ARTICLE IN PRESS

Tetrahedron: Asymmetry xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Piotr Szcześniak^{a,*}, Olga Staszewska-Krajewska^b, Bartłomiej Furman^b, Jacek Mlynarski^{a,b}

^a Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
^b Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

ARTICLE INFO

Article history: Received 16 September 2017 Accepted 23 October 2017 Available online xxxx

Dedicated to Prof. Marek Chmielewski on his 75th birthday

ABSTRACT

A comparison of three different catalytic systems for the efficient, asymmetric synthesis of N-{{(3R,4R)-4-[(benzyloxy)methyl]pyrrolidin-3-yl}methyl)-N-(2-methylpropyl)benzenesulfonamide **1** (BZN) is described. The presented strategy is based on the organocatalytic Michael addition of aldehyde **2** to *trans*-nitroalkene **3**, and subsequent reductive cyclization. High yields, enantio-, and diastereoselectivities were achieved in the Michael addition by application of a POSS- or Wang resin-supported Hayashi–Jørgensen catalyst.

© 2017 Elsevier Ltd. All rights reserved.

Tetrahedron

1. Introduction

Pyrrolidine-derived compound **1**, known as $N-(\{(3R,4R)-4-$ [(benzyloxy)methyl]pyrrolidin-3-yl}methyl)-N-(2-methylpropyl) benzenesulfonamide (BZN), exhibits interesting binding to HIV-1 protease.¹ The pharmacological activity of BZN is still unknown, while no synthetic pathway has been reported so far, either. Substituted pyrrolidines are an important framework by virtue of their frequent appearance in a large number of biologically active natural products and pharmaceuticals.² Common methods for the synthesis of optically active pyrrolidines typically involve relatively long synthetic sequences starting from different natural chiral pool compounds.³ The main drawback of these approaches lies in the presence of only oxygen functionalities in the pyrrolidine scaffold. However, many bioactive pyrrolidine derivatives, such as BZN, possess substituents of a different nature. For these reasons, appropriately substituted γ -nitroaldehydes, which can be easily obtained via organocatalytic Michael reactions, seem to be interesting precursors in the synthesis of functionalized pyrrolidines. Although the organocatalytic asymmetric Michael addition of aldehydes to nitroolefins leading to γ -nitroaldehydes is a key transformation in organic synthesis,⁴ only a few strategies based on organocatalysis en route to pyrrolidines have been developed.⁵ Herein, we propose a simple and efficient approach to the asymmetric synthesis of compound 1 (BZN). The synthetic strategy involves sequential organocatalytic Michael addition of aldehyde 2 to nitroolefin 3 in the presence of homogenous or heterogenous Hayashi-

* Corresponding author. *E-mail address:* alchemik_84@tlen.pl (P. Szcześniak).

https://doi.org/10.1016/j.tetasy.2017.10.016 0957-4166/© 2017 Elsevier Ltd. All rights reserved. Jørgensen-type catalysts, and reductive cyclization of the obtained γ -nitroaldehyde **4** (Scheme 1).

High efficiency, selectivity, and robustness in asymmetric reactions make the Hayashi–Jørgensen catalyst one of the most important organocatalysts.⁶ However, its practical application suffers from some limitations, such as high catalyst loading and difficulties in separating the catalyst from the product. It is also noteworthy that α -substituted γ -nitroaldehydes can undergo epimerization in the presence of the catalyst. This situation occurs when the products remain in contact with the catalyst for an extended period of time, after turnover is completed. When the γ -nitroaldehydes with a high *syn:anti* ratio react with the catalyst, a low steady-state concentration of the enamine is rapidly established, and the equilibration between *syn* and *anti* continues until thermodynamic ratio is reached (Scheme 2).

This effect, intensively studied and explained by Blackmond et al.⁷ has been confirmed by our group.⁸ Bearing in mind that in order to maintain the high diastereomeric ratio, the catalyst has to be removed from the reaction mixture immediately after complete conversion of substrates, we proposed three various

Scheme 1. Retrosynthetic approach to BZN via organocatalytic Michael addition and subsequent reductive cyclization.

ARTICLE IN PRESS

P. Szcześniak et al./Tetrahedron: Asymmetry xxx (2017) xxx-xxx

Scheme 2. Reversible enamine formation between cat. 1, 4 (syn), and 4 (anti).

Figure 1. Hayashi-Jørgensen-type catalysts examined in this work.

homogenous and heterogenous catalytic systems based on a Hayashi–Jørgensen-type catalyst, which can be easily removed from the reaction mixture, thus overcoming the mentioned drawback (Fig. 1).

The first approach is based on complexing the pyrrolidine moiety with copper salts. We observed that the Hayashi–Jørgensen catalyst **cat. I** could be easily removed after turnover was completed by simple extraction with saturated aqueous CuSO₄. The other two approaches involve homogenous and heterogenous catalysis based on immobilized Hayashi–Jørgensen-type catalysts **cat. II** and **cat. III**.

Several research groups have immobilized the Hayashi– Jørgensen catalyst on a variety of solid supports including polymers,⁹ ionic liquids,¹⁰ magnetic nanoparticles,¹¹ porous materials,¹² dendrimers,¹³ and fluorous phases¹⁴ to exploit the inherent advantages derived from simple purification of the product, the possibility of straightforward recycling, reuse of the catalyst, and the potential for its use in flow chemistry.

Herein, we propose an efficient and easily recoverable homogenous catalyst based on POSS (polyhedral oligomeric silsesquioxane)-supported Hayashi–Jørgensen-type catalyst **cat. II**. POSS are a new class of organic–inorganic hybrid materials consisting of a silicon-oxygen framework. Due to marked differences in solubilities in various solvents, making it possible to separate these compounds by simple precipitation, POSS are ideal soluble supports for homogenous catalysis.¹⁵ Despite that, only one literature precedent for the application of a POSS-supported Hayashi–Jørgensen catalyst in organocatalytic Michael addition has appeared.¹⁶

Beside homogenous catalysis, we propose heterogenous catalysis as an alternative approach, based on the application of insoluble Wang resin as a solid support for the Hayashi–Jørgensen catalyst **cat. III**. Despite insoluble polymers being common support for various types of heterogenous catalysts,¹⁷ to the best of our knowledge, Wang resin-supported Hayashi–Jørgensen catalyst has not been used for Michael addition so far. We also found that the POSSor Wang resin-supported Hayashi–Jørgensen catalysts do not cause epimerization of α -substituted γ -nitroaldehydes, which bolsters the practicality of this approach.

2. Results and discussion

We began our investigations by exploring the isomerization process in the aforementioned Michael addition. Towards this purpose, we conducted a ¹H NMR experiment in which we expected to observe the diastereomeric ratio decreasing in time during the Michael addition of aldehyde **2** to β -nitrostyrene **3** catalyzed by the Hayashi-Jørgensen catalyst cat. I (Scheme 3). The reaction was performed in deuterated chloroform in the presence of 10 mol% of the Hayashi-Jørgensen catalyst cat. I and benzoic acid (0.5 equiv) as an additive, at ambient temperature. After 35 min, we observed 87% conversion to the desired product 4 with a syn/ anti ratio of 94:6. After an additional 35 min, the conversion increased to 97%, without changes in the *syn/anti* ratio. However, after complete conversion of the starting aldehyde 2 (110 min), we began to observe a slight decrease in the syn/anti ratio to 92:8, and the equilibration between syn and anti continued until the syn/anti ratio reached equilibrium at 50:50, and did not change with additional time.

Having confirmed that the isomerization process shown in Scheme 2 occurs in the discussed Michael addition, we decided that all subsequent reactions would be monitored by ¹H NMR and after complete conversion, the catalyst would be removed by simple column chromatography, as it was done in our previous report.⁸ For this purpose, the Michael addition of aldehyde **2** to β -nitrostyrene **3** was performed under the same conditions as described above. After complete conversion (90 min, determined by ¹H NMR, 4 syn/anti ratio 92:8), and further purification by column chromatography, the corresponding γ -nitroaldehyde **4** was obtained in 93% yield, and with high enantioselectivity (98% e.e.). However, the syn/anti ratio was only 67:33. The observed changes in the diastereomeric ratio (4 syn/anti 92:8 vs 67:33) indicate that the isomerization progresses not only after turnover is completed, but also during purification by column chromatography. Bearing in mind these drawbacks, in the next step we decided to perform the reaction as a *one-pot* procedure without isolation of the product, but with immediate isolation of the catalyst. To achieve this goal, we first utilized the propensity of copper salts to complex the pyrrolidine moiety. Proceeding as in the previous example, after turnover completed (90 min, determined by ¹H NMR, 4 syn/anti ratio 92:8), the reaction mixture was washed with saturated aqueous CuSO₄ to remove the catalyst and left for 24 h. After that time, the ¹H NMR analysis showed only small changes in the syn/anti ratio (4 syn/anti 92:8 vs 94:6). After determining suitable conditions, we were ready to exploit the discussed Michael reaction in the synthesis of compound **1** (BZN). Another purpose of the study was to confirm the configuration of the major diastereomer 4 (syn) by converting it into a cyclic nitrone. Following the example

Scheme 3. ¹H NMR analysis of *syn/anti* equilibration in the Michael addition of aldehyde **2** to (E)- β -nitrostyrene **3** catalyzed by 10 mol% of the Hayashi–Jørgensen catalyst **cat. I**; selected signals corresponding to the carbonyl groups are presented.

described above, after complete conversion of starting materials (90 min), and washing with saturated aqueous CuSO₄, the solvent was evaporated, and the crude product **4** with a *syn/anti* ratio of 92:8 was used in the next step. The subsequent reductive cyclization was performed with Zn powder (2.0 equiv) and acetic acid in methanol (1:1). The reaction mixture was stirred for 3 days at 0 °C. After work-up and further purification by column chromatography, nitrone 5 (trans) and 5 (cis) was obtained in moderate yield (46%), in a 87:13 ratio (Scheme 4). The relative configuration of 5 (trans) and 5 (cis) nitrone was confirmed on the basis of the analysis of NOE experiments. As described previously, cyclic nitrones are valuable building blocks in the synthesis of many biologically active nitrogen heterocycles, due to their various possibilities of functionalization.⁸ In order to obtain compound **1** (BZN), a simple reduction in standard conditions (H₂, Pd/C in methanol at ambient temperature) proved efficient for nitrone 5 (trans) reduction. The corresponding amine **1** (BZN) was obtained in 43% yield (Scheme 4). The relative configuration of **1** (BZN) was also confirmed through the analysis of NOE experiments. Further investigations revealed that amine 1 (BZN) could be obtained in a more efficient manner via direct reduction of γ -nitroaldehyde **4**. When the crude product **4** with *syn/anti* ratio 92:8, washed with saturated aqueous CuSO₄, was treated with a large excess of Zn powder (25 equiv vs 2.0 eq uiv) in a mixture of acetic acid and methanol for 3 days at 0 °C, after work-up and further purification by column chromatography, only the desired amine 1 (BZN) (trans) diastereomer was isolated in 66% yield (Scheme 4).

Despite these promising results, we realized that for a more attractive and efficient synthesis of compound **1** (BZN), the catalyst used in the Michael reaction should be easily separated and reused in the next catalytic cycle. To achieve the intended purpose, in the next step, we decided to examine the POSS-supported Hayashi–Jørgensen catalyst **cat. II** developed by Nie et al.¹⁶ POSS-supported **cat. II** was employed by Nie et al. in the asymmetric Michael addition reaction of various aldehydes and aryInitroalkenes, providing the corresponding γ -nitroaldehydes in good yields, and with excellent enantioselectivities and good diastereoselectivities. Moreover, the catalyst was readily recovered and reused for further transformations.¹⁶ A characteristic feature of the POSS-supported catalyst **cat. II** is that it dissolves in typical organic solvents, such as CH₂Cl₂, CHCl₃, toluene, AcOEt, and is insoluble in Et₂O and MTBE, which

allows for simple recovery of the catalyst by precipitation. To evaluate the catalytic efficiency of the POSS-supported catalyst cat. II, we carried out the Michael addition of aldehyde **2** with β -nitrostyrene 3. The reaction was performed in chloroform in the presence of 10 mol% of the POSS-supported catalyst cat. II, at ambient temperature. However, the reaction catalyzed by cat. II was found to be significantly slower than the reaction catalyzed by cat. I under the same conditions (8 days vs 90 min). After 8 days, ¹H NMR analvsis indicated that the conversion to the corresponding γ nitroaldehyde 4 was only 81%, with a syn/anti ratio 85:15 (Table 1, Entry 1). Despite incomplete conversion, we decided to ascertain if cat. II could be easily isolated from the reaction mixture. After evaporation of the solvent and precipitation with an excess of MTBE, cat. II was recovered in 76% yield. The crude γ -nitroaldehyde **4** was subjected to reductive cyclization by employing the same reducing system (Zn/AcOH in MeOH), leading to amine 1 (BZN) in 39% vield (Table 1. Entry 1). Next, we examined the influence of catalyst amount on the discussed Michael addition. The best result was obtained when the reaction was carried out with 20 mol% of cat. II. After 3 days, we observed complete conversion to γ -nitroaldehyde **4** with a high *syn/anti* ratio (91:9) and stereoselectivity (95% e.e.). The catalyst was recovered in 81% yield. After subsequent reductive cyclization reaction and purification, amine 1 (BZN) was isolated in good yield (62%; Table 1, Entry 2). Increasing the amount of catalyst loading to 50 mol% led to decrease in reaction time to 1 day, but the diastereoselectivity was slightly lower (syn/anti ratio 87:13 vs 91:9), and cat. II was recovered in 79% yield. In the next step, amine 1 (BZN) was obtained in a similar, 61% yield (Table 1, Entry 3). Having optimized the reaction conditions, we continued our studies by exploring the recyclability of cat. II. As shown in Table 1 (Entry 4), no significant decrease in catalytic activity was observed when 20 mol% of the recovered cat. II was used in the second catalytic cycle. The reaction proceeded with similar diastereo- and enantioselectivities (syn/anti ratio 92:8, e.e. 92% vs syn/anti ratio 91:9, e.e. 95%). The recovery of the catalyst was the same (78%), and amine 1 (BZN) was obtained in a similar yield (59%; Table 1, Entry 2 vs 4). However, in the third catalytic cycle, we observed a significant deterioration of the catalyst activity, which proved partial decomposition of cat. II. After 13 days, the conversion to the corresponding γ -nitroaldehyde 4 was only 55%. The diastereo- and enantioselectivity was still on

Scheme 4. Optimization of the sequential Michael addition of aldehyde **2** to (*E*)-β-nitrostyrene **3** catalyzed by the Hayashi–Jørgensen catalyst **cat. I** and reductive cyclization to the corresponding pyrrolidine **1** (BZN).

Please cite this article in press as: Szcześniak, P.; et al. Tetrahedron: Asymmetry (2017), https://doi.org/10.1016/j.tetasy.2017.10.016

ARTICLE IN PRESS

4

P. Szcześniak et al./Tetrahedron: Asymmetry xxx (2017) xxx-xxx

Table 1

The homogenous Michael addition reaction of aldehyde 2 to β-nitrostyrene 3 catalyzed by POSS-supported catalyst cat. II, and subsequent reductive cyclization to amine 1 (BZN)^a

Entry	Catalyst [%mol]	Catalytic cycle	Catalyst recovery	Conversion ^b [%]	Time [days]	4 (syn/anti) ^b	4 (e.e.) ^c [%]	Yield 1 ^d [%]
1	10	1	76	81	8	85:15	95.9	39
2	20	1	81	100	3	91:9	95.0	62
3	50	1	79	100	1	87:13	94.8	61
4	20	2	78	100	3	92:8	92.0	59
5	20	3	85	55	13	93:7	96.5	22

^a Reaction conditions for the Michael addition: aldehyde **2** (0.37 mmol), nitroalkene **3** (0.37 mmol), CHCl₃, rt; the reaction was monitored by TLC and ¹H NMR, **cat. II** was removed from the reaction mixture by precipitation with an excess of MTBE; Reaction conditions for reductive cyclization: Zn powder (25.0 equiv), AcOH:MeOH (1:1), 0 °C, 3 days.

^b Determined by ¹H NMR of the crude reaction mixture.

^c Determined by HPLC of the crude reaction mixture.

 $^{\rm d}$ Yield of isolated product, configuration established by NOE experiments.

Table 2

The heterogenous Michael addition of aldehyde **2** to β-nitrostyrene **3** catalyzed by Wang resin-supported catalyst **cat. III**, and subsequential reductive cyclization to amine **1** (BZN)^a

Entry	Catalyst [%mol]	Catalytic cycle	Catalyst recovery	Conversion ^b [%]	Time [h]	4 (syn/anti) ^b	4 (e.e.) ^c [%]	Yield 1 ^d [%]
1	10	1	100	100	21	92:8	94.2	64
2	20	1	100	100	15	93:7	93.2	65
3	50	1	100	100	5	94:6	92.8	64
4	20	2	99	100	20	92:8	93.6	55
5	20	3	97	87	7 days	92:8	93.8	43

^a Reaction conditions for the Michael addition: aldehyde **2** (0.37 mmol), nitroalkene **3** (0.37 mmol), CHCl₃, rt; the reaction was monitored by TLC and ¹H NMR, **cat. III** was removed from the reaction mixture by filtration; Reaction conditions for reductive cyclization: Zn powder (25.0 equiv), AcOH:MeOH (1:1), 0 °C, 3 days.

^b Determined by ¹H NMR of the crude reaction mixture.

^c Determined by HPLC of the crude reaction mixture.

^d Yield of isolated product, configuration established by NOE experiments.

the same level (*syn/anti* ratio 93:7, *e.e.* 96%), but amine **1** (BZN) was obtained in lower yield (22%; Table 1, Entry 5).

Although the Michael addition catalyzed by **cat. II** provided the corresponding γ -nitroaldehyde **4** in high yield and with high enantioselectivity, without a significant deterioration of diastereoselectivity, the catalyst recovery was in the range of 80%. To achieve higher catalyst recovery, in the next step, we investigated a heterogenous catalytic system based on insoluble Wang resinsupported Hayashi–Jørgensen catalyst **cat. III**, which, to the best of our knowledge, has not been used for Michael addition so far. We examined the catalytic efficiency of cat. III in the Michael addition of aldehyde **2** to β -nitrostyrene **3**. The reaction was performed under the same conditions as in the previous example, in chloroform in the presence of 10 mol% of **cat. III**, at ambient temperature. In comparition to the POSS-supported cat. II, 10 mol% of cat. III turned out to be sufficient to achieve complete conversion after 21 h. γ -Nitroaldehyde **4** was obtained with high enantioselectivity (94%) as an inseparable mixture of diastereomers in *syn/anti* ratio 92:8. After simple filtration, cat. III was recovered in 100% yield,

and the crude product 4 was subjected to reductive cyclization to obtain amine 1 (BZN) in 64% yield (Table 2, Entry 1). Next, we investigated the influence of catalyst amount on the discussed Michael addition. Increasing the catalyst loading to 20 mol% or 50 mol% resulted only in a decrease in the reaction time, without changing the enantio- and diastereoselectivity (Table 2, Entries 1-3). Encouraged by the results, we endeavored to apply cat. III in the next catalytic cycle. To our satisfaction, no significant decrease in catalytic activity was observed, when 20 mol% of the recovered catalyst cat. III was used in the second cycle of the Michael addition (Table 2, Entry 4). However, the catalytic activity dropped markedly in the third cycle. After 7 days, ¹H NMR analysis indicated that the conversion to the corresponding γ -nitroaldehyde 4 was 87%. However, the stereoselectivity was unaffected throughout all catalytic cycles (Table 2, Entry 5). These results demonstrate that cat. III is the best recyclable organocatalyst for the discussed Michael addition among the ones examined here, exhibiting high activity as well as a very simple procedure for catalyst recovery.

3. Conclusion

In conclusion, an attractive method for the formation of optically active pyrrolidine 1 (BZN) has been developed. The presented strategy is based on organocatalytic Michael addition of aldehyde 2 to trans-nitroalkene 3, and subsequent Zn-promoted reductive cyclization process. As it was demonstrated, three catalytic systems based on a Hayashi-Jørgensen-type catalyst were applied to the efficient and highly stereoselective Michael addition reaction. The presented homogenous and heterogenous catalytic systems could be easily recovered and reused (POSS- or Wang resin-supported catalyst) in the next catalytic cycle without a significant loss of catalytic activities and stereoselectivities. One great advantage for the presented immobilized catalysts are that they do not cause epimerization of α -substituted γ -nitroaldehydes. Further studies, focusing on the preparation of more stable solid phase-supported Hayashi-Jørgensen catalysts, and their application to different biologically active pyrrolidine synthesis are currently under investigation and will be reported in due course.

4. Experimental

4.1. Synthesis of aldehyde 2

4.1.1. N-Isobutylbenzenesulfonamide 6

To a solution of 2-methylpropan-1-amine (4 mL, 40.25 mmol) in dry CH₂Cl₂ (40 mL), N,N-diisopropylethylamine (7.0 mL, 40.25 mmol, 1.0 equiv) was added under argon at -25 °C, the mixture was stirred for 15 min, then benzenosulfonylchloride (5.12 mL, 40.25 mmol, 1.0 equiv) was added. The resulting solution was warmed gradually to room temperature and stirred overnight. The reaction was quenched with 1 M aq HCl (10 mL). After phase separation, the organic layer was washed with H₂O (20 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. Further evaporation under high vacuum gave 8.568 g (quant yield) of sulfonoamide **6** as a white solid. $R_f = 0.51$ (1:2 AcOEt/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.86–7.80 (m, 2H), 7.56-7.43 (m, 3H), 4.75 (t, J 6.2 Hz, 1H), 2.71 (t, J 6.6 Hz, 2H), 1.66 (dp, J 13.4, 6.7 Hz, 1H), 0.82 (d, J 6.7 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) & 140.7, 133.2, 129.7, 127.6, 51.2, 29.1, 20.5; IR (film) v: 3286, 2960, 1447, 1323, 1182, 1093, 754, 718, 689, 585 cm⁻¹; HRMS (ESI-TOF) m/z calcd for C₁₀H₁₅NNaO₂S [M+Na⁺] 236.0721. Found 236.0725.

4.1.2. *N*-(3-((*tert*-Butyldimethylsilyl)oxy)propyl)-*N*-isobutylbenzenesulfonamide 7

To a solution of sulfonoamide 6 (4.505 g, 21.1 mmol) in dry THF (300 mL), triphenylfosfine (16.6 g, 63.4 mmol, 3.0 equiv), a solution of 3-((tert-butyldimethylsilyl)oxy)propan-1-ol 9 (12.06 g, 63.4 mmol, 3.0 equiv) in dry THF (50 mL), and diisopropyl azodicarboxylate (12.48 mL, 63.4 mmol, 3.0 equiv) were added under argon at 0 °C. The resulting solution was warmed gradually to room temperature and stirred overnight. Then solvent was then evaporated under reduced pressure and the crude product was purified by silica gel column chromatography (1:15 AcOEt/hexanes) to afford 5.45 g (67%) of product **7** as a yellow oil. $R_f = 0.32$ (1:9 AcOEt/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.84–7.79 (m, 2H), 7.59-7.46 (m, 3H), 3.57 (t, J 5.9 Hz, 2H), 3.24-3.16 (m, 2H), 2.92 (d, J 7.5 Hz, 2H), 1.99-1.86 (m, 1H), 1.77-1.67 (m, 2H), 0.92 (d, J 6.6 Hz, 6H), 0.88 (s, 9H), 0.03 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 140.5, 132.9, 129.5, 127.8, 61.0, 57.0, 46.7, 32.4, 27.6, 26.5, 20.6, 18.8, -4.8; IR (film) v: 2956, 2928, 2856, 1720, 1470, 1345, 1256, 1158, 1091, 1005, 964, 836, 776, 748, 691, 583 cm⁻¹; HRMS (ESI-TOF) m/z calcd for C₁₉H₃₅NNaO₃SSi [M+Na⁺] 408.2005. Found 408.2000.

4.1.3. N-(3-Hydroxypropyl)-N-isobutylbenzenesulfonamide 8

To a solution of **7** (5.4 g, 14.0 mmol) in dry THF (150 mL), a 1 M solution of tetrabutylammonium fluoride in THF (18.2 mL, 18,2 mmol, 1.3 equiv) was added under argon at 0 °C. The resulting solution was warmed gradually to room temperature and stirred overnight. The solvent was then evaporated under reduced pressure and the crude product was purified by silica gel column chromatography (1:1 AcOEt/hexanes) to afford 3.04 g (80%) of alcohol **8** as a colorless oil. R_f = 0.18 (1:1 AcOEt/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.86–7.79 (m, 2H), 7.63–7.48 (m, 3H), 3.74 (dd, *J* 10.4, 5.1 Hz, 2H), 3.24 (t, *J* 6.8 Hz, 2H), 2.92 (d, *J* 7.6 Hz, 2H), 2.36–2.23 (m, 1H), 1.98–1.82 (m, 1H), 1.81–1.71 (m, 2H), 0.90 (d, *J* 6.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 139.9, 133.1, 129.7, 127.8, 59.7, 57.9, 46.6, 32.3, 27.9, 20.7; IR (film) *v*: 3533, 2961, 1666, 1446, 1331, 1156, 1091, 994, 781, 743, 691, 583 cm⁻¹; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₂₁NNaO₃S [M+Na⁺] 294.1140. Found 294.1136.

4.1.4. N-Isobutyl-N-(3-oxopropyl)benzenesulfonamide 2

To a cooled (-78 °C) mixture of dry DMSO (3.09 mL, 43.52 mmol, 4.0 equiv) and dry CH₂Cl₂ (30 mL), oxalyl chloride (1.84 mL, 21.76 mmol, 2.0 equiv) was added dropwise under argon. The reaction mixture was stirred for 90 min at the same temperature, and then a solution of alcohol 8 (2.952 g, 10.88 mmol) in dry CH₂Cl₂ (50 ml) was added dropwise. The reaction was stirred for an additional 2 h, at -78 °C, and then dry Et₃N (12 mL, 87.04 mmol, 8.0 equiv) was added. The resulting solution was warmed gradually to room temperature and stirred overnight. The reaction was quenched with satd aq NH₄Cl (30 ml), and H₂O (30 mL). After phase separation, the aqueous layer was washed with CH_2Cl_2 (3 \times 20 mL). The combined organic layers were washed with satd aq NH₄Cl (30 ml), H₂O (30 mL), brine (30 ml), and then dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (1:4 AcOEt/hexanes); to afford 2.392 g (82%) of aldehyde **2** as a yellow oil. $R_f = 0.63$ (1:1 AcOEt/ hexanes); ¹H NMR (300 MHz, CDCl₃) δ 9.77 (t, / 0.9 Hz, 1H), 7.84– 7.79 (m, 2H), 7.64–7.50 (m, 3H), 3.44–3.36 (m, 2H), 2.90 (d, J 7.5 Hz, 2H), 2.88-2.82 (m, 2H), 1.92-1.77 (m, 1H), 0.92 (d, 1 6.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 200.8, 139.6, 133.3, 129.8, 127.8, 57.7, 44.5, 43.0, 27.8, 20.54; IR (film) v: 2963, 1723, 1447, 1336, 1158, 1092, 997, 753, 692, 582 cm⁻¹; HRMS (ESI-TOF) m/z calcd for C₁₃H₁₉NNaO₃S [M+Na⁺] 292.0983. Found 292.0977.

4.1.5. 3-((tert-Butyldimethylsilyl)oxy)propan-1-ol 9

To a solution of sodium hydride (2.1 g, 60% disp. in mineral oil, 52.6 mmol) in dry THF (60 mL), a solution of propane-1,3-diol (3.9 mL, 52.6 mmol) in dry THF (20 mL) was added under argon at 0 °C. The reaction mixture was stirred for 120 min at the same temperature, and then a solution of *tert*-butyldimethylsilyl chloride (7.9 g, 52.6 mmol) in dry THF (20 ml) was added dropwise. After stirring overnight, the reaction was quenched with satd aq NaHCO₃ (50 ml). The aqueous layer was washed with Et₂O (3 × 20 mL). The combined organic layers were washed with brine (30 ml), dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure to give 9.81 g (98%) of alcohol **9** as a yellow oil, which was pure enough to be used for Mitsunobu reaction. ¹H NMR (300 MHz, CDCl₃) δ 3.84–3.76 (m, 4H), 2.60 (s, 1H), 1.82–1.73 (m, 2H), 0.89 (s, 9H), 0.07 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 63.4, 62.8, 34.9, 26.5, 18.8, –4.9.

4.2. Synthesis of *trans*-nitroalkene 3

4.2.1. (Z)-1,4-Bis(benzyloxy)but-2-ene 10

To a solution of sodium hydride (2.4 g, 60% disp. in mineral oil, 59.0 mmol, 2.6 equiv) in dry DMF (50 mL), a solution of (Z)-but-2-

6

ene-1,4-diol (1.87 mL, 22.7 mmol) in dry DMF (10 mL) was added under argon at 0 °C. The resulting solution was warmed gradually to room temperature and stirred for 1 h. Then benzyl bromide (9.4 mL, 79.5 mmol, 3.5 equiv) was added dropwise. After stirring overnight, the reaction was quenched with satd aq NH₄Cl (30 ml). The aqueous layer was washed with Et₂O (3 × 20 mL). The combined organic layers were washed with H₂O (30 mL), brine (30 ml), dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (1:15 AcOEt/hexanes); to afford 5.97 g (98%) of **10** as a yellow oil. R_f = 0.52 (1:6 AcOEt/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.44–7.31 (m, 10H), 5.88–5.83 (m, 2H), 4.55 (s, 4H), 4.14–4.11 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 138.9, 130.2, 129.1, 128.5, 128.3, 72.9, 66.5.

4.2.2. 2-(Benzyloxy)acetaldehyde 11

Ozone was passed through a stirred solution of **10** (5.9 g, 22.0 mmol) in dry CH₂Cl₂ (10 mL) at -78 °C. The progress of the reaction was followed by TLC (1:6 AcOEt/hexanes). After 45 min, slightly green solution occurred. At this point, oxygen was bubbled through reaction mixture for 20 min, and the same procedure was repeated with argone. Than Me₂S (3.5 mL, 2.0 equiv) was added. Resulting mixture was warmed slowly to room temperature and stirred overnight. The reaction mixture was concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (1:6 AcOEt/hexanes); to afford 3.24 g (98%) of **11** as a colorless oil; R_f = 0.26 (1:4 AcOEt/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 9.75–9.73 (m, 1H), 7.40–7.30 (m, 5H), 4.64 (s, 2H), 4.11 (d, *J* 0.8 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 201.1, 137.5, 129.2, 128.8, 128.7, 75.9, 74.3.

4.2.3. (E)-(((3-Nitroallyl)oxy)methyl)benzene 3

To a solution of aldehyde 11 (3.0 g, 20 mmol) in 70 mL of dry toluene, nitromethane (10.8 ml, 200 mmol, 10.0 equiv) and N,N,N, *N*-tetramethylguanidine (253 µL, 2.0 mmol, 10 mol%) were added at 0 °C under argon. The resulting solution was stirred at the same temperature for 90 min, until complete conversion of the starting aldehvde 11 (TLC control, 1:1 AcOEt/hexanes). Next MsCl (2.32 mL, 30 mmol, 1.5 equiv) and Et_3N (4.18 mL, 30 mmol, 1.5 equiv) were added at 0 °C and the reaction mixture was stirred for an additional 40 min at the same temperature (TLC control, 1:1 AcOEt/hexanes). The reaction mixture was quenched with satd aq NaHCO₃ (20 mL) and diluted with Et₂O (20 mL). After phase separation, the aqueous layer was washed with Et_2O (3 \times 10 mL). The combined organic layers were dried over anhydr. Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (1:6 AcOEt/hexanes) to give 2.86 g (74%) nitroalkene **3** as a yellow oil. $R_f = 0.77$ (1:1 AcOEt/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.44–7.31 (m, 6H), 7.29–7.26 (m, 2H), 4.62 (s, 2H), 4.29–4.27 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 140.4, 139.1, 137.7, 129.3, 128.8, 128.4, 73.9, 66.2; IR (film) v: 3032, 2864, 1658, 1525, 1435, 1356, 1121, 1025, 932, 825, 740, 699 cm⁻¹; HRMS (ESI-TOF) m/z calcd for C₁₀H₁₁NNaO₃ [M+Na⁺] 216.0637. Found 216.0631.

4.3. Synthesis of Hayashi-Jørgensen catalyst (cat. I)

The Hayashi–Jorgensen catalyst **cat. II** was obtained according to the literature procedure.⁸

4.4. Synthesis of POSS-supported Hayashi–Jørgensen catalyst (cat. II)

The POSS-supported Hayashi–Jorgensen catalyst **cat. II** was obtained according to the literature procedure.^{16,18}

4.5. Synthesis of Wang resin-supported Hayashi–Jørgensen catalyst (cat. III)

4.5.1. 1-Ethyl 2-methyl (2*S*,4*R*)-4-hydroxypyrrolidine-1,2-dicarboxylate 12

To a suspension of trans-4-hydroxy-L-proline (2.38 g, 18.1 mmol) in 30 mL of methanol, anhydrous K₂CO₃ (2.5 g, 18.1 mmol, 1.0 equiv) was added followed by the addition of ethyl chloroformate (3.8 mL, 39.8 mmol, 2.2 equiv) in 7 mL of methanol. After being stirred at ambient temperature for 18 h methanol was removed in vacuo. The remaining residue was dissolved in CH₂Cl₂, washed with water and dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to give 3.047 g (78%) of product 12 as a colorless oil, which was used for the next step without further purification. Spectroscopic data was complementary with literature data.¹⁹ $[\alpha]_D^{24} = -70$ (*c* 2.5, CHCl₃); mixture of rotamers 1:1; ¹H NMR (300 MHz, CDCl₃) & 4.58–4.44 (m, 2H), 4.14 (q, J 7.1 Hz, 2H), 3.74 (d, J 5.7 Hz, 3H), 3.66 (dd, J 11.6, 4.2 Hz, 1H), 3.52 (d, J 11.5 Hz, 1H), 2.46-2.21 (m, 2H), 2.11 and 2.06 (dd, J 8.0, 5.0 Hz, 1H), 1.26 and 1.20 (t, J 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.0 and 173.8, 155.9 and 155.5, 70.8 and 70.0, 62.2, 58.4 and 58.3, 55.7 and 55.2, 52.9 and 52.8, 39.8 and 39.1; 15.2 and 15.1; IR (film) v: 3443, 2984, 2954, 1749, 1685, 1435, 1384, 1351, 1205, 1174, 1127, 1087, 1025, 783 cm⁻¹; HRMS (ESI-TOF) m/z calcd for C₉H₁₅NNaO₅ [M+Na⁺] 240.0848. Found 240.0843.

4.5.2. Ethyl (2*S*,4*R*)-4-hydroxy-2-(hydroxydiphenylmethyl) pyrrolidine-1-carboxylate 13

To a solution of 12 (3.02 g, 13.9 mmol) in 10 mL of dry THF, phenyl magnesium bromide solution (1M in THF) (41.7 mL, 41.7 mmol, 3.0 equiv) was added dropwise at 0 °C under argon. The resulting solution was warmed gradually to room temperature and stirred overnight. The reaction was quenched with satd aq NH₄Cl (5 ml), and H₂O (5 mL). After phase separation, the aqueous layer was washed with Et_2O (4 \times 10 mL). The combined organic layers were washed with brine (30 ml), and then dried over Na₂-SO₄ and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was recrystallized from Et₂O. Further evaporation under high vacuum gave 1.879 g (40%) of **13** as a white solid. Spectroscopic data was complementary with literature data.¹⁹ Mp 175–176 °C; $[\alpha]_{D}^{24} = -46.1$ (*c* 2.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.46–7.21 (m, 10H), 5.10 (dd, J 8.5, 6.6 Hz, 1H), 4.15-4.01 (m, 1H), 4.01-3.86 (m, 2H), 3.55 (d, / 12.0 Hz, 1H), 3.01 (dd, J 12.0, 4.1 Hz, 1H), 2.15 (dt, J 14.0, 6.0 Hz, 1H), 2.10-1.99 (m, 1H), 1.77 (s, 1H), 1.16 (t, J 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 158.7, 146.0, 143.9, 128.6, 128.4, 128.3, 128.0, 127.9, 127.8, 82.1, 70.4, 66.1, 62.6, 56.7, 39.8, 15.1; IR (film) v: 3410, 2984, 1668, 1428, 1382, 1345, 1199, 768, 702 cm⁻¹; HRMS (ESI-TOF) *m*/*z* calcd for C₂₀H₂₃NNaO₄ [M+Na⁺] 364.1525. Found 364.1519.

4.5.3. (6R,7aS)-1,1-Diphenyl-6-(prop-2-yn-1-yloxy)tetrahydro-1H,3H-pyrrolo[1,2-c]oxazol-3-one 14

To a solution of sodium hydride (440 mg, 60% disp. in mineral oil, 11 mmol, 2.0 equiv) in dry DMF (10 mL), a solution of **13** (1.879 g, 5.5 mmol) in dry DMF (10 mL) was added under argon at 0 °C. The reaction mixture was stirred for 15 min at the same temperature, and then a solution of propargyl bromide (80% in toluene) (1.2 mL, 5.5 mmol, 2.0 equiv) was added dropwise. The resulting solution was warmed to room temperature and stirred for 90 min, until complete conversion of the starting **13** (TLC control, 1:2 AcOEt/hexanes). Then the reaction was quenched with sat d aq NH₄Cl (10 ml). After phase separation, the aqueous layer was washed with CH₂Cl₂ (3 × 10 mL). The combined organic layers were washed with H₂O (30 ml), and then dried over Na₂SO₄ and

Please cite this article in press as: Szcześniak, P.; et al. Tetrahedron: Asymmetry (2017), https://doi.org/10.1016/j.tetasy.2017.10.016

filtered. The filtrate was concentrated under reduced pressure to give 1.804 g (98%) of product **14** as an orange oil, which was used for the next step without further purification. Spectroscopic data was complementary with literature data.¹⁹ R_f = 0.41 (1:2 AcOEt/hexanes); [α]_D²² = -200.1 (*c* 2.8, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.51 (m, 2H), 7.42-7.28 (m, 8H), 4.85 (dd, *J* 11.2, 5.0 Hz, 1H), 4.30 (t, *J* 5.6 Hz, 1H), 4.13 (d, *J* 2.4 Hz, 2H), 4.05 (dd, *J* 12.9, 5.9 Hz, 1H), 3.30 (dd, *J* 12.9, 1.0 Hz, 1H), 2.44 (t, *J* 2.4 Hz, 1H), 1.90 (dd, *J* 13.5, 5.0 Hz, 1H), 1.21 (ddd, *J* 13.6, 11.3, 5.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 161.0, 143.5, 140.7, 129.24, 129.10, 129.05, 128.5, 126.7, 126.0, 86.4, 78.8, 75.5, 67.9, 57.3, 54.2, 36.6; IR (film) *v*: 3286, 2954, 1758, 1494, 1449, 1374, 1246, 1226, 1093, 1003, 783, 704 cm⁻¹; HRMS (ESI-TOF) *m*/*z* calcd for C₂₁H₁₉NNaO₃ [M +Na⁺] 356.1263. Found 356.1257.

4.5.4. Diphenyl((2S,4R)-4-(prop-2-yn-1-yloxy)pyrrolidin-2-yl) methanol 15

To a solution of 14 (1.8 g, 5.4 mmol) in 15 mL of EtOH, potassium hydroxide (1.5 g, 27.0 mmol, 5.0 equiv) in H₂O (3 mL) was added, and the reaction mixture was refluxing for overnight, until complete conversion of the starting 14 (TLC control, 1:2 AcOEt/ hexanes). Then the reaction was cooled to room temperature, and diluted with AcOEt (10 mL) and H₂O (15 mL). After phase separation, the aqueous layer was washed with AcOEt (3×10 mL). The combined organic layers were washed with brine (30 ml), and then dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure to give 1.611 g (97%) of product 15 as a brown waxy solid, which was used for the next step without further purification. Spectroscopic data was complementary with literature data.¹⁹ $R_f = 0.15$ (1:2 AcOEt/hexanes); $[\alpha]_D^{24} =$ -111.1 (c 3.6, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.63-7.56 (m, 2H), 7.52-7.46 (m, 2H), 7.36-7.24 (m, 4H), 7.24-7.13 (m, 2H), 4.57 (dd, J 9.8, 6.6 Hz, 1H), 4.16 (ddt, J 3.5, 2.8, 1.7 Hz, 1H), 4.10 (d, J 1.8 Hz, 1H), 4.09 (d, J 1.8 Hz, 1H), 3.17 (dd, J 11.5, 4.3 Hz, 1H), 3.11 (ddd, J 4.0, 3.0, 1.6 Hz, 1H), 1.80 (ddd, J 13.8, 9.8, 5.3 Hz, 1H), 1.70–1.60 (m, 1H); 13 C NMR (75 MHz, CDCl₃) δ 148.3, 145.5, 128.9, 128.7, 127.3, 127.1, 126.6, 126.0, 80.5, 80.1, 77.5, 74.8. 64.0. 56.7. 52.9. 33.4: IR (film) v: 3362. 3286. 2939. 1598. 1491, 1448, 1356, 1174, 1080, 986, 750, 701, 664, 636 cm⁻¹; HRMS (ESI-TOF) m/z calcd for $C_{20}H_{22}NO_2$ [M+H⁺] 308.1651. Found 308.1653.

4.5.5. (2*S*,4*R*)-2-(Diphenyl((trimethylsilyl)oxy)methyl)-4-(prop-2-yn-1-yloxy)pyrrolidine 16

To a solution of **15** (1.504 g, 4.89 mmol) in dry CH₂Cl₂ (20 mL), Et₃N (887 μL, 6.36 mmol, 1.3 equiv) was added under argon. The resulting solution was stirred for 15 min, and then cooled to 0 °C. Trimethylsilyltriflate (974 µL, 5.38 mmol, 1.1 equiv) was added dropwise, and the resulting mixture was warmed gradually to room temperature and stirred for overnight, until complete conversion of the starting 15 (TLC control, 1:2 AcOEt/hexanes). Then the reaction was quenched with H₂O (10 ml). After phase separation, the aqueous layer was washed with CH_2Cl_2 (3 × 10 mL). The combined organic layers were washed with brine (30 ml), and then dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (1:2 AcOEt/hexanes); to afford 1.628 g (88%) of 16 as a yellow oil. Spectroscopic data was complementary with literature data.¹⁹ $R_f = 0.64$ (1:2 AcOEt/hexanes); $[\alpha]_{D}^{24} = -42.4$ (c 3.8, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.52– 7.45 (m, 2H), 7.38-7.32 (m, 2H), 7.32-7.19 (m, 6H), 4.33 (t, J 7.9 Hz, 1H), 4.07 (d, / 0.7 Hz, 1H), 4.06 (d, / 0.7 Hz, 1H), 3.98-3.91 (m, 1H), 2.97 (dd, J 11.8, 2.4 Hz, 1H), 2.81 (dd, J 11.8, 4.8 Hz, 1H), 2.37 (td, / 2.4, 0.7 Hz, 1H), 1.83 (s, 1H), 1.72 (d, / 4.0 Hz, 1H), 1.69 (d, J 3.9 Hz, 1H), -0.09 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 147.3, 146.0, 129.1, 128.3, 128.2, 128.1, 127.53, 127.45, 83.5, 80.7, 79.9,

74.6, 64.2, 56.7, 53.3, 34.7, 2.8; IR (film) v: 3303, 2952, 1492, 1446, 1250, 1071, 876, 838, 757, 701 cm⁻¹; HRMS (ESI-TOF) *m/z* calcd for $C_{23}H_{30}NO_2$ Si [M+H⁺] 380.2046. Found 380.2049.

4.5.6. p-Alkoxybenzyl chloride resin 17

p-Alkoxybenzyl alcohol resin (2.0 g, 2.0 mmol, 1.0 mmol/g loading, 75–100 mesh) was chlorinated with thionyl chloride (1.46 mL, 20 mmol; 10 equiv) in toluene (40 mL) at 70 °C for 2 h. The resin was filtered and washed with toluene (3 × 10 mL), DMF (3 × 10 mL), THF (3 × 10 mL), and CH₂Cl₂ (3 × 10 mL) and dried in a high vacuum to afford (2.141 g) (99%) of resin **17**.

4.5.7. p-Alkoxybenzyl azide resin 18

Resin **17** (2.141 g) was treated with sodium azide (696 mg, 10.71 mmol; 5.0 equiv) under argon in dry DMF (10 mL) at 70 °C for 24 h. Thereafter, the resin was filtered; washed with DMF (3×10 mL), water (3×10 mL),(3×10 mL), MeOH (3×10 mL), THF (3×10 mL), CH₂Cl₂ (3×10 mL); and dried in a high vacuum to afford (2.145 g) (97%) of resin 18. IR (KBr) *v*: 3025, 2922, 2097 (azide), 1602, 1511, 1493, 1452, 1243, 1029, 759, 698, 538 cm⁻¹.

4.5.8. Wang resin-supported Hayashi-Jørgensen catalyst (cat. III)

To a solution of acetylenic proline **16** (100 mg, 0.263 mmol, 1.0 equiv) in dry CH₂Cl₂ (2 mL), azide resin **18** (263 mg), copper iodide (2.5 mg, 0.013 mmol, 5 mol%) and *N*,*N*-diisopropylethylamine (46 μ L, 0.263 mmol, 1.0 equiv) were added under argon, and the mixture was left at room temperature for overnight. Thereafter, the resin was filtered; washed with: water (3 × 10 mL), MeOH (3 × 10 mL), CH₂Cl₂ (3 × 10 mL); and dried in a high vacuum to afford (357 mg) (54%) of **cat. III.** IR (KBr) *v*: 3025, 2922, 1601, 1513, 1493, 1452, 1250, 1069, 838, 758, 698, 537 cm⁻¹.

4.5.9. Synthesis of nitrone 7 via organocatalytic Michael addition catalyzed by Hayashi–Jørgensen catalyst (cat. I) and subsequent reductive cyclization (Strategy I)

To a solution of nitroalkene **3** (72 mg, 0.37 mmol, 1.0 equiv) in 1 mL of CHCl₃, Hayashi-Jørgensen catalyst cat. I (12 mg, 0.037 mmol, 10 mol%) and benzoic acid (22 mg, 0.185 mmol, 0.5 equiv) were added, and the mixture was stirred at room temperature for 10 min, then solution of aldehyde 2 (2.0 mmol, 2.0 equiv.) in 1 mL of CHCl₃ was added. The resulting mixture was stirred for 90 min, at the same temperature until complete conversion of the starting substrate (reaction progress was monitored by TLC and ¹H NMR). At the moment of complete conversion, the reaction was quenched with satd aq CuSO₄ (2 ml), and stirred for 15 min. After phase separation, the aqueous layer was washed with CHCl₃ $(3 \times 1 \text{ mL})$. The combined organic layers were dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure at 20 °C (without bath hitting) to give 161 mg of crude γ -nitroaldehydes **4** as a yellow oil, which was used for the next step without further purification.

4.5.10. *N*-((2*S*,3*R*)-4-(Benzyloxy)-2-formyl-3-(nitromethyl) butyl)-*N*-isobutylbenzenesulfonamide 4 (*syn*) and 4 (*anti*)

Inseparable mixture of diastereomers; $[\alpha]_D^{24} = -4.9$ (*c* 15.9, CHCl₃); *syn/anti* 92:8 (determined by ¹H NMR of crude reaction mixture); *e.e.* 97.2% (determined by HPLC of crude reaction mixture); *R_f* = 0.33 (1:4 AcOEt/hexanes); major isomer **4** (*syn*) selected signals: ¹H NMR (300 MHz, CDCl₃) δ 9.81 (d, *J* 1.3 Hz, 1H), 4.60–4.55 (m, 2H), 4.48 (d, *J* 1.3 Hz, 2H), 3.57 (d, *J* 4.5 Hz, 2H), 3.46 (dd, *J* 14.8, 8.0 Hz, 1H), 3.25 (dd, *J* 14.8, 5.4 Hz, 1H), 3.14–3.02 (m, 2H), 2.84 (d, *J* 7.6 Hz, 2H), 1.91–1.76 (m, 1H), 0.84 (d, *J* 4.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 202.3, 138.8, 137.8, 133.6, 129.9, 129.2, 128.7, 128.4, 128.0, 74.6, 74.2, 68.8, 58.7, 51.8, 47.5, 37.9, 27.6, 2×20.7; minor isomer **4** (*anti*) selected signals: ¹H NMR (300 MHz, CDCl₃) δ 9.77 (d, *J* = 1.5 Hz,

1H), 3.65 (dd, *J* = 10.1, 4.1 Hz, 1H), 3.55–3.49 (m, 2H), 3.34–3.28 (m, 1H), 3.00–2.92 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 201.3, 139.0, 137.7, 128.6, 76.1, 67.2, 58.4, 50.8, 47.9, 38.7; IR (film) *v*: 2963, 2871, 1720, 1554, 1338, 1160, 1091, 751, 692, 582 cm⁻¹; HRMS (ESI-TOF) *m/z* calcd for C₂₃H₃₀N₂NaO₆S [M+Na⁺] 485.1722. Found 485.1713; HPLC (Chiralcel OZ-H, 40% *i*-PrOH 60% *n*-hexane, flow rate: 1.0 mL min⁻¹, λ = 210 nm, Tem. 21 °C); major isomer **4** (*syn*) 29.6 min, 36.4 min; minor isomer **4** (*anti*) 16.3 min, 96.0 min.

To a solution of crude γ -nitroaldehyde **4** (*syn/anti* 92:8) (161 mg, 1.0 mmol, 1.0 equiv.) in 2 mL of MeOH, Zn powder (48 mg, 0.74 mmol, 2.0 equiv) was added, the mixture was cooled to 0 °C, and acetic acid (2.0 mL) was added. The reaction was stirred at 0 °C for 3 days. Then the reaction was quenched with 4 M aq NaOH to pH = 7, and diluted with CH₂Cl₂ (5 mL). After phase separation, the aqueous layer was washed with CHCl₃ (3 × 3 mL). The combined organic layers were dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to give the crude mixture of nitrones which was purified by silica gel column chromatography (1:4 MeOH/AcOEt); to afford 63 mg (40%) of nitrone **5** (*trans*), and 10 mg (6%) of nitrone **5** (*cis*).

4.5.11. (3*R*,4*S*)-3-((Benzyloxy)methyl)-4-((*N*-isobutylphenylsulfonamido)methyl)-3,4-dihydro-2*H*-pyrrole 1-oxide (5 *trans*)

Colorless oil; $[\alpha]_{D}^{20} = +57.7$ (c 5.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.78–7.76 (m, 2H, Ph), 7.60–7.57 (m, 1H, Ph), 7.50 (t, J 7.8 Hz, 2H, Ph), 7.38-7.34 (m, 2H, Ph), 7.33-7.29 (m, 3H, Ph), 7.00-6.99 (m, 1H, CH=NO), 4.54 (d, J 12.0 Hz, 1H, PhCHHO), 4.52 (d, J 11.9 Hz, 1H, PhCHHO), 4.21-4.16 (m, 1H, CHHNO), 3.88 (dd, J 14.3, 6.2 Hz, 1H, CHHNO), 3.54 (d, J 9.6 Hz, 1H, CHHOBn), 3.52 (d, J 9.7 Hz, 1H, CHHOBn), 3.38–3.28 (m, 1H, CHCH₂NSO₂Ph), 3.26 (dd, J 14.2, 6.6 Hz, 1H, CHHNSO₂Ph), 3.10 (dd, J 14.2, 8.0 Hz, 1H, CHHNSO₂Ph), 2.87 (dd, J 13.7, 8.0 Hz, 1H, CHH-i-Pr), 2.84 (dd, J 13.8, 7.3 Hz, 1H, CHH-i-Pr), 2.66 (qd, J 11.8, 5.9 Hz, 1H, CHCH₂OBn), 1.79 (tt, J 13.8, 6.8 Hz, 1H, CH(CH₃)₂), 0.85 (d, J 6.6 Hz, 3H, CH₃), 0.84 (d, J 6.6 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.17, 138.18, 136.22, 133.48, 129.82, 129.16, 128.57, 128.41, 127.92, 74.04, 71.26, 64.96, 58.62, 52.51, 45.97, 38.28, 27.74, 20.62, 20.56; IR (film) v: 3403, 2959, 2925, 2870, 1583, 1446, 1336, 1246, 1158, 1091, 996, 776, 751, 693, 582 cm⁻¹; HRMS (ESI-TOF) *m*/*z* calcd for C₂₃H₃₀N₂NaO₄S [M+Na⁺] 453.1824. Found 453.1819.

4.5.12. (3R,4R)-3-((Benzyloxy)methyl)-4-((N-isobutylphenylsulfonamido)methyl)-3,4-dihydro-2H-pyrrole 1-oxide (5 cis)

Colorless oil; $[\alpha]_{D}^{20} = -30.5$ (c 2.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.75 (dd, J 8.4, 1.2 Hz, 2H, Ph), 7.61–7.57 (m, 1H, Ph), 7.51-7.47 (m, 2H, Ph), 7.34-7.29 (m, 3H, Ph), 7.26-7.24 (m, 2H, Ph), 6.91-6.88 (m, 1H, CH=NO), 4.50-4.45 (m, 2H, PhCH₂O), 4.06 (dd, J 14.0, 8.7 Hz, 1H, CHHNO), 3.89 (dd, J 13.9, 5.9 Hz, 1H, CHHNO), 3.60-3.54 (m, 1H, CHCH2NSO2Ph), 3.55-3.50 (m, 2H, CH2-OBn), 3.31 (dd, J 14.3, 4.7 Hz, 1H, CHHNSO₂Ph), 3.19 (dd, J 14.3, 11.0 Hz, 1H, CHHNSO₂Ph), 2.97–2.90 (m, 1H, CHCH₂OBn), 2.84 (dd, J 13.7, 8.2 Hz, 1H, CHH-i-Pr), 2.80 (dd, J 13.7, 6.9 Hz, 1H, CHH-i-Pr), 1.78 (tt, J 13.5, 6.7 Hz, 1H, CH(CH₃)₂), 0.89 (d, J 6.6 Hz, 3H, CH₃), 0.87 (d, J 6.6 Hz, 3H, CH₃); 13 C NMR (75 MHz, CDCl₃) δ 138.99, 137.89, 136.97, 133.47, 129.82, 129.17, 128.63, 128.36, 127.96, 74.05, 68.38, 65.23, 58.67, 48.96, 44.07, 36.81, 30.30, 27.89, 20.65, 20.59; IR (film) v: 3386, 2960, 2925, 2870, 1585, 48, 337, 45, 1159, 1091, 751, 694, 582 cm⁻¹; HRMS (ESI-TOF) *m/z* calcd for C₂₃H₃₀N₂NaO₄S [M+Na⁺] 453.1824. Found 453.1805.

4.5.13. Synthesis of amine 1 (BZN) via reduction of nitrone (5 *trans*)

To a methanolic solution (2 mL) of nitrone **5** (*trans*) catalytic amount of Pd/C (10 wt.%) was added. The mixture was saturated with hydrogen at ambient temperature for 24 h. Then the catalyst

was removed by filtration and the reaction mixture was concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (108:8:1 AcOEt/MeOH/30–33% NH₃ aq) to give 21 mg (43%) of amine 1 (BZN) as a waxy solid. $[\alpha]_D^{20} = +31.7$ (c = 5.8; CHCl₃); $R_f = 0.15$ (100% MeOH); ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J 7.4 Hz, 2H, Ph), 7.52 (t, J 7.4 Hz, 1H, Ph), 7.45 (t, J 7.7 Hz, 2H, Ph), 7.32-7.22 (m, 4H, Ph), 4.46 (s, 2H, PhCH₂O), 3.41-3.35 (m, 2H, CH₂OBn), 3.13 (dd, J 14.0, 10.1 Hz, 1H), 3.07 (dd, J 11.0, 8.2 Hz, 1H, NHCHHCHCH₂OBn), 3.04–2.97 (m, 2H), 2.91 (dd, J 13.7, 7.5 Hz, 1H), 2.77 (dd, J 13.5, 7.4 Hz, 1H), 2.73 (dd, J 11.3, 5.8 Hz, 1H), 2.66 (dd, J 11.2, 5.7 Hz, 1H, NHCHHCHCH2OBn), 2.38-2.23 (m, 1H, NH), 2.20-2.13 (m, 1H, CHCH2NSO2Ph), 1.95 (dq, J 12.8, 6.5 Hz, 1H, CHCH₂OBn), 1.87 (tt, J 13.9, 6.9 Hz, 1H, CH(CH₃)₂), 0.85 (d, J 6.6 Hz, 2H, CH₃), 0.80 (d, J 6.6 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 140.06, 138.96, 132.99, 129.58, 129.00, 128.20, 127.87, 73.82, 73.59, 57.60, 53.32, 52.16, 51.02, 44.37, 43.28, 27.71, 20.71; IR (film) v: 2960, 2926, 2869, 1448, 1336, 1158, 1092, 750, 693, 582 cm⁻¹; HRMS (ESI-TOF) *m/z* calcd for C₂₃H₃₃N₂-O₄S [M+H+] 417.2212. Found 417.2221.

4.5.14. Synthesis of amine 1 (BZN) via organocatalytic Michael addition catalyzed by Hayashi–Jørgensen catalyst (cat. I) and subsequent reductive cyclization (Strategy I)

To a solution of nitroalkene **3** (72 mg, 0.37 mmol, 1.0 equiv) in 1 mL of CHCl₃, Hayashi-Jørgensen catalyst cat. I (12 mg, 0.037 mmol, 10 mol%) and benzoic acid (22 mg, 0.185 mmol, 0.5 equiv) were added, and the mixture was stirred at room temperature for 10 min, then a solution of aldehyde **2** (100 mg, 0,37 mmol, 1.0 equiv) in 1 mL of CHCl₃ was added. The resulting mixture was stirred for \sim 90 min, at the same temperature until complete conversion of the starting substrate (reaction progress was monitored by TLC and ¹H NMR). At the moment of complete conversion, the reaction was quenched with satd aq CuSO₄ (2 ml), and stirred for 15 min. After phase separation, the aqueous layer was washed with $CHCl_3$ (3 × 1 mL). The combined organic layers were dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure at 20 °C (without bath hitting) to give 161 mg of crude γ -nitroaldehydes **4** as a yellow oil, which was used for the next step without further purification.

To a solution of crude γ -nitroaldehyde **4** in 2 mL of MeOH, Zn powder (605 mg, 9.25 mmol, 25.0 equiv) was added, the mixture was cooled to 0 °C, and acetic acid (2.0 mL) was added. The reaction was stirred at 0 °C for 3 days. Then the reaction was quenched with 4 M aq NaOH to pH = 7, and diluted with CH₂Cl₂ (5 mL). After phase separation, the aqueous layer was washed with CHCl₃ (3 × 3 mL). The combined organic layers were dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (108:8:1 AcOEt/MeOH/30–33% NH₃ aq); to afford 102 mg (66%) of amine **1** (BZN).

4.5.15. Synthesis of amine 1 (BZN) via organocatalytic Michael addition catalyzed by POSS-supported Hayashi–Jørgensen catalyst (cat. II) and subsequent reductive cyclization (Strategy II)

To a solution of nitroalkene **3** (72 mg, 0.37 mmol, 1.0 equiv) in 2 mL of CHCl₃, POSS-supported Hayashi–Jorgensen catalyst **cat. II** (105 mg, 0.074 mmol, 20 mol%) was added, and the mixture was stirred at room temperature for 10 min, then a solution of aldehyde **2** (100 mg, 0,37 mmol, 1.0 equiv) in 2 mL of CHCl₃ was added. The resulting mixture was stirred for 3 days, at the same temperature until complete conversion of starting substrate (reaction progress was monitored by TLC and ¹H NMR). Then, solvent was removed on rotary evaporation (at 20 °C without bath hitting), and the crude

9

reaction mixture was treated with MTBE (10 mL) to precipitate the catalyst. After filtration, the precipitate was washed with MTBE (2 \times 2 mL), and then dried in a high vacuum to afford 85 mg (81%) of the recovered catalyst (cat. II), which was used for the next catalytic cycle.

The combined MTBE filtrates were concentrated under reduced pressure at 20 °C (without bath hitting) to give crude γ -nitroaldehyde 4, which was used for the next step without further purification.

To a solution of crude γ -nitroaldehyde **4** in 2 mL of MeOH, Zn powder (605 mg, 9.25 mmol, 25.0 equiv) was added, the mixture was cooled to 0 °C, and acetic acid (2.0 mL) was added. The reaction was stirred at 0 °C for 3 days. Then the reaction was quenched with 4 M aq NaOH to pH = 7, and diluted with CH_2Cl_2 (5 mL). After phase separation, the aqueous layer was washed with $CHCl_3$ (3 \times 3 mL). The combined organic layers were dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (108:8:1 AcOEt/MeOH/30-33% NH₃ aq); to afford 96 mg (62%) of amine 1 (BZN).

4.5.16. The Synthesis of amine 1 (BZN) via organocatalytic Michael addition catalyzed by Wang resin-supported Hayashi-Jørgensen catalyst (cat. III) and subsequent reductive cyclization (Strategy III)

To a solution of nitroalkene 3 (72 mg, 0.37 mmol, 1.0 equiv) in 2 mL of CHCl₃, Wang resin-supported Hayashi-Jørgensen catalyst cat. III (74 mg, 0.074 mmol, 20 mol%) and a solution of aldehyde **2** (100 mg, 0,37 mmol, 1.0 equiv) in 2 mL of $CHCl_3$ were added. The resulting mixture was left for 15 h, at the room temperature until complete conversion of the starting substrate (reaction progress was monitored by TLC and ¹H NMR). Then, the catalyst **cat.** III was filtered; washed with $CHCl_3$ (3 × 10 mL), and then dried in a high vacuum to afford 74 mg (100%) of the recovered catalyst cat. III, which was used for the next catalytic cycle.

The combined CHCl₃ filtrates were concentrated under reduced pressure at 20 °C (without bath hitting) to give crude γ -nitroaldehyde 4, which was used for the next step without further purification.

To a solution of crude γ -nitroaldehyde **4** 2 mL of MeOH, Zn powder (605 mg, 9.25 mmol, 25.0 equiv) was added, the mixture was cooled to 0 °C, and acetic acid (2.0 mL) was added. The reaction was stirred at 0 °C for 3 days. Then the reaction was guenched with 4 M aq NaOH to pH = 7, and diluted with CH_2Cl_2 (5 mL). After phase separation, the aqueous layer was washed with $CHCl_3$ (3 \times 3 mL). The combined organic layers were dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (108:8:1 AcOEt/MeOH/30-33% NH₃ aq); to afford 100 mg (65%) of amine 1 (BZN).

Acknowledgements

The author is grateful to Polish National Science Center for financial support of the research (Fuga 4 Grant No. DEC-2015/16/ S/ST5/00440).

The author is grateful to Artur Ulikowski for help in manuscript preparation.

A. Supplementary data

Supplementary data (the copies of ¹H, ¹³C NMR, NOE, HPLC spectra) associated with this article can be found, in the online version, at https://doi.org/10.1016/j.tetasy.2017.10.016.

References

- 1. (a) https://www.drugbank.ca/drugs/DB07505.; (b) http://www.rcsb.org/ pdb/explore.do?structureId=3BHE.; (c) https://pdbj.org/emnavi/quick.php?id= Chem-BZN.; (d) http://www.ebi.ac.uk/pdbe-srv/pdbechem/chemicalCompound/show/BZN.; (e) https://pubchem.ncbi.nlm.nih.gov/compound/25113136#section=Top.
- 2. Comprehensive Natural Products Chemistry; Barton, D., Nakanishi, K., Meth-Cohn, O., Eds.; Elsevier: Oxford, 1999; Vol. 1-9.
- Huang, P.-Q. Asymmetric synthesis of five-membered ring heterocycles. In Asymmetric Synthesis of Nitrogen Heterocycles; Royer, J., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009. doi: 10.1002/9783527625505. ch2.
- 4 For some selected examples, see: (a) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212; (b) Palomo, C.; Vera, S.; Mielgo, A.; Gómez-Bengoa, E. Angew. Chem., Int. Ed. 2006, 45, 5984; (c) Mossé, S.; Alexakis, A. Org. Lett. **2006**, 8, 3577; (d) Pansare, S. V.; Pandya, K. J. *Am. Chem. Soc.* **2006**, 128, 9624; (e) McCooey, S. H. J Org. Lett. **2007**, 9, 599; (f) Barros, M. T.; Phillips, A. M. F. Eur, J. Org. Chem. 2007, 178; (g) Wiesner, M.; Revell, J. D.; Wennemers,
 H. Angew. Chem., Int. Ed. 1871, 2008, 47; For the seminal work, see. (h) Betancort, J. M.; Barbas, C. F. Org. Lett. 2001, 3, 3737.
- (a) Zhu, S.; Yu, S.; Wang, Y.; Ma, D. Angew. Chem. Int. Ed. 2010, 49, 4656-4660; (b) Sagamanova, I.; Rodríguez-Escrich, C.; Molnár, J.; Sayalero, S.; Gilmour, R.; Pericàs, M. A. ACS Catal. 2015, 5, 6241-6248; (c) Kano, T.; Hisashi, S.; Tokuda, O.; Maruoka, K. Chem. Commun. 2013, 49, 7028–7030; (d) Johnson, T. A.; Jang, D. O.; Slafer, B. W.; Curtis, M. D.; Beak, P. J. Am. Chem. Soc. 2002, 124, 11689-11698
- (a) Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Jørgensen, K. A. J. Am. 6. Chem. Soc. 2005, 127, 18296–18304; (b) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 794–797; (c) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212-4215.
- 7. Bures, J.; Armstrong, A.; Blackmond, D. G. J. Am. Chem. Soc. 2012, 134, 6741-6750
- Szcześniak, P.; Staszewska-Krajewska, O.; Furman, B.; Młynarski, J. 8 ChemistrySelect 2017, 2, 2670–2676.
- (a) Röben, C.; Stasiak, M.; Janza, B.; Greiner, A.; Wendorff, J. H.; Studer, A. Synthesis 2008, 2163-2168; (b) Kristensen, T. E.; Vestli, K.; Jakobsen, M. G.; Hansen, F. K.; Hansen, T. J. Org. Chem. 2010, 75, 1620-1629; (c) Alza, E.; Pericàs, M. A. Adv. Synth. Catal. 2009, 351, 3051-3056; (d) Alza, E.; Sayalero, S.; Cambeiro, X. C.; Martín-Rapún, R.; Miranda, P. O.; Pericàs, M. A. Synlett 2011, 464-468; (e) Mager, I.; Zeitler, K. Org. Lett. 2010, 12, 1480-1483; (f) Alza, E.; Sayalero, S.; Kasaplar, P.; Almaşi, D.; Pericàs, M. A. Chem. Eur. J. 2011, 17, 11585-11595; (g) Llanes, P.; Rodríguez-Escrich, C.; Sayalero, S.; Pericàs, M. A. Org. Lett. 2016, 18, 6292-6295.
- 10. (a) Maltsev, O. V.; Kucherenko, A. S.; Zlotin, S. G. Eur. J. Org. Chem. 2009, 5134-5137; (b) Lombardo, M.; Chiarucci, M.; Quintavalla, A.; Trombini, C. Adv. Synth. Catal. 2009, 351, 2801-2806; (c) Ghosh, S. K.; Zheng, Z. L.; Ni, B. Adv. Synth. Catal. 2010, 352, 2378-2382; (d) Maltsev, O. V.; Kucherenko, A. S.; Chimishkyan, A. L.; Zlotin, S. G. Tetrahedron: Asymmetry 2010, 21, 2659-2670; (e) Maltsev, O. V.; Kucherenko, A. S.; Beletskaya, I. P.; Tartakovsky, V. A.; Zlotin, S. G. Eur. J. Org. Chem. 2010, 2927–2933.
- (a) Wang, B. G.; Ma, B. C.; Wang, Q.; Wang, W. Adv. Synth. Catal. 2010, 352, 11. 2923-2928; (b) Riente, P.; Mendoza, C.; Pericás, M. A. J. Mater. Chem. 2011, 21, 7350-7355; (c) Keller, M.; Perrier, A.; Linhardt, R.; Travers, L.; Wittmann, S.; Caminade, A.; Majoral, J.; Reiser, O.; Ouali, A. Adv. Synth. Catal. 2013, 355, 1748-1754; (d) Deiana, L.; Ghisu, L.; Afewerki, S.; Verho, O.; Johnston, E. W.; Hedin, N.; Bacsik, Z.; Córdova, A. Adv. Synth. Catal. 2014, 356, 2485-2492.
- Wang, C. A.; Zhang, Z. K.; Yue, T.; Sun, Y. L.; Wang, L.; Wang, W. D.; Zhang, Y.; 12. Liu, C.; Wang, W. Chem. Eur. J. 2012, 18, 6718-6723.
- 13. Li, Y. W.; Liu, X. Y.; Zhao, G. Tetrahedron: Asymmetry 2006, 17, 2034–2039.
- 14. Zu, L. S.; Li, H.; Wang, J.; Yu, X. H.; Wang, W. Tetrahedron Lett. 2006, 47, 5131-5134.
- 15. Li, L.; Zhang, C.; Zheng, S. J. Polym. Chem. 2017, 55, 223-233. Zheng, W.; Lu, C.; Yang, G.; Chen, Z.; Nie, J. Catal. Commun. 2015, 62, 34-38. 16. (a) Benaglia, M. New J. Chem. 2006, 30, 1525; (b) Benaglia, M.; Puglisi, A.; Cozzi, . Chem. Rev. 2003, 103, 3401; (c) Zhang, L.; Luo, S.; Cheng, J.-P. Sci. Technol. 2011, 1, 507; (d) Itsuno, S.; Parvez, M. M.; Haraguchi, N. Polym. Chem. 1942, 2011, 2; (e) Kristensen, T. E.; Hansen, T. Eur. J. Org. Chem. 2010, 3179; (f) Cozzi, F. Adv. Synth. Catal. 2006, 348, 1367; (g) Gruttadauria, M.; Giacalone, F.; Noto, R. Chem. Soc. Rev. 2008, 37, 1666; (h) Lu, J.; Toy, P. H. Chem. Rev. 2009, 109, 815; (i) Kristensen, T. E.; Vestli, K.; Jakobsen, M. G.; Hansen, F. K.; Hansen, T. J. Org. Chem. 2010, 75, 1620; (j) Hara, N.; Nakamura, S.; Shibata, N.; Toru, T. Adv. Synth. Catal. 2010, 352, 1621; (k) Arakawa, Y.; Wiesner, M.; Wennemers, H. Adv. Synth. Catal. 2011, 353, 1201; (1) Gleeson, O.; Davies, G.-L.; Peschiulli, A.; Tekoriute, R.; Gun'ko, Y. K.; Connon, S. Org. Biomol. Chem. 2011, 9, 7929; (m) Demuynck, A. L. W.; Peng, L.; de Clippel, F.; Vanderleyden, J.; Jacobs, P. A.; Sels, B. F. Adv. Synth. Catal. 2011, 353, 725; (n) Haraguchi, N.; Takemura, Y.; Itsuno, S. Tetrahedron Lett. 2010, 51, 1205; (n) Wennemers, H. Chem. Commun. 2011, 47, 12036; (o) Ohtani, N.; Inoue, Y.; Nomoto, A.; Ohta, S. React. Polym. 1994, 24, 73; (p) Font, D.; Sayalero, S.; Bastero, A.; Jimeno, C.; Pericas, M. A. Org. Lett. 2008, 10, 337; (r) Kudo, K.; Akagawa, K. In Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis; Itsuno, S., Ed.; John Wiley: Hoboken, 2010; p 91. 18. Li, L.; Zhang, Ch. J. Polym. Sci., A: Polym. Chem. 2017, 55, 223-233.
- 19. Mager, I.; Zeitler, K. Org. Lett. 2010, 12, 1480-1483.