fold decrease in toluene synthesis rate on O₂-1 kPa (333 K)-Mo₂C, compared to that on the fresh Mo₂C catalyst. Therefore, the change in surface area is not the major cause for the decrease in toluene synthesis rates on the O₂-1 kPa (333 K)-Mo₂C catalyst.

Oxygen uptake on the catalyst after m-cresol HDO was quantified subsequently by TPSR with H_{2} , and the values of O/ Mo_{bulk} after HDO are reported in Table 1. Oxygen accumulation was observed on the fresh Mo_2C (O/Mo_{bulk} \approx 0.05 ± 0.01) from *m*-cresol HDO at 423 K. A similar amount of oxygen accumulation (O/Mo_{bulk} \approx 0.045) from anisole HDO on a passivated Mo₂C that was treated in H₂ at 723 K for 1 h prior to the reaction study at ambient pressure and 423 K was reported by Lee et al.,²⁵ using TPSR with H_2 . The values of O/ Mo_{bulk} after HDO on H₂O-1 kPa (333 K)-Mo₂C and CO₂-1 kPa (333 K)–Mo₂C catalysts are similar (Table 1, O/Mo_{bulk} \approx 0.06 ± 0.01) but higher than the values of O/Mo_{bulk} before HDO on the same catalysts (Table 1, O/Mo_{bulk} \approx 0.038 and 0.035), demonstrating that additional oxygen was deposited on these catalysts from *m*-cresol HDO at 423 K. The values of O/ Mo_{bulk} after HDO and before HDO on O₂-1 kPa (333 K)- Mo_2C were found to be similar (O/Mo_{bulk} $\approx 0.23 \pm 0.02$), suggesting that the oxygen left behind from the treatment in 1 kPa of O_2 , which is in excess of that deposited with 1 kPa of H_2O or CO_2 at 333 K, or from HDO conditions with 1 kPa of m-cresol at 423 K, is not removed during HDO. These results also show that the value of O/Mo_{bulk} after HDO correlates with m-cresol HDO rates on oxygenate-modified Mo₂C catalysts as (i) toluene synthesis rates are the same on the fresh Mo_2C , H_2O-1 kPa (333 K)-Mo₂C, and CO₂-1 kPa (333 K)-Mo₂C catalysts-samples with comparable values of O/Mo_{bulk} after

HDO (Table 1, O/Mo_{bulk} $\approx 0.06 \pm 0.01$)—and (ii) toluene synthesis rate is ~10-fold lower on O₂-1 kPa (333 K)–Mo₂C (Table 1), and the value of O/Mo_{bulk} after HDO (~0.23 ± 0.02) on this sample is four times higher than that on the other three samples.

3.2.3. The Roles of Adsorbed Oxygen on CO₂-, H₂O-, or O₂-Modified Mo₂C for m-Cresol HDO. In situ CO titration experiments were conducted to probe the identity and the density of active sites responsible for *m*-cresol HDO on fresh Mo₂C and on Mo₂C samples treated with 1 kPa of O₂, H₂O, and CO2 at 333 K. TOFs of toluene synthesis on fresh and H₂O and CO₂-modified Mo₂C catalysts are \sim (3.4–4.5) × 10⁻³ mol mol_{CO}⁻¹ s⁻¹ at 423 K (see Table 1, Figure 5, and Figure S3 in the Supporting Information) and are comparable to the TOF of toluene synthesis measured on a Mo₂C formulation that had been passivated by 1% O₂/He but pretreated in H₂ prior to reaction studies (\sim (3.6 ± 0.7) × 10⁻³ mol mol_{CO}⁻¹ s⁻¹ at 423 K), as discussed in Section 3.1.2. The TOF of toluene synthesis on the O₂-modified Mo₂C (2.1×10^{-3} mol mol_{CO}⁻¹ s⁻¹) is ~2fold lower, compared to that on H2O- and CO2-modified samples, which results from (i) the lower toluene synthesis rate on O_2 -1 kPa (333 K)-Mo₂C (Table 1, 6.1 × 10⁻⁹ mol g_{cat}⁻¹ s^{-1}) and (ii) the narrow operating window for CO co-feed pressure (0.05-0.07 kPa) required to concurrently achieve an observable CO signal and a measurable CO residence time during in situ CO titration on the mass spectrometer (Figure S3b in the Supporting Information). Therefore, we conclude that, within our ability to measure experimentally, TOFs of toluene synthesis are similar across the fresh Mo₂C, and O₂-, H₂O-, and CO₂-modified Mo₂C catalysts, demonstrating that the incorporation of oxygen in Mo_2C does not alter the identity of the metal-like sites for *m*-cresol HDO, similar to the

	$O_2 - 0.1 \text{ kPa} (333 \text{ K}) - \text{Mo}_2 \text{C}^b$	O_2 -0.25 kPa (333 K)- Mo_2C^c	$O_2 - 0.4 \text{ kPa} (333 \text{ K}) - \text{Mo}_2 \text{C}^d$	O ₂ -1 kPa (333 K)-Mo ₂ C
O/Mo _{bulk} before HDO	0.060 ± 0.003	0.11 ± 0.01	0.14 ± 0.02	0.23 ± 0.02
O/Mo _{bulk} after HDO	0.061 ± 0.010	0.10 ± 0.01	0.13 ± 0.02	0.23 ± 0.02
toluene synthesis rate $(\times 10^{-8} \text{ mol } g_{cat}^{-1} \text{ s}^{-1})$	6.7	3.0	0.8	0.6

Table 2.	O/Mo _{bulk}	Ratio	before a	and aft	er <i>m</i> -Cre	sol HDC	and	Toluene	Synthesis	Rate	from	m-Creso	l HDO o	on O_2	Modified
Mo ₂ C C	atalysts ^a														

^{*a*}*m*-Cresol HDO conditions: Feed = *m*-cresol (1%)/Ar (10%)/H₂ (balance) (mol %) at a total pressure of ~107 kPa and a temperature of 423 K; total flow rate = 1.83 cm³ s⁻¹; 1 g_{cat} of catalyst. ^{*b*}O₂-0.1 kPa (333 K)-Mo₂C: 0.167 cm³ s⁻¹ 1% O₂/He in 1.5 cm³ s⁻¹ Ar. ^{*c*}O₂-0.25 kPa (333 K)-Mo₂C: 0.416 cm³ s⁻¹ 1% O₂/He in 1.25 cm³ s⁻¹ Ar. ^{*d*}O₂-0.4 kPa (333 K)-Mo₂C: 0.67 cm³ s⁻¹ 1% O₂/He in 1 cm³ s⁻¹ Ar.

observation reported for anisole HDO on an $\mathrm{O_2}\text{-treated}\ \mathrm{Mo_2C}$ catalyst. 25

The density of the metal-like sites responsible for *m*-cresol HDO was estimated by dividing the toluene synthesis rate by the TOF of toluene synthesis (Table 1). The metal-like site densities obtained from *in situ* CO titration for *m*-cresol HDO are similar on fresh Mo₂C, and H₂O- and CO₂-modified Mo₂C catalysts (~19–25 μ mol g_{cat}⁻¹), and are ~7-fold lower on O₂-modified Mo₂C (~3 μ mol g_{cat}⁻¹), which presumably results from the metal-like sites being poisoned by the additional amount of oxygen adsorbed (>0.06 ± 0.01 O/Mo_{bulk} after HDO) on the O₂–1 kPa (333 K)–Mo₂C catalyst (Table 1), compared to that on fresh and CO₂- and H₂O-modified Mo₂C.

Oxygen adsorbed in amounts exceeding $O/Mo_{bulk} \approx 0.06 \pm$ 0.01 on O_2 -1 kPa (333 K)-Mo₂C was found to inhibit HDO rate by poisoning the metal-like sites as discussed above. The bulk structure of the spent and passivated fresh Mo₂C and O₂-1 kPa (333 K)-Mo₂C catalysts remained as β -Mo₂C and no MoO₂ or MoO₃ peaks were observed in the XRD patterns of spent catalysts (Figure S2 in the Supporting Information), indicating that the decrease in HDO rate did not result from bulk oxidation of Mo₂C. The percentage of surface Mo in Mo⁵⁺ and/or Mo⁶⁺ (231.5 eV) states measured from XPS on the spent and passivated O₂-1 kPa (333 K)-Mo₂C (26.7%) was found to be higher than that on the spent and passivated fresh Mo_2C (15.5%) (Table S2 in the Supporting Information), suggesting that (i) the decrease in the number of metal-like sites on O₂-1 kPa (333 K)-Mo₂C, compared to that on fresh Mo₂C (Table 1), could result from the surface Mo being oxidized to higher oxidation states, and (ii) the higher amount of oxygen deposited from 1 kPa of O₂ correlates with a higher fraction of surface Mo being in the Mo⁵⁺ and Mo⁶⁺ oxidation states.

An O₂-0.05 kPa (333 K)-Mo₂C catalyst (O/Mo_{bulk} before HDO ≈ 0.03) was prepared to investigate the effect of oxygen source on adsorbed oxygen as H₂O-1 kPa (333 K)-Mo₂C and CO₂-1 kPa (333 K)-Mo₂C catalysts have similar values of O/ Mo_{bulk} before HDO (~0.038 and ~0.035, respectively; see Table 1) and exhibit similar toluene synthesis rates, TOF of toluene synthesis, and O/Mo_{bulk} after HDO (Table 1). Toluene synthesis rates $(7.9 \times 10^{-8} \text{ mol } g_{cat}^{-1} \text{ s}^{-1})$ and TOF of toluene synthesis (3.8 \pm 0.8 \times 10⁻³ mol mol_{CO}⁻¹ s⁻¹) from *m*-cresol HDO at 423 K and the value of O/Mo_{bulk} after HDO (0.054 \pm 0.005) on O_2 -0.05 kPa (333 K)-Mo₂C catalyst were found to be similar to that measured on H_2O-1 kPa (333 K)-Mo₂C, CO₂-1 kPa (333 K)-Mo₂C, and fresh Mo₂C catalysts (Table 1), clearly demonstrating that the effect of adsorbed oxygen on Mo₂C is independent of the oxygen source under the reaction conditions investigated.53

Schaidle et al.¹ reported the existence of surface acidity on a Mo_2C pretreated in H_2 from XPS and NH_3 -TPD studies.

Ribeiro et al.,²⁸ Iglesia et al.,²⁹ and Boudart and co-workers³⁰ showed that the bifunctionality of tungsten carbide formulations can be adjusted by varying the oxygen loadings on O2modified catalysts prior to reaction studies, and Sullivan et al.²⁶ reported that the catalytic function of Mo₂C can be adjusted to be primarily Brønsted acidic when O₂ is co-fed to the system during IPA dehydration in the absence of H₂. Approximately 2% selectivity for unidentified C_6^+ hydrocarbons (denoted as "others" in Table 1 and Table S3 in the Supporting Information), which have boiling points of >500 K, as inferred from the retention time of the species in the GC chromatogram, was observed on the fresh Mo₂C, H₂O-1 kPa (333 K)-Mo₂C, CO₂-1 kPa (333 K)-Mo₂C, and O₂-0.05 kPa (333 K)–Mo₂C catalysts. The formation of unidentified C_6^+ hydrocarbons during m-cresol HDO mirrors the observation by Lee et al.¹¹ for the formation of C_{10}^{+} products (~30% selectivity) in furfural HDO on Mo₂C formulations at 423 K, presumably because of the presence of acid sites on molybdenum carbides.¹ A higher selectivity for the unidentified C_6^+ hydrocarbons (4%, Table 1) and a lower toluene selectivity (~91%, Table 1) are observed on the 1 kPa O_2 -modified Mo₂C, compared to the other four samples. However, the synthesis rates per gram of catalyst of both the unidentified C₆⁺ hydrocarbons and toluene on O_2-1 kPa (333 K)-Mo₂C are ~6-fold and ~10-fold lower, compared to that on the other four catalysts, respectively (Table S3 and Table 1). These results suggest that the formation of the unidentified C_6^+ hydrocarbons in m-cresol HDO cannot be selectively adjusted by the oxygen loading on Mo₂C and suggest that bifunctionality, metal and acid, is likely required for the formation of the unidentified C_6^+ hydrocarbons.

3.2.4. Changing O/Mo_{bulk} Ratios and HDO Rates by Varying Oxygenate Treatment Conditions. Oxygen treatment pressures varied between 0.1 and 1 kPa were used to investigate the consequences of oxygen loadings between $O/Mo_{bulk} = 0.06$ and $O/Mo_{hulk} = 0.23$ on toluene synthesis rates from *m*-cresol HDO on molybdenum carbides. A 2-fold increase in the value of O/Mo_{bulk} after HDO (from ~0.06 to 0.13) results in an 8fold decrease in the toluene rate (from ~6.7 × 10⁻⁸ mol g_{cat}^{-1} s⁻¹ to 8.2 × 10⁻⁹ mol g_{cat}^{-1} s⁻¹) (Table 2). The drop in toluene rate decreases as the value of O/Mo_{bulk} after HDO increased from ~ 0.13 to ~ 0.23 , in which the toluene synthesis rate on O_2 -1 kPa (333 K)-Mo₂C (O/Mo_{bulk} after HDO \approx 0.23) is ~70% of that on O_2 -0.4 kPa (333 K)-Mo₂C (O/Mo_{bulk} after HDO \approx 0.13) (Table 2). These results suggest that (i) the adsorbed oxygen does not poison the metal-like sites selectively—similar to what has been reported by Shi et al.,³¹ using computational calculations that O2 adsorption can occur preferentially on pure Mo₂C surfaces, as inferred from the reaction energy of surface oxidation by O_2 at 0 K on $Mo_2C(101)$ being ~2 eV more negative than that on

 $Mo_2C(011)$ —and/or (ii) adsorbed oxygen from O_2 can be incorporated into the bulk structure of Mo_2C at higher values of the O/Mo_{bulk} ratio.^{13,54}

We showed that O_2 can deposit ~0.03 O/Mo_{bulk} (Table 1) of oxygen on a fresh Mo₂C at a treatment pressure of 0.05 kPa, whereas 1 kPa of H₂O, CO₂, and *m*-cresol is required to achieve the same value (Table 1). We increased H₂O and CO₂ treatment pressures (5–6 kPa) and temperatures (333, 363, and 423 K) to investigate the amount of oxygen H₂O and CO₂ can deposit under ambient pressure. The values of O/Mo_{bulk} before HDO on H₂O–5 kPa (423 K)–Mo₂C, CO₂–5 kPa (423 K)–Mo₂C, CO₂–6 kPa (363 K)–Mo₂C, and CO₂–6 kPa (333 K)–Mo₂C catalysts were found to be similar (Table 3, O/

Table 3. O/Mo_{bulk} before *m*-Cresol HDO on H₂O-Modified and CO₂-Modified Mo₂C Catalysts

	O/Mo_{bulk} before HDO
H ₂ O-5 kPa (423 K)-Mo ₂ C	0.050 ± 0.004
CO ₂ -5 kPa (423 K)-Mo ₂ C	0.046 ± 0.005
CO ₂ -6 kPa (363 K)-Mo ₂ C	0.050 ± 0.002
CO ₂ -6 kPa (333 K)-Mo ₂ C	0.053 ± 0.003
CO ₂ -1 kPa (333 K)-Mo ₂ C	0.035 ± 0.010

 $Mo_{bulk} \approx 0.046-0.053$) and comparable to the amount of oxygen deposited from *m*-cresol HDO at 423 K (Table 1, ~0.05 ± 0.01 O/Mo_{bulk}). These results demonstrate that oxygen adsorbed in amounts exceeding O/Mo_{bulk} $\approx 0.05 \pm 0.01$ can be achieved by varying the O₂ treatment pressure at a treatment temperature of 333 K; however, oxygenates such as CO₂, H₂O, and *m*-cresol can only deposit O/Mo_{bulk} $\approx 0.05 \pm 0.01$, even at a higher treatment pressure and temperature (~6 kPa and 423 K, respectively).

4. CONCLUSIONS

Kinetic and in situ chemical titration studies on vapor-phase mcresol hydrodeoxygenation (HDO) showed that two distinct sites-one of them having metal-like site characteristics-are involved in toluene synthesis. m-Cresol HDO was used as a probe reaction to study the effect of oxygenate modification on the metal-like function of Mo₂C. The amount of adsorbed oxygen (O/Mo_{bulk}) on O₂-1 kPa (333 K)-Mo₂C, H₂O-1 kPa (333 K)-Mo₂C, and CO₂-1 kPa (333 K)-Mo₂C catalysts, prepared by pretreating fresh Mo₂C catalysts in 1 kPa of O₂, CO2, and H2O at 333 K, was quantified using temperatureprogrammed surface reaction with H_2 (TPSR). The value of O/ Mo_{bulk} before HDO on O_2-1 kPa (333 K)- Mo_2C (0.23 ± 0.02) is ~6 times higher than that on H_2O-1 kPa (333 K)-Mo₂C and CO₂-1 kPa (333 K)-Mo₂C (O/Mo_{bulk} before HDO \approx 0.036), demonstrating that molecular oxygen has a higher propensity to deposit oxygen on a fresh Mo₂C sample. The value of O/Mo_{bulk} after HDO was found to correlate with toluene synthesis rates, suggesting that the relevant surface environment for catalysis is that measured under reaction conditions. A 10-fold decrease in toluene synthesis rates was observed on O₂-1 kPa (333 K)-Mo₂C, compared to that on fresh Mo₂C, H_2O-1 kPa (333 K)-Mo₂C, and CO₂-1 kPa (333 K)-Mo₂C catalysts; however, turnover frequencies (TOFs) of toluene synthesis measured from in situ CO titration on these samples are similar (~(2.1-4.5) × 10^{-3} mol mol_{CO}^{-1} s⁻¹), indicating that adsorbed oxygen poisons the metal-like sites responsible for m-cresol. The effect of adsorbed oxygen on toluene synthesis is independent of the source of oxygen, as inferred from *in situ* CO titration and *m*-cresol HDO reactions on O_2 -0.05 kPa (333 K)-Mo₂C, H₂O-1 kPa (333 K)-Mo₂C, and CO₂-1 kPa (333 K)-Mo₂C catalysts.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.6b02762.

Additional results for TPR, *in situ* CO titration, and *m*cresol HDO studies; XRD patterns and XPS data for Mo₂C formulations (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: abhan@umn.edu (A. Bhan).

ORCID

Aditya Bhan: 0000-0002-6069-7626

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by National Science Foundation Catalysis and Biocatalysis Program (CBET Award No. 1510661). Parts of this work were carried out in the Characterization Facility at the University of Minnesota, which receives partial support from NSF through the MRSEC program. We thank Ms. Seema Thakral for assistance with the XRD analysis and Bing Luo for XPS measurements.

REFERENCES

(1) Schaidle, J. A.; Blackburn, J.; Farberow, C. A.; Nash, C.; Steirer, K. X.; Clark, J.; Robichaud, D. J.; Ruddy, D. A. ACS Catal. 2016, 6, 1181–1197.

- (2) Bej, S. K.; Thompson, L. T. Appl. Catal., A 2004, 264, 141–150.
 (3) Xiong, K.; Yu, W.; Vlachos, D. G.; Chen, J. G. ChemCatChem 2015, 7, 1402–1421.
- (4) Han, J.; Duan, J.; Chen, P.; Lou, H.; Zheng, X.; Hong, H. ChemSusChem 2012, 5, 727-733.
- (5) Gosselink, R. W.; Stellwagen, D. R.; Bitter, J. H. Angew. Chem., Int. Ed. 2013, 52, 5089–5092.
- (6) Jongerius, A. L.; Bruijnincx, P. C. A.; Weckhuysen, B. M. Green Chem. 2013, 15, 3049–3056.
- (7) Prasomsri, T.; Shetty, M.; Murugappan, K.; Román-Leshkov, Y. Energy Environ. Sci. 2014, 7, 2660–2669.
- (8) Boullosa-Eiras, S.; Lødeng, R.; Bergem, H.; Stöcker, M.; Hannevold, L.; Blekkan, E. A. *Catal. Today* **2014**, *223*, 44–53.
- (9) Ren, H.; Yu, W.; Salciccioli, M.; Chen, Y.; Huang, Y.; Xiong, K.; Vlachos, D. G.; Chen, J. G. *ChemSusChem* **2013**, *6*, 798-801.
- (10) Chen, C.-J.; Lee, W.-S.; Bhan, A. Appl. Catal., A 2016, 510, 42–48.
- (11) Lee, W.-S.; Wang, Z.; Zheng, W.; Vlachos, D. G.; Bhan, A. Catal. Sci. Technol. 2014, 4, 2340–2352.
- (12) Wang, T.; Luo, Q.; Li, Y.-W. W.; Wang, J.; Beller, M.; Jiao, H. Appl. Catal, A 2014, 478, 146–156.
- (13) Ranhotra, G. S.; Haddix, G. W.; Bell, A. T.; Reimer, J. A. J. Catal. 1987, 108, 24–39.
- (14) Ramírez-Caballero, G. E.; Burgos, J. C.; Balbuena, P. B. J. Phys. Chem. C 2009, 113, 15658–15666.
- (15) Gómez-Gualdrón, D. A.; Balbuena, P. B. Nanotechnology 2009, 20, 215601.
- (16) Ko, E. I.; Madix, R. J. Surf. Sci. 1981, 109, 221-238.

(17) Stottlemyer, A. L.; Kelly, T. G.; Meng, Q.; Chen, J. G. Surf. Sci. Rep. 2012, 67, 201–232.

(18) Wang, T.; Li, Y. W.; Wang, J. G.; Beller, M.; Jiao, H. J. J. Phys. Chem. C 2014, 118, 3162-3171.

- (19) Wang, T.; Li, Y.-W.; Wang, J.; Beller, M.; Jiao, H. J. Phys. Chem. C 2014, 118, 8079–8089.
- (20) Leary, K. J.; Michaels, J. N.; Stacy, M. J. Catal. 1986, 101, 301-313.
- (21) Lee, J. S.; Oyama, S. T.; Boudart, M. J. Catal. 1987, 106, 125–133.
- (22) Oyama, S. T. The Chemistry of Transition Metal Carbides and Nitrides; Blackie Academic: London, 1996.
- (23) Ranhotra, G. S.; Bell, A. T.; Reimer, J. A. J. Catal. 1987, 108, 40-49.
- (24) Schaidle, J. A.; Lausche, A. C.; Thompson, L. T. J. Catal. 2010, 272, 235–245.
- (25) Lee, W.-S.; Kumar, A.; Wang, Z.; Bhan, A. ACS Catal. 2015, 5, 4104–4114.
- (26) Sullivan, M. M.; Held, J. T.; Bhan, A. J. Catal. 2015, 326, 82-91.
- (27) Lu, Q.; Chen, C.-J.; Luc, W. W.; Chen, J. G.; Bhan, A.; Jiao, F. ACS Catal. 2016, 6, 3506-3514.
- (28) Ribeiro, F. H.; Boudart, M.; Dalla Betta, R. A.; Iglesia, E. J. Catal. **1991**, 130, 498–513.
- (29) Iglesia, E.; Baumgartner, J. E.; Ribeiro, F. H.; Boudart, M. J. Catal. 1991, 131, 523-544.
- (30) Ribeiro, F. H.; Dalla Betta, R. A.; Guskey, G. J.; Boudart, M. Chem. Mater. 1991, 3, 805-812.
- (31) Shi, X.-R.; Wang, S.-G.; Hu, J.; Qin, Z.; Wang, J. Surf. Sci. 2012, 606, 1187–1194.
- (32) Choi, J.-S.; Bugli, G.; Djéga-Mariadassou, G. J. Catal. 2000, 193, 238–247.
- (33) St. Clair, T. P.; Oyama, S. T.; Cox, D. F.; Otani, S.; Ishizawa, Y.; Lo, R.-L.; Fukui, K.; Iwasawa, Y. Surf. Sci. **1999**, 426, 187–198.
- (34) Óvári, L.; Kiss, J.; Farkas, A. P.; Solymosi, F. J. Phys. Chem. B 2005, 109, 4638–4645.
- (35) Lee, W.-S.; Wang, Z.; Wu, R. J.; Bhan, A. J. Catal. 2014, 319, 44-53.
- (36) Hong, Y.; Zhang, H.; Sun, J.; Ayman, K. M.; Hensley, A. J. R.;
- Gu, M.; Engelhard, M. H.; McEwen, J. S.; Wang, Y. ACS Catal. 2014, 4, 3335–3345.
- (37) Sun, Q.; Chen, G.; Wang, H.; Liu, X.; Han, J.; Ge, Q.; Zhu, X. ChemCatChem **2016**, *8*, 551–561.
- (38) Zhu, X.; Nie, L.; Lobban, L. L.; Mallinson, R. G.; Resasco, D. E. *Energy Fuels* **2014**, *28*, 4104–4111.
- (39) Foster, A.; Do, P. M.; Lobo, R. *Top. Catal.* 2012, 55, 118–128.
 (40) Shetty, M.; Murugappan, K.; Prasomsri, T.; Green, W. H.; Román-Leshkov, Y. *J. Catal.* 2015, 331, 86–97.
- (41) Griffin, M. B.; Ferguson, G. A.; Ruddy, D. A.; Biddy, M. J.; Beckham, G. T.; Schaidle, J. A. ACS Catal. 2016, 6, 2715–2727.
- (42) Hammer, B.; Morikawa, Y.; Nørskov, J. Phys. Rev. Lett. **1996**, 76, 2141–2144.
- (43) Rodriguez, J. A.; Goodman, D. W. Science 1992, 257, 897–903.
 (44) Edamoto, K.; Sugihara, M.; Ozawa, K.; Otani, S. Surf. Sci. 2004,
- 561, 101–109.
 (45) Shi, X.-R.; Wang, S.-G.; Wang, J. J. Mol. Catal. A: Chem. 2016, 417, 53–63.
- (46) Iglesia, E.; Ribeiro, F. H.; Boudart, M.; Baumgartner, J. E. Catal. Today **1992**, *15*, 307–337.
- (47) Ribeiro, F. H.; Dalla Betta, R. A.; Boudart, M.; Baumgartner, J.; Iglesia, E. J. Catal. **1991**, *130*, 86–105.
- (48) Liu, P.; Rodriguez, J. A. J. Phys. Chem. B 2006, 110, 19418-19425.
- (49) Tominaga, H.; Nagai, M. J. Phys. Chem. B 2005, 109, 20415–20423.
- (50) Porosoff, M. D.; Yang, X.; Boscoboinik, J. A.; Chen, J. G. Angew. Chem., Int. Ed. 2014, 53, 6705–6709.
- (51) Barin, I. Thermochemical Data of Pure Substances; VCH: Weinheim, Germany, 1989.
- (52) Barin, I.; Knacke, O. Thermochemical Properties of Inorganic Substances; Springer-Verlag: New York, 1973.
- (53) Sullivan, M. M.; Chen, C.-J.; Bhan, A. Catal. Sci. Technol. 2016, 6, 602–616.

(54) Sajkowski, D. J.; Oyama, S. T. Appl. Catal., A **1996**, 134, 339–349.

Research Article