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Selective introduction of substituent(s) into aromatic rings offers a Table 1. Reactions between Phenols 1 and 1-Octene (2a)”

direct and efficient method to synthesize substituted-aromatic com-

OH
pounds. Well known examples of such a transformation are the N | Re5(CO)p (2.5 mol%) cf .
Friedel—Crafts reaction' and the hydroarylation of olefins.> However, | X * L"csm " toltene. 150°C. 24 h | X Coths

in both cases, it is usually difficult to introduce only one alkyl group 1R 2 ' ’ R 3

into the aromatic rings regioselectively.

Phenols are one of the most important aromatic compounds. entry 1 product yield / %
Although several examples of ortho-alkylation of phenols and related 1 RepMe 1b b .
compounds have been reported,® a number of problems remain: (1) a ) W 1e 2 76
mixture of mono- and multialkylated products is formed;* (2) in some 5 pF 1 2 %
cases, a stoichiometric amount of a metal salt is necessary to promote

. 5 e . 4 p-Cl 1e 3e 84
the reaction;” and (3) there are limitations in the types of substrates
5 p-Br Af 3f

that can be used.* During an investigation of the catalytic activities
of rhenium complexes,”* we found that monoalkylation of phenols
proceeded only at the ortho- or para-position of the hydroxyl group
selectively using Re,(CO),g as a catalyst.

By heating 4-methoxyphenol (1a) in a 1-octene (2a) solvent in the
presence of a catalytic amount of a rhenium complex, Re,(CO);, the
ortho-alkylated phenol derivative 3a was obtained in 97% yield (eq
1). In this reaction, only the monoalkylated product 3a was yielded as
a single product despite using an excess amount of 1-octene (2a). This
result is interesting because a mixture of mono- and multialkylated
products is usually formed by the Friedel—Cerafts reaction.

OH OH
Re,(CO| 2.5 mol%
l 2(CO)1o ( o) "CoHys 0
CeHy3 135°C, 24 h
OMe 2a OMe 3a 97%

1a

The reaction also proceeded quantitatively in toluene using 1.5 equiv
of l-octene (2a).° Although the rhenium complex ReBr(CO)s also
showed catalytic activities, the yield of the alkylated phenol 3a was
only 23%. Rhenium complexes, [ReBr(CO);(thf)], and ReCl;, gave a
mixture of polyalkylated products.'®

Next, we investigated the scope and limitations of phenol derivatives
(Table 1). Treatment of 4-methylphenol (1b) with 1-octene (2a) in
toluene at 135 °C gave ortho-alkylated phenol 3b in 59% yield;
however, the yield of 3b increased at 150 °C, and 3b was obtained in
82% yield (entry 1). Phenol (1¢) produced ortho-alkylated phenol 3¢
in 76% yield (entry 2).'"'? ortho-Alkylated phenols 3d, 3e, and 3f
were obtained using 4-fluoro-, 4-chloro-, and 4-bromo-phenols (1d,
le, and 1f) without losing the halogen atom (entries 3—5). When
3-methoxyphenol (1g) was employed, the alkylation reaction did not
afford a single product, and a mixture of 3g and 3g” was formed (entry
6). Mono- and dialkylated catechols 3h and 3h” were yielded using
catechol (1h) (entry 7). By using hydroquinone (1i) a mixture of mono-
and dialkylated products 3i and 3i’ was produced in 54% yield (entry
8).!* The selectivity of 3i’ was improved dramatically by increasing
the amount of olefin 2a (entry 9).

Next, we investigated several alkenes (Table 2). Secondary alkyl-
substituted olefin 2b afforded an ortho-alkylated phenol 3j in 97%
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“2a (1.5 equiv), 1 (2.0 M). ®Isolated yield. “1 (4.0 M). ¢ The ratio
between 3g and 3g’ is given in square brackets. ¢ The ratio between 3h
and 3h’ is given in square brackets. / 2a (1.0 equiv). ¢ The ratio between
3i and 3i’ is given in square brackets. " 2a (4.5 equiv).

yield (entry 1). Olefins bearing a functional group could also be
employed as substrates (entries 2—4). Ether and ester groups did not
inhibit the reaction, and phenols 3k and 31 were obtained in 87% and
83% yields, respectively (entries 2 and 3).'* By using an olefin with
an olefin moiety at the internal position, 2e, the reaction proceeded
only at the terminal olefin position, and ortho-alkylated phenol 3m
was produced in 70% yield (entry 4). In this reaction, the internal olefin
moiety remained unchanged during the reaction. The internal alkenes,
cis-cyclooctene (2f) and norbornene (2g), also reacted with phenol 1a
and generated ortho-alkylated phenol 3n and a mixture of ortho-
alkylated phenols 30 and 30" in 93% and 91% yields, respectively
(entries 5 and 6). By using styrene, a mixture of mono- and di-, and
ortho- and meta-alkylated phenols (4 isomers) was produced in
quantitative yield."'>'®

In contrast to the terminal alkenes, the regioselectivity of the
substitution changed markedly when gem-disubstituted alkenes were
employed. When gem-disubstituted olefins 2h and 2i were used, no
ortho-monoalkylated phenols were formed, and instead, para-alkylated
phenols 3p and 3q, and ortho- and para-disubstituted phenols 3p” and
3q" were obtained in 89% and 86%, and 4% and 8% yields,
respectively (eq 2).

10.1021/ja904360k CCC: $40.75 © 2009 American Chemical Society



COMMUNICATIONS

Table 2. Reactions between Phenol 1a and Several Olefins 22

OH
I\ Re,(CO)4p (2.5 mol%) R
toluene, 150 °C, 24 h
3
OMe 1a OMe
entry R product yield / %°
1 -§<:> 2b 3j 97
2 (CHp)4OFEt 2c 3k 87
3 (CH,),OCOEt 2d 3l 83
4 . 2e 3m 70
N
e”m\/
5 2f 3n 93
S
[82 18]°
OMe 3o OMe 30’

@2 (1.5 equiv). ? Isolated yield. © The ratio between 30 and 30’.

OH
Rez(CO)m (2.5 mol%)
+ (%)
R toluene 150°C, 24 h
1c 2

R 3 3
"CgHy9 2h (1.0 equiv) 3p 89% 3p' 4%
Ph 2i(1.5equiv) 3q 8% 3q' 8%

By treatment of phenol (1¢) with diene having a methyl group at
the S-position of the diene moiety, 4a, the reaction occurred at the
d-position of diene 4a, and 5 was obtained in 87% yield (eq 3).

OH

Re(CO)1p (2.5 mol%)

(3)
"CsH11  toluene, 115 °C, 24 h

@)\/\

(1.0 equw) (2.0 equw) 587% "CsHq

On the other hand, by the reaction of phenol (1c) with diene 4b in
the presence of a rhenium catalyst, Re,(CO);¢, an annulation reaction
proceeded and indane 6 was obtained in 58% yield (eq 4). This
reactivity is quite different from the previous reports in which
dihydrobenzofuran and/or dihydrobenzopyran derivatives are pro-
duced."”

OH
OH
Re,(CO)1q (5.0 mol%)
+ Mph — Ph 4)
toluene, 115 °C, 24 h
1c . 4b ) — 150°C, 24 h 6 58%
(1.0 equiv) (1.5 equiv) [trans:cis = 58:42]

In summary, we have succeeded in regioselective alkylation of
phenols in good to excellent yields. In this reaction, monoalkylated
phenols are obtained selectively, offering advantages over the standard
Friedel—Crafts alkylation, in which a complex mixture of ortho- and
para-substituted, and mono- and multisubstituted phenols is usually
formed. The details of the reaction mechanism is under investigation.

We hope that this reaction will become a useful method to synthesize
substituted phenols.
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