ORGANOMETALLICS

Click Chemistry of an Ethynylarene Iron Complex: Syntheses, Properties, and Redox Chemistry of Cationic Bimetallic and Dendritic Iron-Sandwich Complexes

Amalia Rapakousiou, Yanlan Wang, Roberto Ciganda, Jean-Michel Lasnier, and Didier Astruc*

ISM, UMR CNRS 5255, University of Bordeaux, 33405 Talence Cedex, France

Supporting Information

ABSTRACT: The functionalization of dendrimers and other macromolecules with cationic redox-active organometallics remains a target toward metal-containing dendrimers and polymers that can serve in particular as polyelectrolytes and multielectron redox reagents. Along this line, we report the click functionalization of organometallics and dendrimers with a redox-active ethynylarene iron complex, $[FeCp(\eta^6-ethynylmesitylene)][PF_6]$, 3, easily available from $[FeCp(\eta^6-mesitylene)][PF_6]$, 1. Complex 3 reacts with azidomethylferrocene upon catalysis by copper sulfate and sodium ascorbate (CuAAC reaction) to give a bimetallic complex that is reduced on the mesitylene ligand to a mixture of isomeric cyclohexadienyl complexes. Complex 3 also reacts according to the

same click reaction with zeroth- and first-generation metallodendrimers containing, respectively, 9 and 27 azido termini to provide new polar polycationic metallodendrimers that are reversibly reduced, on the electrochemical time scale, to 19-electron Fe^I species.

INTRODUCTION

Metallodendrimers are a rich chemistry¹ that finds applications in catalysis,² sensing,³ molecular electronics,⁴ and other molecular materials properties.¹ Metallocene-terminated dendrimers occupy a large part of this chemistry because of their rich redox properties that are especially developed and applied with ferrocene dendrimers.⁵ Very few polycationic dendrimers are known, almost exclusively cobalticenium dendrimers,^{6,7} however, despite their polyelectrolyte properties. The chemistry of the family of complexes [FeCp(η^6 -arene)][PF₆]⁸ (Cp = η^5 -C₅H₅) parallels that of cobalticenium⁹ and is also quite rich. For instance, the basic properties of the readily available complex [FeCp(η^6 -mesitylene)][PF₆], **1**,¹⁰ are illustrated in Scheme 1. Further functionalization of **1** was thus a target in order to graft this cheap and easily available cationic and redox-active organoiron complex onto the periphery of dendrimers.

Recently, it has been possible to nearly quantitatively functionalize complex 1 by the introduction of an ethynyl group on the arene ligand upon addition of the ethynyl carbanion in the form of lithium acetylideethylenediamine in THF giving *exo*-cyclohexadienyl adduct 2, followed by removal of the *endo* hydride using commercial trityl hexafluorophosphate providing the ethynyl-substituted arene complex [FeCp- $(\eta^6$ -ethynylmesitylene)][PF₆], 3 (Scheme 2).¹¹

This procedure is an extension of the very useful analogous functionalization of cobalticenium.¹² Complex 3 that is readily obtained in this way serves in further functionalization. For instance, the new facile hydroamination of this complex 2 leads

Scheme 1. Basic Chemistry of Complex 1

Received: May 9, 2014

Scheme 2. Synthesis of Ethynyl Derivative 3

to the formation of conjugated *trans*-enamines,¹¹ but attempts to extend this functionalization to dendritic amines were unsuccessful, although such an extension worked well with ethynylcobalticenium.¹³ However, we report here the successful and facile CuAAC click reaction¹⁴ of **2** with azidomethylferrocene and dendritic azides yielding cationic bi- and polymetallic complexes of hexahapto-coordinated 1,2,3-triazolylmesitylene. The redox chemistry of these new cationic bimetallic and dendritic complexes is also detailed here.

RESULTS AND DISCUSSION

Click Reaction of Ethynylmesitylene Complex 3 with Azidomethylferrocene. The ethynyl derivative 3 of the complex $[FeCp(\eta^6-C_6H_3Me_3)]PF_6$, 1, is synthesized according to the nucleophilic addition of lithium acetylideethylenediamine followed by hydride abstraction by $[Ph_3C][PF_6]$ (Scheme 2). (Azidomethyl)ferrocene 4 is then used in the CuAAC reaction with compound 3 to selectively produce 1,4disubstituted triazolyl (trz) complex 5 in quantitative yield (Scheme 3).

The new dark-orange complex 5 is soluble in dichloromethane, THF, and chloroform and must be kept in the dark in the solid state in order to avoid its visible-light-induced photodecomplexation. The infrared spectroscopy shows the disappearance of the azido group at 2097 cm^{-1} and the appearance of the characteristic band of the PF_6^- anion at 839 cm⁻¹. The formation of the trz group is clearly shown in ¹H NMR spectroscopy by the appearance of the CH_2 -trz and trz CH peaks at 5.55 and 8.41 ppm, respectively, and is also confirmed by the presence of the characteristic peaks of *Cq* and CH of trz in the ¹³C NMR spectrum. Product 5 was additionally characterized by HMBC, HSQC, COSY, ³¹P, and ¹⁹F NMR spectroscopic techniques (Supporting Information). Finally, the structure of 5 was confirmed by the molecular peak at 506 Da in the mass spectrum corresponding to the positively charged complex 5 and by elemental analysis.

The cyclic voltammetry and redox chemistry of the ironsandwich complexes including that of ferrocene¹⁵ and of the family of $[FeCp(\eta^{6}\text{-}arene)][PF_{6}]$ complexes¹⁶ are well documented. The cyclic voltammograms (CVs) of complex **5** were recorded in DMF using decamethylferrocene as the internal reference¹⁷ in order to investigate the redox properties of the triazolyl-[Fe^{II}Cp($\eta^{6}\text{-}C_{6}H_{2}Me_{3}$ -)]PF₆ group. The oxidation wave at 0.55 V vs [FeCp*₂]^{+/0} (Cp* = $\eta^{5}\text{-}C_{5}Me_{5}$) is due to

the oxidation of the ferrocenyl fragment to the 17-electron ferricenium species, and the reduction wave at -1.36 V vs $[FeCp_{2}]^{+/0}$ is due to the reduction of the triazolyl- $[Fe^{II}Cp(\eta^{6} C_6H_2Me_3$ -)]PF₆ fragment to its 19-electron Feⁱ isostructural analogue.^{8b} Both waves show electrochemical and chemical reversibility under N₂ indicating the robustness of compound 5 and the triazolyl group attached to the $[Fe^{II}Cp(\eta^6-C_6H_2Me_3-)]$ -PF₆ sandwich under these conditions. When the CV is recorded under air, the situation changes, however. The reduction wave of triazolyl-[Fe^{II}Cp(η^6 -C₆H₂Me₃-)]PF₆ is then irreversible with a potential Ep of -1.34 V vs $[FeCp*_2]^{+/0}$, whereas remarkably a new irreversible oxidation wave appeared at -0.68 V vs $[FeCp_{2}^{*}]^{+/0}$. It is known that the 19-electron complex $[Fe^{II}(\eta^{5} Cp(\eta^6-C_6Me_6)$ is extremely reactive toward O₂, reacting with an overall H atom abstraction from a benzylic methyl substituent according to a mechanism that comprises electron transfer from Fe^I to O₂ followed by deprotonation by superoxide O_2^- giving the 18-electron cyclohexadienylidenemethylene complex $[Fe^{II}(\eta^5-Cp)(\eta^5-C_6Me_5CH_2)]$.¹⁸ It seems that the 19-electron species triazolyl-[Fe^I(η^{5} -Cp)(η^{6} - $C_6H_2Me_3$ -)] generated at the cathode by single-electron reduction of 5 reacts analogously with O_2 from air giving triazolyl-[Fe^{II}(η^{5} -Cp)(η^{5} -C₆H₂Me₂CH₂-)], although this cyclohexadienylidene-methylene species has not been isolated in this case. This reaction appears here to be faster than the electrochemical time scale as expected; thus, it probably is this oxidized species that is then oxidized at -0.68 V (Figure 1).

Figure 1. CVs of 5 under N_2 and under O_2 (air). Solvent, DMF; reference electrode, Ag; working and counter electrodes, Pt; scan rate, 0.2 V/s; and supporting electrolyte, $[n-Bu_4N][PF_6]$, 0.1M.

Scheme 4. Reduction of the Complex Fc-CH₂-trz-Fe^{II}(η^{5} -Cp)(η^{6} -C₆H₂Me₃-)]PF₆, 5, (Fc = ferrocenyl) by NaBH₄ Giving Neutral Bimetallic Complex 6 and Isomers

Figure 2. (a) FD-MS of neutral compound 6 and isomers and (b) possible hydride addition on four positions i, ii, iii, and iv of the mesitylene ligand (ii and iv are steroelectronically disfavored).

Reduction of Binuclear Triazole Complex 5 by NaBH₄. The complexes of the [FeCp(η^6 -arene)][PF₆] family are known to be reducible by NaBH₄ on the arene ligand producing a decrease of hapticity to yield cyclohexadienyl complexes, and in the presence of methyl substituents on the arene ligand, the unsubstituted carbon atoms of the ligand are preferentially attacked.¹⁹ In accord with this rule,²⁰ reduction of the darkorange cationic complex 5 by NaBH₄ at 0 °C in THF produces the light-orange complex 6 that contains two iron-sandwich units with both pentahapto ligands. Complex 6 is soluble in less polar solvents such as diethyl ether, which allows its extraction under N₂ (Scheme 4). Compound 6 is air-sensitive but not light-sensitive, contrary to the complexes of the [Fe^{II}(η^5 -Cp)(η^6 -arene)]PF₆ family.^{8b,21}

Compound 6 together with isomers have been isolated in 80% yield, and their structure is confirmed by the observation of the molecular peak in the FD-mass spectrum (Figure 2a). Compound and isomers 6 have been further characterized by ¹H NMR, ¹³C NMR, and HSQC spectroscopy, which is rather complex, showing the formation of a mixture of isomers corresponding to different positions of the hydride addition. The same phenomenon has been observed for the reduction of triazolyl-cobalticenium complexes by NaBH4.22 Indeed the hydride reduction of compound 5 might occur on positions i, ii, iii, and iv of the mesitylene ligand (preferentially in i and iii due to sterically and electronically disfavored hydride attack on the methyl-substituted arene carbon atoms) as indicated in Figure 2b. In all cases, the hydride is located in exo position on the mesitylene ligand as a result of the exo hydride attack. No attempt was made to identify and separate the isomers.

The cyclic voltammogram in THF shows a totally irreversible oxidation wave at 0.20 V vs. $[FeCp_2*]^{+/0}$. It is suggested that this wave corresponds to the oxidation of the compound 6 and its isomers (Supporting Information). This wave is very large, representing the subsequent irreversible oxidation of 6 and its isomers back to the starting material, complex 5.

Grafting [FeCp(η^6 -ethynylmesitylene)][PF₆] onto Dendrimers by Click Chemistry. Grafting [FeCp(η^6 ethynylmesitylene)][PF_6] on macromolecules was a challenge because of several factors. First, the visible-light sensitivity of the complexes of the $[FeCp(\eta^6-arene)][PF_6]$ family and more particularly of the click reaction products because of the electron-withdrawing trz substituent²¹ leads to a rapid decoordination of the mesitylene ligand. Then, an additional difficulty is the solubility problem that reduces the choice of solvent, while coordinating solvents are not permitted because of ligand displacement due to the cationic electron-poor arene ligand bond in 3. Finally, the steric effect of the ortho-methyl groups that had most probably been responsible for the lack of success of the extension of the useful hydroamination to dendritic amines might also cause failure of the click reaction. Finally, however, click chemistry has proved to be an efficient way for the incorporation of 3 into dendrimers, and the CuAAC reaction has been successfully conducted between 3 and polyazido-terminated dendritic precursors for the synthesis of the cationic metallodendrimers.

The synthesis of the polyazido dendrimers begins with the synthesis of arene-centered dendrimers according to the classic CpFe⁺-induced nona-allylation of mesitylene in $[FeCp(\eta^{6}-1,3,5-C_{6}H_{3}(CH_{3})_{3})][PF_{6}]^{23}$ according to the $1 \rightarrow 3$ con-

Scheme 5. Synthesis of the Dendrimer G_0 -Nona- $[Fe^{II}(\eta^5-Cp)(\eta^6-C_6H_2Me_3-)]PF_6$, 9

nectivity pioneered by Newkome.²⁴ This reaction provides the nonaallyl core and is followed by hydrosilylation with chloromethyldimethylsilane²⁵ and substitution of the terminal chloro group in 7 by reaction with sodium azide giving the zeroth-generation dendritic nonaazide **8**. The following dendrimer generation containing 27 terminal allyl groups is obtained by Williamson reaction of the nona-chloro core 7 with a phenol triallyl dendron²³ according to a known procedure.^{23b} It is followed by substitution of the terminal chloride by the azido group by reaction with NaN₃. This sequence of reactions provides the known first-generation dendrimer **10** containing 27 N₃ termini.²⁶

Click reactions follow between these dendritic azido precursors and alkyne 3. The solvents in each reaction are chosen in order to achieve the solubility of the final product because the polycationic poly-[Fe^{II}Cp(η^6 -C₆H₂Me₃-)]PF₆ dendrimers are soluble only in high polarity solvents. For the synthesis of the dendrimer, G_0 -nona-[Fe^{II}Cp(η^6 -C₆H₂Me₃-)]- PF_{61} 9, DMF/H₂O 4:1 is chosen as solvent, whereas for the dendrimer of higher generation G_1 -27-[Fe^{II}(η^5 -Cp)(η^6 - $C_6H_2Me_3$ -)]PF₆, 11, a mixture of DMF/THF/H₂O is used because the azido-terminated precursor 10 is insoluble in DMF. The temperature of the reactions is maintained at 60 °C, and the reaction mixtures are left stirring during 16 h. The copper salt is finally removed as $[Cu(NH_3)_2(H_2O)_2]$ [SO₄] by adding an aqueous solution of NH₃ that is left stirring with the mixture for 15 min. The resulting dendrimers 9 (Scheme 5) and 11 (Scheme 6) are purified, after workup in the dark, by precipitation in diethyl ether as yellowish powders. Washing with the less polar THF solvent in which they are insoluble permits one to separate the excess of starting material 3 and further impurities to finally give products 9 and 11 that are fully

characterized by ¹H, ¹³C, ¹⁹F, ³¹ P, HMBC, HSQC, COSY NMR, IR, cyclic voltammetry, and elemental analysis. MALDI-TOF analysis is also attempted for the smaller dendrimer **9** for which the molecular peak is observed even though the mass spectrum is an ensemble of multiple fragments due to the high instability of the dendrimer under these conditions (see Supporting Information).

Indeed, dendrimers 9 and 11 are very polar because the fragment trz-[Fe^{II}(η^{5} -Cp)(η^{6} -C₆H₂Me₃-)]PF₆ is very hydrophilic and soluble only in very polar solvents. Particularly, dendrimers 9 and 11 can be dissolved in acetone, acetonitrile, methanol, and DMF. However, these dendrimers are not soluble in water despite the presence of several cationic organometallic fragments at their periphery. Another observation is that dendrimers 9 and 11 are not stable in acetonitrile solution because acetonitrile is a competing ligand with mesitylene for coordination to iron(II), and precipitation occurs after several hours. Furthermore, exposure of these dendrimers to ambient light in solution or in the solid state also leads to rapid decomplexation of the mesitylene ligand. When kept in the dark, however, dendrimers 9 and 11 are stable compounds.

Infrared spectroscopy is a very useful tool to monitor the click reactions with dendrimers because the characteristic peak of the azido groups at about 2094 cm⁻¹ disappears at the end of the reactions confirming their replacement by the 1,2,3-triazole groups. The characteristic absorption of the PF₆⁻ anion of these PF₆⁻ salts shows a strong band in the range 836–842 cm⁻¹. The absorptions due to the ==C-H stretching of the triazole and Cp groups of the trz-[Fe^{II}(η^{5} -Cp)(η^{6} -C₆H₂Me₃-)]PF₆ unit are found in the range 3095–3127 cm⁻¹.

Scheme 6. Synthesis of G_1 -27-[Fe^{II}(η^5 -Cp)(η^6 -C₆H₂Me₃-)]PF₆ Dendrimer 11

NMR spectroscopy confirms the structure of the trz-[Fe^{II}(η^{5} -Cp)(η^{6} -C₆H₂Me₃-)]PF₆ products. Particularly, in ¹H NMR the formation of the trz ring is clearly shown by the appearance of the peaks around 8.27 ppm (in CD₃OD or CD₃COCD₃) for the products **9** and **11**. In both cases, the peak of SiCH₂-N₃ at 2.7–2.8 ppm disappears, whereas the appearance of the new peak of SiCH₂-trz takes place at about 4.2 ppm. The presence of the trz group is also confirmed by the appearance of the characteristic peaks of Cq and CH of trz as well as SiCH₂-trz in the ¹³C NMR spectra. Finally, the assignments of the number of protons in ¹H NMR show the expected ratio between the dendritic frame part and the trz-[Fe^{II}(η^{5} -Cp)(η^{6} -C₆H₂Me₃-)]-PF₆ groups. The ¹⁹F and ³¹P NMR spectra show the characteristic peaks of the PF₆⁻ counteranion. 2-D NMR data

(HSQC, HMBC, and COSY) show the correct correlation between proton/proton and proton/carbon peaks. Finally, elemental analysis confirms the structure of the dendrimers 9 and 11.

Cyclic Voltammetry of the Cationic Metallodendrimers 9 and 11. Both dendrimers 9 and 11 are also studied by cyclic voltammetry using decamethylferrocene as the internal reference,¹⁷ in DMF, a good solubility being accessible with this solvent. Different conditions such as temperature and air $(O_2)/N_2$ atmosphere are examined. A cathodic CV wave in all the products is observed around -1.34 V vs $[FeCp*_2]^{0/+}$ and corresponds to the reduction of $[Fe^{II}Cp(\eta^6-C_6H_2Me_3-)]$ -PF₆ to the 19-electron species $[Fe^ICp(\eta^6-C_6H_2Me_3-)]$. In all cases, this wave is single in DMF, which is explained by the

Figure 3. CV of dendrimer 11 in DMF under N₂. Internal reference, FeCp*₂; reference electrode, Ag; working and counter electrodes, Pt; scan rate, 0.2 V/s; supporting electrolyte, [*n*-Bu₄N][PF₆].

weakness of the electrostatic factor between the redox sites of the metallodendrimers, these redox centers being far from one another and separated by long tethers.²⁷ However, the envelope of the redox wave is broad, which is presumably due to electrostatic interactions differentiating the various single electron-transfer steps.

When recording the CVs of dendrimers 9 and 11 under aerobic (O_2) atmosphere, the same phenomenon as that for compound 5 is observed. The reduction wave of the fragments $[Fe^{II}Cp(\eta^{6}-C_{6}H_{2}Me_{3}-)]PF_{6}$ is irreversible due to the fast reaction of the 19-electron species with O_2 (vide supra). However, when the electrochemical experiments are performed under nitrogen at room temperature, the cathodic wave (Fe^{II/I}) becomes chemically and electrochemically reversible. The peakto-peak potential difference between the cathodic and anodic waves is 30-40 mV, significantly narrower compared with the Nernstian one-electron process, probably due to some adsorption onto the electrode. The electrochemical reversibility involving equally all of the redox groups is due to very fast rotation within the electrochemical time scale because all of the redox groups come close to the electrode, provoking fast electron transfer between these groups and the electrode,²⁸ and/or the electron-hopping mechanism.²⁹ The CV wave under N₂ of dendrimer 11 containing 27 [Fe^{II}(η^{5} -Cp)(η^{6} - $C_6H_2Me_3$ -)]PF₆ termini is shown in Figure 3.

CONCLUDING REMARKS

The currently used click reaction, i.e., the Huisgen-type CuAAC, proves to be most useful to graft organometallic complexes onto the periphery of dendrimers.³⁰ Here, the newly functionalized, easily available complex 3 is a remarkable illustration insofar as the hydroamination of 3 could not provide such iron-sandwich terminated dendrimers. In spite of their sensivity to visible light and coordinating solvents such as acetonitrile, the polycationic metallodendrimers were fully characterized. The electron-withdrawing 1,2,3-triazolyl linkage formed by the CuAAC reaction does not significantly perturb the chemical and electrochemical reversibility of the cathodic reduction to the Fe^I 19-electron species at least during the electrochemical time scale under an inert atmosphere. This chemistry adds to the versatility of the functionalization and redox properties of the family of $[FeCp(\eta^{6}-arene)][PF_{6}]$ complexes that parallels the cobalticenium family and opens the route to new cationic metallodendrimers and metalcontaining macromolecules and polyelectrolytes.

EXPERIMENTAL SECTION

General Data. Reagent-grade tetrahydrofuran (THF) was predried over Na foil and distilled from sodium-benzophenone anion under argon immediately prior to use. All other solvents and chemicals were used as received. The ¹H NMR spectra were recorded at 25 °C with a Bruker AVANCE II 400 MHz spectrometer. The ¹³C NMR spectra were obtained in the pulsed FT mode at 100 MHz with a Bruker AVANCE 400 spectrometer. ¹⁹F NMR spectra were recorded at 25 °C in a 376 MHz with a Bruker AVANCE II 400 MHz spectrometer. ³¹P NMR was recorded at 25 $^\circ \text{C}$ at 162 MHz with a Bruker AVANCE II 400 MHz spectrometer. All chemical shifts are reported in parts per million (δ , ppm) with reference to Me₄Si (TMS). The infrared (IR) spectra were recorded on an ATI Mattson Genesis series FT-IR spectrophotometer. The results of elemental analysis were obtained by a Thermo Flash 2000 EA. The sample was introduced in a tin container for NCHS analysis and in a silver container for oxygen analysis. The mass spectra were performed by the CESAMO (Bordeaux, France) on a QStar Elite mass spectrometer (Applied Biosystems). The instrument is equipped with an ESI source, and spectra were recorded in the positive mode. The electrospray needle was maintained at 5000 V and operated at room temperature. Samples were introduced by injection through a 20 μ L sample loop into a 4500 μ L/min flow of methanol from the LC pump. The mass spectrum of compound 6 was obtained by the CESAMO on a AccuTOF-GcV (JEOL), which is a GC-TOF. The instrument is equipped with a sample introduction system named FD (Field Desorption). The MALDI-TOF mass spectra were obtained by the CESAMO (Bordeaux, France) on a PerSeptive Biosystems Voyager Elite (Framingham, MA) time-of-flight mass spectrometer. All electrochemical measurements (CV) were recorded under the following conditions: solvent, dry DMF; temperature, 20 °C; supporting electrolyte, [nBu₄N][PF₆] 0.1M; working and counter electrodes, Pt; reference electrode, Ag; internal reference, FeCp*2; scan rate, 0.200 V· s^{-1}

Complex 5. A mixture of 1 equiv of azidomethylferrocene (60 mg, 0.23 mmol) and 1 equiv of ethynyl compound 3 (94 mg, 0.23 mmol) were dissolved in 3/2 distilled THF/H2O. At 0 °C, CuSO4 was added (1 equiv; 1 M aqueous solution), followed by dropwise addition of a freshly prepared solution of sodium ascorbate (2 equiv; 1 M aqueous solution). The solution was allowed to stir for 12 h at r.t. under N₂. Then, an aqueous solution of ammonia was added, and the mixture was allowed to stir for 10 min. The organic phase was washed twice with water, dried with sodium sulfate, and filtered through paper, and the solvent was removed in vacuo. Complex 5 was purified by precipitation with diethyl ether and obtained as dark-orange powder in quantitative yield (154 mg). ¹H NMR of 5 (CD₃COCD₃, 400 MHz), δ_{ppm} : 8.41 (1H, CH of trz), 6.43 (2H, CH of mesitylene), 5.55 (2H of trz– CH_2), 5.17 (5H, CH of Cp of [Fe^{II}Cp(η^6 -C₆H₂Me₃-)]PF₆, 4.45 (2H, CH of Cp sub. of FeCp₂), 4.25 (2H, CH of Cp sub. and 5H, CH of Cp free of FeCp₂), 2.56 (3H, -CHCCH₃) and 2.35 (6H, trzCCCH₃). ¹³C NMR of 5 (CD₃COCD₃, 100 MHz), δ_{ppm} : 139.88 (Cq of trz), 125.86 (CH of trz), 102.80 (trz-Cq), 102.75 (trz-CCq),

94.44 (CHCq of mesitylene), 88.48 (CH of mesitylene), 82.50 (Cq of Cp sub. of FeCp₂), 78.78 (CH of Cp of $-[\text{Fe}^{II}\text{Cp}(\eta^6\text{-}C_6\text{H}_2\text{Me}_3\text{-})]\text{PF}_{6'}$, 69.01 (CH of Cp of FeCp₂), 68.93 and 68.88 (CH of Cp sub. of FeCp₂), 50.08 (trz-CH₂), 19.61 and 19.54 ($-\text{CH}_3$ of mesitylene). ¹⁹F NMR of **5** (CD₃COCD₃, 376 MHz), δ_{ppm} : doublet centered at -73.3 ppm ($J_{\text{F}^-\text{P}} = 710 \text{ Hz}$). ³¹P NMR of **5** (CD₃COCD₃, 162 MHz), δ_{ppm} : -144.1 ppm (hept., PF₆⁻) ($J_{\text{P}^-\text{F}} = 710 \text{ Hz}$). ESI MS of **5** (m/z): Calcd for C₂₇H₂₈N₃Fe₂⁺, 506.097 Da; found, 506.098 Da. Anal. Calcd for C₂₇H₂₈N₃Fe₂PF₆: C, 49.80; H, 4.33. Found C, 50.10; H, 4.51.

Complex 6. A mixture of 1 equiv of 5 (30 mg, 0.046 mmol) with 2 equiv of NaBH₄ (1.7 mg, 0.092 mmol) in 20 mL of distilled THF was stirred for 10 min under N2. Then, the solvent was evaporated in vacuo, and distilled diethyl ether was added to solubilize the neutral product. After filtration under N2 and evaporation of the solvent in vacuo, the product was obtained as a light-orange powder. Yield: 80% (19 mg). Complex 6 is not stable in air and was stored under N₂. ¹H NMR of 6 (CDCl₃, 400 MHz), δ_{ppm} : 7.88–7.11 (1H, CH of trz), 6.36–6.06 (CH of mesitylene), 5.42–5.25 (2H of trz–CH₂ and H of diene), 4.93–4.00 (5H, CH of Cp of $[Fe^{II}Cp(\eta^6-C_6H_2Me_{3^-})]PF_6$ and (9H, CH of Cp of FeCp₂), 2.46-2.20 and 1.40-1.17 (9H, -CH₃), 1.90-1.64 (H in exo position). ¹³C NMR of 6 (CDCl₃, 100 MHz), δ_{ppm}: 137.65 (Cq of trz), 123.20 (CH of trz), 102.31 (trz-Cq), 98.71 (trz-CCq), 94.60 (CHCq of mesitylene), 88.33 (CH of mesitylene), 79.56 (Cq of Cp sub. of FeCp₂), 79.56-75.04 (CH of Cp of -[Fe^{II}Cp(η^6 -C₆H₂Me₃-)]PF₆, 69.48–68.78 (CH of FeCp₂), 49.93 (trz-CH₂), 39.74, 39.00 and 30,02 (CH exo), 25.65-19.96 (-CH₃ of mesitylene). MS (m/z) of 6: Calcd for C₂₇H₂₉Fe₂N₃, 507.1060; found, 507.1055.

Compound 9. Azido-terminated dendrimer 8 (1 equiv, 30 mg, 0.020 mmol) and complex 3 (13.5 equiv., 110.7 mg, 0.27 mmol) were dissolved in 20 mL of anhydrous and degassed DMF, then 3 mL of degassed water was added, and the reaction mixture was cooled to 0 °C. Then, an aqueous solution of 1 M CuSO₄ (1.1 equiv per branch) was added dropwise, followed by the dropwise addition of a freshly prepared solution of sodium ascorbate (2.2 equiv per branch). The color of the solution changed from yellow to dark orange upon addition of sodium ascorbate. The reaction mixture was allowed to stir for 16 h at 60 °C under nitrogen atmosphere. Then, the mixture of solvents was evaporated in vacuo, and 100 mL of nitromethane was added followed by the addition of an aqueous solution of ammonia. The mixture was allowed to stir for 15 min in order to remove all of the copper salt trapped inside the dendrimer. The organic phase was washed twice with water, dried over sodium sulfate, and filtered, and the solvent was removed in vacuo. Then, the product was precipitated from an acetone solution in diethyl ether and washed with THF to remove the excess of alkyne and further impurities. Product 9 was obtained as an orange-yellow powder. Yield: 65% (67 mg). ¹H NMR of **9** (CD₃OD, 400 MHz): δ_{ppm} : 8.23 (9H, CH of trz), 7.18 (3H, CH of arom.core), 6.33 (18H, CH of mesitylene), 5.03 (4SH, CH of Cp of $[Fe^{II}Cp(\eta^6-C_6H_2Me_{3^*})]PF_{6i}$ 4.16 (18H, SiCH₂-trz), 2.48 (27H, -CHCCH₃), 2.25 (54H, trzCCCH₃) 1.80 (18H, CH₂CH₂CH₂Si), 1.31 (18H, CH₂CH₂CH₂Si), 0.76 (18H, CH₂CH₂CH₂Si), 0.13 (54H, Si(CH₃)₂). ¹³C NMR of 9 (CD₃OD, 100 MHz), δ_{ppm} : 145.09 (Cq of arom.core), 138.24 (Cq of trz), 127.12 (CH of trz), 124.41 (CH of arom.core), 102.46 (trz-Cq and trz-CCq), 94.05 (CHCq of mesitylene), 88.34 (CH of mesitylene), 78.37 (CH of Cp of $[Fe^{II}Cp(\eta^6-C_6H_2Me_3-)]PF_6$, 44.00 (CqCH₂CH₂CH₂Si), 42.01 (CqCH2CH2CH2Si), 40.72 (trz-CH2Si), 20.34 and 20.20 (-CH3 of mesitylene), 17.91 (CqCH₂CH₂CH₂Si), 14.92 (CqCH₂CH₂CH₂Si), -4.61 (Si(CH₃)₂). ¹⁹F NMR of 9 (CD₃OD, 376 MHz), δ_{ppm} : doublet centered at 75.3 ppm ($J_{F^-P} = 710$ Hz). Anal. Calcd for C₂₀₇H₂₈₂Si₉N₂₇Fe₉P₉F₅₄(H₂O): C 47.57, H 5.48; found, C 47.64 H 5.22.

Compound 11. Azido-terminated dendrimer **10** (1 equiv, 22.5 mg, 0.004 mmol) and complex **3** (40.0 equiv, 60 mg, 0.144 mmol) were dissolved in a mixture of 20 mL of anhydrous and degassed DMF and 15 mL of anhydrous and degassed THF, then 3 mL of degassed water was added, and the reaction mixture was cooled to 0 °C. Then, an aqueous solution of 1 M CuSO₄ (1.1 equiv per branch) was added dropwise, followed by the dropwise addition of a freshly prepared

solution of sodium ascorbate (2.2 equiv per branch). The color of the solution changed from yellow to dark orange upon addition of sodium ascorbate. The reaction mixture was allowed to stir for 16 h at 60 °C under nitrogen atmosphere. Then, the mixture of solvents was evaporated in vacuo, and 100 mL of nitromethane was added followed by the addition of an aqueous solution of ammonia. The mixture was allowed to stir for 15 min in order to remove all the copper salt trapped inside the dendrimer. The organic phase was washed twice with water, dried over sodium sulfate, and filtered, and the solvent was removed in vacuo. Then, the product was precipitated from an acetone solution in diethyl ether and washed with THF to remove the excess of alkyne and further impurities. Product 11 was obtained as an orangeyelow powder. Yield: 56% (35 mg). ¹H NMR of 11 (CD₃COCD₃, 400 MHz), $\delta_{\rm ppm}$: 8.32 (27H, CH of trz), 7.30, 6.90 (39H, CH of arom.core), 6.42 (54H, CH of mesitylene), 5.12 (135H, CH of Cp of $[Fe^{II}Cp(\eta^6-C_6H_2Me_{3^-})]PF_{6}$, 4.20 (54H, SiCH₂-trz), 3.59 (18H, SiCH₂O), 2.51 (3H, -CHCCH₃) and 2.31 (6H, trzCCCH₃), 1.73 (72H, CH₂CH₂CH₂Si), 1.28 (72H, CH₂CH₂CH₂Si), 0.71 (72H, CH₂CH₂CH₂Si), 0.10 (216H, Si(CH₃)₂). ¹³C NMR of 11 $(CD_3COCD_3, 100 \text{ MHz}), \delta_{ppm}$: 159.58 (arom. OCq), 139.66 (Cq of trz), 137.47 (Cq of arom.core), 127.51 and 113.81 (arom. CH), 125.59 (CH of trz), 102.76 (trz-Cq), 102.67 (trz-CCq), 94.58 (CHCq of mesitylene), 88.53 (CH of mesitylene), 78.78 (CH of Cp of $[Fe^{II}Cp(\eta^{6}-C_{6}H_{2}Me_{3}-)]PF_{6}, 60.20 (CH_{2}OAr), 43.25 (CqCH_{2}CH_{2}CH_{2}Si), 42.21 (CqCH_{2}CH_{2}CH_{2}Si), 40.97 (trz-CH_{2}Si),$ 19.61 (-CH₃ of mesitylene), 17.70 (CqCH₂CH₂CH₂Si), 14.82 $(CqCH_2CH_2CH_2Si)$, -4.16 $(Si(CH_3)_2)$. ¹⁹F NMR of 11 (CD₃COCD₃, 376 MHz), δ_{ppm} : doublet centered at 73.3 ppm ($J_{\text{F}^{-}\text{P}}$ = 710 Hz). ³¹P NMR of 11 (CD₃COCD₃, 162 MHz), δ_{ppm} : -144.1 ppm (hept., PF₆⁻) ($J_{\text{P}^{-}\text{F}}$ = 710 Hz). Anal. Calcd for $C_{720}H_{975}Si_{36}N_{81}Fe_{27}O_9(PF_6)_{27}(H_2O)_2$: C 49.76, H 5.68; found, C 49.48 H 5.81.

ASSOCIATED CONTENT

Supporting Information

Spectroscopic data for the bimetallic and metallodendritic complexes (IR, NMR, and mass spectra) and cyclic voltammograms. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: d.astruc@ism.u-bordeaux1.fr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Helpful assistance and discussions with Claire Mouche (mass spectrometry, CESAMO), Noël Pinaud (NMR, CESAMO), and Jaime Ruiz (dendrimers, ISM) at the University of Bordeaux and financial support from L'Oréal, the University of Bordeaux, and the Centre National de la Recherche Scientifique (CNRS) are gratefully acknowledged.

REFERENCES

(1) (a) Newkome, G. R.; Moorefield, C. N. Chem. Rev. 1999, 99, 1689–1746. (b) Newkome, G. R.; Moorefield, C. N.; Vögtle, F. Dendrimers and Dendrons, Syntheses, Concepts, Applications; Wiley-VCH: Weinheim, Germany, 2001. (c) Hwang, S. H.; Shreiner, C. D.; Moorefield, C. N.; Newkome, G. R. New J. Chem. 2007, 31, 1192–1217. (d) Vögtle, F.; Richardt, G.; Werner, N. Dendrimer Chemistry Concepts, Syntheses, Properties, Applications; Wiley: Weinheim, Germany, 2009. (e) Astruc, D.; Boisselier, E.; Ornelas, C. Chem. Rev. 2010, 110, 1857–1959. (f) Caminade, A.-M.; Turin, C.-O.; Laurent, R.; Ouali, A.; Delavaux-Nicot, B. Dendrimers. Towards Catalytic, Material and Biomedical Uses; Wiley: Weinheim, Germany,

Organometallics

2011. (g) Campana, S.; Ceroni, P.; Punteriero, F. Designing Dendrimers; Wiley: Hoboken, NJ, 2012.

(2) (a) Knapen, J. W. J.; van Dermade, A. X.; Dewilde, J. C.; van Leuwen, P. W. N. M.; Wijkens, P.; Grove, D. M.; van Koten, G. Nature **1994**, 659–663. (b) Oosterom, G. E.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. **2001**, 40, 1828–1849. (c) Astruc, D.; Chardac, F. Chem. Rev. **2001**, 101, 2991–3024. (d) van Heerbeeck, R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. Rev. **2002**, 102, 3717–3756. (e) Astruc, D.; Heuze, K.; Gatard, S.; Méry, D.; Nlate, S. Adv. Synth. Catal. **2005**, 347, 329–338. (f) Liang, C.; Fréchet, J. M. J. Prog. Polym. Sci. **2005**, 30, 385–402. (g) Scott, R.W. J.; Wilson, O. M.; Crooks, R. M. J. Phys.Chem. B **2005**, 109, 692–704. (h) de Jesus, E.; Flores, J. C. Ind. Eng. Chem. Res. **2008**, 47, 7968–7981. (i) Wang, D.; Astruc, D. Coord. Chem. Rev. **2013**, 257, 2317–2334.

(3) (a) Percec, V.; Johansson, G.; Ungar, G.; Zhou, J. P. J. Am. Chem. Soc. 1996, 118, 9855–9866. (b) Zeng, F.; Zimmermann, S. C. Chem. Rev. 1997, 97, 1681–1712. (c) Balzani, V.; Campana, S.; Denti, G.; Juris, A.; Serroni, S.; Venturi, M. Acc. Chem. Res. 1998, 31, 26–34.
(d) Matthews, O. A.; Shipway, A. N.; Stoddart, J. F. Prog. Polym. Sci. 1998, 23, 1–56. (e) Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. Rev. 1999, 99, 1665. (f) Armada, M. P. G.; Losada, J.; Zamora, M.; Alonso, B.; Cuadrado, I.; Casado, C. M. Bioelectrochemistry 2006, 69, 65–73. (g) Balzani, V.; Bergamini, G.; Ceroni, P.; Vögtle, F. Coord. Chem. Rev. 2007, 251, 525. (h) Martinez, F. J.; Gonzales, B.; Alonso, B.; Losada, J.; Garcia-Armada, M. P.; Casado, C. M. J. Inorg. Organomet. Polym. Mater. 2008, 18, 51–58.

(4) (a) Jiang, D.-L.; Aida, T. J. Am. Chem. Soc. **1999**, *121*, 10895–10901. (b) Andronov, A.; Fréchet, J. M. J. Chem. Commun. **2000**, 1701–1710. Astruc, D. Nat. Chem. **2012**, *4*, 255–267. Bergamini, G.; Marchi, E.; Ceroni, P.; Balzani, V. In Designing Dendrimers; Campagna, S., Ceroni, P., Puntoriero, F., Eds.; Wiley: Hoboken, NJ, 2012; pp 341–366.

(5) (a) Casado, C. M.; Morán, M.; Alonso, B.; Barranco, M.; Losada, J. *Appl. Organomet. Chem.* **1999**, *13*, 245–259. (b) Casado, C. M.; Cuadrado, I.; Morán, M.; Alonso, B.; Garcia, B.; Gonzales, B.; Losada, J. *Coord. Chem. Rev.* **1999**, *185–186*, 53. (c) Casado, C. M.; Alonso, B.; Losada, J.; Garcia-Armada, M. P. In *Designing Dendrimers*; Campagna, S., Ceroni, P., Puntoriero, F., Eds.; Wiley: Hoboken, NJ, 2012; pp 219–262.

(6) (a) Casado, C. M.; González, B.; Cuadrado, I.; Alonso, B.; Morán, M.; Losada, J. Angew. Chem., Int. Ed. 2000, 39, 2135–2138.
(b) Takada, K.; Diaz, D.; Abruña, H. D.; Cuadrado, I.; Gonzales, B.; Casado, C. M.; Alonso, B.; Morán, M.; Losada, J. Chem.—Eur. J. 2001, 7, 1109–1117. (c) Yao, H.; Grimes, R. N.; Corsini, M.; Zanello, P. Organometallics 2003, 22, 4381–4383. (d) Rapakousiou, A.; Wang, Y.; Belin, C.; Pinaud, N.; Ruiz, J.; Astruc, D. Inorg. Chem. 2013, 52, 6685– 6693.

(7) For dendrimers terminated by $[Fe(\eta^5-C_5H_4-)(\eta^6-C_6Me_6)][PF_6]$ groups, see Djeda, R.; Ornelas, C.; Ruiz, J.; Astruc, D. Inorg. Chem. **2010**, 49, 6085–6101.

(8) (a) Nesmeyanov, A. N. Adv. Organomet. Chem. 1972, 10, 1–16.
(b) Hamon, J.-R.; Astruc, D.; Michaud, P. J. Am. Chem. Soc. 1981, 103, 758–766.
(c) Green, J. C.; Kelly, M. R.; Payne, M. P.; Seddon, E. A.; Astruc, D.; Hamon, J.-R.; Michaud, P. Organometallics 1983, 2, 211–218.
(d) Moulines, F.; Astruc, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1347–1349.
(e) Abd-El-Aziz, A. S.; Bernardin, S. Coord. Chem. Rev. 2000, 203, 219–267.
(f) Abd-El-Aziz, A. S.; Todd, E. K. Coord. Chem. Rev. 2003, 246, 3–52.

(9) (a) Sheats, J. E.; Rausch, M. D. J. Org. Chem. 1970, 35, 3245–3249. (b) Geiger, W. E. J. Am. Chem. Soc. 1974, 96, 2632–2634.
(c) Sheats, E. J. Organomet. Chem. Libr. 1979, 7, 461–521. (d) Kemmit, R. D. W.; Russel, D. R. In Comprehensive Organometallic Chemistry; Pergamon Press: Oxford, U. K., 1982; Vol 5, Chapter 34, 4.5.1, pp 244–248. (e) Gloaguen, B.; Astruc, D. J. Am. Chem. Soc. 1990, 112, 4607–4609.

(10) Astruc, D. Organometallic Chemistry and Catalysis; Springer: Heidelberg, Germany, 2008; Chapter 10, pp 275–286.

(11) (a) Wang, Y.; Latouche, C.; Rapakousiou, A.; Lopez, C.; Ledoux-Rak, I.; Ruiz, J.; Saillard, J.-Y.; Astruc, D. *Chem.—Eur. J.* **2014**, 20, 8076–8088.

(12) Wildschek, M.; Rieker, C.; Jaitner, P.; Schottenberger, H.; Schwarzhans, K. E. J. Organomet. Chem. **1990**, 396, 355–361.

(13) Wang, Y.; Rapakousiou, A.; Ruiz, J.; Astruc, D. Chem.—Eur. J. **2014**, DOI: 10.1002/chem.201403085.

(14) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599. (b) Tornøe, C. W..
(b1) Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064. (15) (a) Flanagan, J. B.; Margel, S.; Bard, A. J.; Anson, F. C. J. Am. Chem. Soc. 1978, 100, 4248–4253. (b) Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877–910. (c) Nishihara, H. Adv. Inorg. Chem. 2002, 53, 41–86. (d) Zatsepin, T. S.; Andreev, S. Y.; Hianik, T.; Oretskaya, T. S. Russ. Chem. Rev. 2003, 72, 537–554. (e) Zanello, P. Inorganic Electrochemistry. Theory, Practice and Applications; RSC: Cambridge, U.K., 2003. (f) Geiger, W. E. Organometallics 2007, 26, 5738–5765.

(16) (a) Dessy, R. E.; Stary, F. E.; King, R. B.; Waldrop, M. J. Am. Chem. Soc. 1966, 88, 471. (b) Moinet, C.; Román, E.; Astruc, D. J. Electroanal. Chem. 1981, 121, 241–253. (c) Lacoste, M.; Varret, F.; Toupet, L.; Astruc, D. J. Am. Chem. Soc. 1987, 109, 6504–6506. (d) Desbois, M.-H.; Astruc, D.; Guillin, J.; Varret, F.; Trautwein, A. X.; Villeneuve, G. J. Am. Chem. Soc. 1989, 111, 5800–5809. (e) Ruiz, J.; Lacoste, M.; Astruc, D. J. Am. Chem. Soc. 1990, 112, 5471–5483.

(17) Ruiz, J.; Astruc, D. C. R. Acad. Sci. 1998, t. 1, Sér. IIc, 21–27.
(18) Astruc, D.; Hamon, J.-R.; Román, E.; Michaud, P. J. Am. Chem. Soc. 1981, 103, 7502–7514.

(19) Khand, U.; Pauson, P. L.; Watts, W. E. J. Chem. Soc. C 1968, 2257–2259.

(20) (a) Davies, S. G.; Green, M. L. H.; Mingos, D. M. P. *Tetrahedron* **1978**, *34*, 20–50. (b) Astruc, D.; Michaud, P.; Madonik, A.; Saillard, J.-Y.; Hoffmann, R. *Nouv. J. Chim.* **1985**, *9*, 41–50.

(21) Gill, T. P.; Mann, K. R. Inorg. Chem. 1980, 19, 3007–3010.
(b) Gill, T. P.; Mann, K. R. J. Organomet. Chem. 1981, 216, 65–71.

(22) Rapakousiou, A.; Mouche, C.; Duttine, M.; Ruiz, J.; Astruc, D. *Eur. J. Inorg. Chem.* **2012**, 5071–5077.

(23) (a) Moulines, F.; Djakovitch, L.; Boese, R.; Gloaguen, B.; Thiel, W.; Fillaut, J.-L.; Delville, M.-H.; Astruc, D. Angew. Chem., Int. Ed. **1993**, 32, 1075–1077. (b) Valério, C.; Fillaut, J. L.; Ruiz, J.; Guittard, J.; Blais, J. C.; Astruc, D. J. Am. Chem. Soc. **1997**, 119, 2588–2589.

(24) (a) Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K. J. Org. Chem. 1985, 50, 2003–2004. (b) Newkome, G. R.; Shreiner, C. Chem. Rev. 2010, 110, 6338–6442.

(25) (a) Sartor, V.; Djakovitch, L.; Fillaut, J.-L.; Moulines, F.; Neveu, F.; Marvaud, V.; Guittard, J.; Blais, J. C.; Astruc, D. J. Am. Chem. Soc. **1999**, *121*, 2929–2930. (b) Ruiz, J.; Lafuentes, G.; Marcen, S.; Ornelas, C.; Lazare, S.; Cloutet, E.; Blais, J.-C.; Astruc, D. J. Am. Chem. Soc. **2003**, *125*, 7250–7257.

(26) (a) Ornelas, C.; Ruiz, J.; Belin, C.; Astruc, D. J. Am. Chem. Soc. 2009, 131, 590–601. (b) Boisselier, E.; Diallo, A. K.; Salmon, L.; Ornelas, C.; Ruiz, J.; Astruc, D. J. Am. Chem. Soc. 2010, 132, 2729– 2742. (c) Djeda, R.; Rapakousiou, A.; Liang, L.; Guidolin, N.; Ruiz, J.; Astruc, D. Angew. Chem., Int. Ed. 2010, 49, 8152–8156.

(27) (a) Sutton, J. E.; Sutton, P. M.; Taube, H. Inorg. Chem. 1979, 18, 1017–1024. (b) Richardson, D. E.; Taube, H. Coord. Chem. Rev. 1984, 60, 107–129. (c) Barrière, F.; Geiger, W. E. Acc. Chem. Res. 2010, 43, 1030–1039.

(28) Gorman, C. B.; Smith, B. L.; Parkhurst, H.; Sierputowska-Gracz, H.; Haney, C. A. J. Am. Chem. Soc. **1999**, 121, 9958–9966.

(29) Amatore, C.; Bouret, Y.; Maisonhaute, E.; Goldsmith, J. I.; Abruña, H. D. *Chem.—Eur. J.* **2001**, *7*, 2206–2226.

(30) Wang, Y.; Salmon, L.; Ruiz, J.; Astruc, D. Nat. Commun. 2014, DOI: 10.1038/ncomms4489.