



Tetrahedron Letters 44 (2003) 8593-8595

TETRAHEDRON LETTERS

## Lanthanide assisted cross-coupling of aryl bromides with triethylaluminum

Margarita Shenglof,<sup>a</sup> Dmitri Gelman,<sup>a</sup> Gary A. Molander<sup>b</sup> and Jochanan Blum<sup>a,\*</sup>

<sup>a</sup>Department of Organic Chemistry, The Hebrew University, Jerusalem 91904, Israel

<sup>b</sup>Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104-6323, USA

Received 5 August 2003; revised 3 September 2003; accepted 12 September 2003

Abstract—Cerium trichloride, as well as some other lanthanide salts, promote the palladium-catalyzed cross-coupling of triethylaluminum with bromoarenes. The lanthanide compounds also increase the selectivity by diminishing the undesired hydrodebromination process.

© 2003 Elsevier Ltd. All rights reserved.

Palladium- and nickel-catalyzed cross-coupling of aryl and vinyl halides with metal or metalloid alkyls is one of the most useful methods for C-C bond formation.<sup>1</sup> For this reason derivatives of nearly all common metals have been investigated as alkylating reagents. Organoaluminum compounds were utilized during the early stages of the development of cross-coupling processes, but thereafter gained only little popularity. Their ability to interact with many solvents leads frequently to side products and to low selectivity. Furthermore, the tendency of trialkylaluminum compounds R<sub>3</sub>Al, which contain  $\beta$ -hydrogen atoms in the alkyl moieties, to disproportionate into alkenes and aluminum hydrides<sup>2</sup> is responsible for substantial hydrodehalogenation of the aryl halides. Recently, we have shown that these shortcomings can be overcome to a significant extent by replacement of the trialkylaluminum by Lewis baseintramolecularly stabilized dialkylaluminum derivatives using either phosphine-free nickel complexes<sup>3</sup> or palladium-containing mixed-metal clusters<sup>4</sup> as catalysts. We now report on an alternative method for selective activation of trialkylaluminum in cross-coupling processes based on the observation that lanthanide compounds promote a variety of C-C bond forming reactions,<sup>5</sup> and that they are capable of undergoing transmetallation with metal alkyls, including derivatives of aluminum.6

of 1-ethylnaphthalene and 5% of naphthalene. Upon addition of an equimolar amount of dry CeCl<sub>3</sub>, the yield of 1-ethylnaphthalene increased to 88% and that of the dehalogenated naphthalene decreased to 0.6%. (The remaining 11% was the unreacted arvl bromide.) When the time was extended to 10 h full conversion was achieved without change in the selectivity. A similar increase in rate and in the selectivity was observed also when other aryl bromides or triflates were treated with the Et<sub>3</sub>Al/CeCl<sub>3</sub> couple. Some representative results are listed in Table 1. Table 1 indicates that the rate is affected to some extent by electronic factors. Introduction of electron donating groups (entries 3 and 4) causes the reaction to slow down whereas electron attracting functions (entries 5 and 6) increase the rate. The behavior of 4-(trifluoromethyl)bromobenzene in the cross-coupling is obscure. The reaction is also affected by steric hindrance. 2-Bromotoluene reacts slower than the unsubstituted bromobenzene and the unhindered 4-bromotoluene (cf., entries 1, 2 and 3). Entry 9 indicates that the cross-coupling takes place also with triflates, however, in a less selective fashion than with the bromides.

Interaction of equimolar quantities of 1-bromonaph-

thalene and triethylaluminum in the presence of 5 mol%

of PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> in THF at 22°C afforded after 6 h 16%

Lanthanide-deficient blank experiments with the substrates listed in Table 1 gave usually less than half of the ethylated products as the CeCl<sub>3</sub>-mediated reactions. Apart from CeCl<sub>3</sub>, salts of lanthanum, lutetium and ytterbium revealed a positive effect (although a smaller

*Keywords*: aluminum; bromoarenes; cross-coupling; lanthanide compounds.

<sup>\*</sup> Corresponding author. Tel.: +972-2-6585329; fax: +972-2-6513832; e-mail: jblum@chem.ch.huji.ac.il

<sup>0040-4039/\$ -</sup> see front matter  ${\ensuremath{\mathbb C}}$  2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.09.147

 $\label{eq:table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_$ 

| Entry | Substrate         | Yield of<br>ArEt, (%) <sup>b,c</sup> | Yield of<br>ArH, (%) <sup>b,c</sup> | Selectivity, (%) |
|-------|-------------------|--------------------------------------|-------------------------------------|------------------|
| 1     | Br                | 71                                   | 2.8                                 | 96               |
| 2     | Me<br>Br          | 33                                   | 1.7                                 | 95               |
| 3     | Me-               | 64                                   | 2.9                                 | 96               |
| 4     | MeO-Br            | 45                                   | 1.9                                 | 96               |
| 5     | CI-               | 87                                   | 3.7                                 | 96               |
| 6     | OHC-Br            | 77                                   | 5.0                                 | 94               |
| 7     | F <sub>3</sub> C- | 30                                   | 0.0                                 | 100              |
| 8     | Br                | 88                                   | 0.6                                 | 99               |
| 9     | OTf               | 86                                   | 13                                  | 87               |

<sup>a</sup> *Reaction conditions*: aryl bromide or triflate (1.6 mmol), Et<sub>3</sub>Al (1.6 mmol), anhydrous CeCl<sub>3</sub> (1.6 mmol), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.079 mmol), THF (12.7 ml), N<sub>2</sub> atmosphere, 22°C. After 6 h the reaction mixture is diluted with 25 ml Et<sub>2</sub>O and quenched with 2 ml MeOH and 5 ml 15% aq. HCl. <sup>b</sup> In all experiments the only byproduct was the bromide-free starting materials (ArH).

<sup>c</sup> The yields were determined both by GC and by <sup>1</sup>H NMR. The figures are the average of at least two experiments that did not differ by more than 3%. As there are no other side products except the ArH, the missing percentage reflects on the unreacted starting material.

one than  $CeCl_3$ ) on the palladium-catalyzed reaction of 1-bromonaphthalene with  $Et_3Al$  (Table 2). On the other hand, some lanthanide salts [e.g.  $EuCl_3$  and  $Sm(OTf)_3$ ] act as inhibitors and cause the cross-coupling to slow down. It is notable that not only the type of lanthanide

metal, but also the nature of the counter-ion affects the cross-coupling. While e.g. the effect of  $CeCl_3$  is really significant, that of  $CeBr_3$  is much smaller. Likewise, the two ytterbium salts affect the reaction to a different extent.

**Table 2.**  $PdCl_2(PPh_3)_2$ -catalyzed cross-coupling of 1-bromonapthalene with  $Et_3Al$  in the presence of some lanthanide halides or triflates under comparable conditions<sup>a</sup>

| Entry | Lanthanide compound  | Yield of 1-ethyl-naphthalene $(\%)^b$ | Yield of naphthalene $(\%)^b$ | Selectivity (%) |
|-------|----------------------|---------------------------------------|-------------------------------|-----------------|
| 1     | None <sup>c</sup>    | 16                                    | 5.0                           | 76              |
| 2     | CeCl <sub>3</sub>    | 88                                    | 0.6                           | 99              |
| 3     | CeBr <sub>3</sub>    | 27                                    | 3.7                           | 88              |
| 4     | LaCl <sub>3</sub>    | 38                                    | 1.0                           | 97              |
| 5     | LuCl <sub>3</sub>    | 32                                    | 1.0                           | 97              |
| 6     | Yb(OTf) <sub>3</sub> | 40                                    | 1.4                           | 97              |
| 7     | YbCl <sub>3</sub>    | 20                                    | 0.3                           | 98              |

<sup>a</sup> Reaction conditions as in Table 1 except that lanthanide compounds other than CeCl<sub>3</sub> were also used.

<sup>b</sup> The yields were determined both by GC and <sup>1</sup>H NMR and were the average of at least two experiments that did not differ by more than 3%. The missing percentage reflects on the unreacted starting material after 6 h.

<sup>c</sup> The same result was obtained when 1.6 mmol of either AlCl<sub>3</sub> or BF<sub>3</sub> etherate was added to the reaction mixture. Addition of 1.6 mmol of  $ZnCl_2$  afforded 6% of 1-ethylnaphthalene and 1.7% of naphthalene.

The exact function of the lanthanide salt in the crosscoupling process is not quite clear. As AlCl<sub>3</sub> and BF<sub>3</sub> etherate have no effect whatsoever on either the crosscoupling of Et<sub>3</sub>Al with 1-bromonaphthalene, or on the hydrodehalogenation of the latter compound, and freshly fused ZnCl<sub>2</sub> even reduces the rate and the selectivity, it is unlikely that the lanthanides function in our case (as they do in many other processes<sup>5</sup>) as Lewis acids. Although complexes of trialkylaluminum and some lanthanides are known<sup>7</sup> we were unable to prove unequivocally by <sup>1</sup>H, <sup>13</sup>C and <sup>27</sup>Al NMR studies that Et<sub>3</sub>Al and the diamagnetic LaCl<sub>3</sub> forms a discrete alkyl lanthanium compound. Yet we assume on the basis of the observation that alkyl lanthanide derivatives can act as active reagents in alkylation and cross-coupling processes,<sup>8</sup> that transmetallation may also occur in our reactions.

Finally, we also examined the effect of a lanthanide salt  $[Eu(OTf)_3]$  on the cross-coupling of an aryl chloride. We found that indeed the NiCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>-catalyzed reaction of 1-chloronaphthalene<sup>9</sup> with Me<sub>3</sub>Al is enhanced by the added europium salt. While in the absence of the lanthanide compound 25% of 1-methylnaphthalene and 2% of naphthalene were formed after 6 h, the respective percentages of these products were 56 and 0.2 in its presence.

In summary,  $CeCl_3$  and some other  $Ln^{+3}$  salts are useful additives for effective cross-coupling of bromoarenes with triethylaluminum. They both increase the reaction rate and diminish the disproportionation of the aluminum reagent which leads to undesired hydrogenolysis of the starting halide.

## Acknowledgements

We thank the United States–Israel Binational Science Foundation (BSF) for financial support of this study through grant No. 2000013.

## References

1. For some recent reviews and leading summaries see: (a) *Metal-Catalyzed Cross-Coupling Reactions*. Diederich, F.;

Stang, P. J., Eds.; VCH: Weinheim, Germany, 1998; (b) Suzuki, A. J. Organomet. Chem. **1999**, 576, 147; (c) Lie, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry; Pergamon: New York, NY, 2000; (d) Negishi, E.-I. Handbook of Organopalladium Chemistry for Organic Synthesis; Wiley: Hoboken, N.J., 2002; Vol. 1, pp. 229– 247; (e) The special issue of J. Organomet. Chem. **2002**, 653 devoted to the Symposium of 30 Years of the Cross-Coupling Reaction; (f) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. **2002**, 41, 4176 and references cited therein.

- See for e.g. Eisch, J. J. In *Comprehensive Organometallic Chemistry II*; Abel, E. W.; Stone, F. G. A.; Wilkinson, G.; Housecroft, C. E., Eds.; Pergamon: Oxford, UK, 1995; Vol. 1, p. 464.
- Gelman, D.; Dechert, S.; Schumann, H.; Blum, J. Inorg. Chim. Acta 2002, 334, 149.
- Shenglof, M.; Gelman, D.; Heymer, B.; Schumann, H.; Molander, G. A.; Blum, J. Synthesis 2003, 302.
- 5. Molander, G. A. Chem. Rev. 1992, 92, 29 and references cited therein.
- 6. Schumann, H.; Meese-Marktscheffel, J. A.; Esser, L. *Chem. Rev.* **1995**, *95*, 865 and references therein.
- For a recent example see: Fischbach, A.; Herdtweck, E.; Anwander, R.; Eickerling, G.; Scherer, W. Organometallics 2003, 22, 499.
- 8. (a) Sigalov, A. B.; Rybakova, L. F.; Beletskaya, I. P. Izv. Akad. Nauk SSSR, Ser. Khim. 1983, 1692; (b) Yokoo, K.; Fukagawa, T.; Yamanaka, Y.; Taniguchi, H.; Fujiwara, Y. J. Org. Chem. 1984, 49, 3237; (c) Collin, J.; Namy, J. L.; Bied, C.; Kagan, H. B. Inorg. Chim. Acta 1987, 140, 29; (d) Rybakova, L. F.; Syutkina, O. P.; Garbar, A. V.; Petrov, E. S. Zh. Obshch. Khim. 1988, 58, 1053; (e) Syutkina, O. P. Rybakova, L. F.; Petrov, E. S. Metallorg. Khim. 1989, 2, 1146; (f) Inamoto, T.; Hatajiama, T.; Nishimura, S; Togo, H.; Yokoyama, M. Kidorui 1990, 16, 3081 [Chem. Abstr. 1991, 114, 61235z]; (g) Fujiwara, Y.; Makioka, Y. Kikan Kagaku Sosetsu 1998, 37, 18 [Chem. Abstr. 1999, 129, 315727d]; (h) Fujiwara, Y.; Tanikguchi, Y. Kikan Kagaku Sosetsu 1998, 37, 63 [Chem. Abstr. 1999, 129, 330287d]; (i) Zheleznova, T. A.; Bochkarev, L. N.; Safronova, A. V.; Zhil'tsov, S. F. Russ. J. Gen. Chem. 1999, 69, 784.
- 9. cf.: Gelman, D.; Schumann, H.; Blum, J. Tetrahedron Lett. 2000, 41, 7555.