Paper

Concise Total Syntheses of (±)-Joubertiamine, (±)-O-Methyljoubertiamine, (±)-3'-Methoxy-4'-O-methyljoubertiamine, (±)-Mesembrane, and (±)-Crinane

Α

Mrinal Kanti Das Subhadip De Shubhashish Alakesh Bisai*

Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India alakesh@iiserb.ac.in

Received: 26.12.2015 Accepted after revision: 22.02.2016 Published online: 18.03.2016 DOI: 10.1055/s-0035-1561583; Art ID: ss-2015-z0741-op

Abstract A method to access *cis*-3a-aryloctahydroindole alkaloids has been developed through a key strategy involving Eschenmoser–Claisen rearrangement of allylalcohol. This approach gives us an opportunity to access the all-carbon quaternary center required for *cis*-3a-aryloctahydroindole alkaloids. Subsequent simple allylic oxidation of Eschenmoser–Claisen products and synthetic elaborations (reductions/oxidations) enabled the total syntheses of the title compounds to be completed in good yields in a few steps. The strategic viability was further tested in the total syntheses of *Amaryllidaceae* alkaloids (±)-mesembrane and (±)-crinane. Towards this end, we synthesized advanced intermediate keto-aldehydes from Eschenmoser–Claisen rearrangement products through iodolactonization followed by elaboration involving reduction and oxidation steps.

Keywords Eschenmoser–Claisen rearrangement, all-carbon quaternary centers, allylic oxidation, alkaloids

Sceletium alkaloids¹ of the family Aizoaceae (**1a-d** and **2a-c**; Figure 1) represent an interesting class of alkaloids with an all-carbon quaternary stereocenter. Most of the bases that have been characterized belong to two different

groups: *seco*-mesembrane alkaloids (1), such as joubertiamine (1a),¹ O-methyljoubertiamine (1b), 3'-methoxy-4'-O-methyljoubertiamine (1c), and dihydrojoubertiamine (1d), and *cis*-3a-aryloctahydroindole alkaloids (2)² such as mesembrane (2a), mesembranol (2b), mesembrine (2c).²

The common structural feature of these classes of alkaloids is the presence of an all-carbon quaternary stereocenter;³ hence, it is quite reasonable to believe that they originated through a common biosynthetic pathway.⁴ In addition to their interesting architecture, the *cis*-3aaryloctahydroindole skeleton constitutes the core structure of many alkaloids with impressive diversity of biological activities.⁴ Their biological potential was significantly manifested by their antiviral, antitumor, anticholinergic and anti-HIV properties.⁵ Therefore, in recent years considerable effort has been directed toward the synthesis of *Sceletium* alkaloids.¹

The alkaloids of the *Amaryllidaceae* family (Figure 2) also have interesting architecture with an all-carbon quaternary stereocenter.⁶ These alkaloids drew the attention of the synthetic community because of their intriguing physiological activities.⁷ Plants belonging to the *Amaryllidaceae* family are herbaceous perennials that grow from bulbs. The

В

family consists of about 60 genera, whose 800 species are widely distributed in several countries around the world. They are also cultivated as ornamental plants for their beautiful flowers and for the production of volatile oil. Among all *Amaryllidaceae* alkaloids, the crinine-type alkaloids, which have the 5,10b-ethanophenanthridine skeleton as the core structure, represented by crinane **3a**, elwesine **3b**, crinine **3c**, martidine **3d**, and haemanthamine **3e**, have received considerable attention, since they have been reported to possess antiviral, and anticancer activities (Figure 2).⁸ These activities, together with their intriguing structures, have brought a major impetus for synthetic exploration in this direction from organic chemists across the globe.

Biogenetically, crinane (**3a**) type alkaloids are closely related to other major *Amaryllidaceae* family natural products, such as galanthamine **4a** and lycoramine **4b**, as they are all derived from the same precursor *O*-methylnorbelladine **5** (Figure 2).⁹ These alkaloids display vicinal quaternary and tertiary carbon stereocenters³ with a fused pyrrolidine ring, as common structural features, the stereochemical incorporation of which is indeed a challenge. Several approaches have been developed to synthesize this skeleton, which includes a quaternary carbon.¹⁰ The incorporation of this sterically congested quaternary center is the critical element in the total synthesis of crinine-type alkaloids, and a number of synthetic approaches have emerged to solve this challenging problem.¹¹

Recently, we envisaged a strategy to access alkaloids having the *cis*-3a-aryloctahydroindole skeleton with a sterically congested quaternary carbon center located at the hydroindolone bridgehead (C-3a) position.¹² Herein, we delineate a unified approach to the *seco*-mesembrane alkaloids **1a–c**, mesembrane alkaloids **2a**, and crinane alkaloids **3a** through a key Eschenmoser–Claisen rearrangement of allylic alcohol of type **7** (Scheme 1), which permits an iodolactonization process for the divergent introduction of a range of functionality to address the total synthesis of several congeners of this family.

Structurally, *Sceletium* alkaloids of *seco*-mesembrane and mesembrane classes of alkaloids (see **1** and **2**, Figure 1) have an interesting all-carbon quaternary stereocenter,^{1,2} whereas *Amaryllidaceae* alkaloids, with a 5,10b-ethanophenanthridine skeleton (**3a**–e, Figure 2), possess a structure that may be regarded as a carbocyclic six-membered ring, an appended aryl substituent, and a five-membered, nitrogen-containing ring annulated onto a carbocyclic six-membered ring.

We hypothesized that an Eschenmoser–Claisen rearrangement of 3-(4-methoxyphenyl)cyclohex-2-enol (**7a**), 3-(3,4-dimethoxyphenyl)cyclohex-2-enol (**7b**), and 3-(3,4methylenedioxyphenyl)cyclohex-2-enol (**7c**) could be an excellent strategic platform to install the all-carbon quaternary stereocenter required for a unified strategy for the construction of *Sceletium* and *Amaryllidaceae* alkaloids shown in Figure 1 and Figure 2. Our retrosynthetic analysis is shown in Scheme 1. A simple allylic oxidation of products from Eschenmoser–Claisen rearrangement (**6a**–**c**) can provide a simple route to the complete skeleton of *seco*mesembrane alkaloids (Scheme 1).

Retrosynthetically, we also thought that the advanced intermediate ketoaldehvdes 9a and 9b would lead to a unified pathway to access both mesembrane (2a) and crinane (3a) type alkaloids (Scheme 1). Ketoaldehydes 9a and 9b could be synthesized from a complete reduction of iodolactones 10a and 10b, respectively, which could be accessed from iodolactonization¹³ of dimethylamides **6b** and **6c**. The latter can be accessed from Eschenmoser-Claisen rearrangement¹⁴ of 3-(aryl)cyclohex-2-enols **7a-c** (Scheme 1). At this stage we hypothesized that, because [3,3]-sigmatropic rearrangements follow a completely stereospecific reaction, enantioenriched 3-(aryl)cyclohex-2-enols 7a-c would easily allow our approach to be conducted in an asymmetric manner. Compounds **7a-c** can be obtained from the reduction of 3-aryl-2-cyclohexenones 8a-c, which, in turn, can be obtained from vinylogous ester 11 through a well-known Stork-Danheiser sequence.¹⁵

Moving forward with our proposed strategy, our first task was to synthesize 3-(aryl)cyclohex-2-enols (\pm)-**7a-c** required for the Eschenmoser–Claisen rearrangement. Towards this, we carried out the Stork–Danheiser sequence on compound **11** by using arylmagnesium bromides to afford 3-aryl-2-cyclohexenones **8a-c** in 73–85% yields (Scheme 2). The latter were then reduced under Luche reduction¹⁶ to access 3-(aryl)cyclohex-2-enols (\pm)-**7a-c** in 92–96% yields. With allyl alcohols **7a-c** in hand, we sought conditions to effect the key [3,3]-sigmatropic rearrangement for the synthesis of 1-dimethylacetamide-1-aryl-2-cyclohexenes **6a-c** (Table 1), with an all-carbon quaternary stereocenter. Eschenmoser–Claisen rearrangement^{17,18} of

Syn thesis

M. K. Das et al.

С

Scheme 1 Retrosynthetic analysis of (±)-1a-c, (±)-2a, and (±)-3a

N,O-ketene acetals is a fundamental concerted process that yields γ , δ -unsaturated amides, which are of great use in natural product synthesis.¹⁹ This process allows the formation of a carbon–carbon bond at the β -position to a nitrogen atom of N,O-ketene acetals.

At the outset, we started optimization of Eschenmoser-Claisen rearrangement by using 3-(3,4-dimethoxyphenyl)cyclohex-2-enol (7b) as a model substrate with the dimethyl acetal of dimethylacetamide (DMA-DMA) in different solvents under reflux; the results are summarized in Ta-

© Georg Thieme Verlag Stuttgart · New York – Synthesis 2016, 48, A–L

Downloaded by: George Mason University Libraries. Copyrighted material.

Paper

Yield (%)^b 26 (6b)c 42 (6b)c 49 (**6b**)^c 47 (**6b**)^c 50 (**6b**)^c 53 (6b) 61 (6b) 66 (**6b**) 73 (6b) 92 (6b) 90 (**6a**) 83 (6c) 65 (**6a**) 81 (6a) 74 (6a)

Syn thesis

M. K. Das et al.

ble 1. Preliminary studies indicate that two equivalents of dimethylacetal of DMA-DMA in different solvents furnished product 6b in only 26-49% yields (entries 1-3). After exhaustive optimization, it was observed that six equivalents of DMA-DMA was also not sufficient for optimal conditions (up to 53% of 6b was obtained) when reactions were carried out in toluene, xylene, or mesitylene (entries 4-6). By increasing the amount of DMA-DMA to 10 equivalents, it was observed that 6b could be obtained in maximum 73% yields in mesitylene heated to reflux (entries 7-9).

Gratifyingly, it was seen that Eschenmoser-Claisen rearrangement of 7b could be effected smoothly at 180 °C without any solvent to give **6b** in 92% yield (Table 1, entry 10). Under these conditions, 3-(aryl)cyclohex-2-enols (±)-7a and (±)-7c also afforded products in 90 and 83% isolated yields, respectively (entries 11 and 12). However, use of an excess (10 equiv) of DMA-DMA in Eschenmoser-Claisen rearrangement of **7b** under heating led us to consider the use of a microwave-assisted reaction as an alternative method.

Table 1 Optimization of Eschenmoser-Claisen Rearrangement of 3-(3,4-Dimethoxy)cyclohex-2-enols (±)-7b^a

	R = R = R-F	→ → R → H → H → H → H → H → H → H → H → H → H	NMe ₂ solvent, temp. time DMe up to 92% yield	R = 4-OMe, (±)-6a R = 3,4-(OMe) ₂ , (±)-6b R-R = 3,4-OCH ₂ O-, (±)-6c	
Entry	7	DMA-DMA (equiv)	Solvent	Temp (°C)	Time (h)
1	7b	2	toluene	110	24
2	7Ь	2	xylene	130	24
3	7Ь	2	mesitylene	150	24
4	7b	6	toluene	110	16
5	7b	6	xylene	130	16
6	7b	6	mesitylene	150	16
7	7b	10	toluene	110	12
8	7b	10	xylene	130	12
9	7b	10	mesitylene	150	12
10	7b	10	-	180	12
11	7a	10	-	180	12
12	7с	10	-	180	12
13	7a	5	toluene	110 (MW)	10 min
14	7a	5	xylene	140 (MW)	20 min
15	7a	5	mesitylene	170 (MW)	15 min
16	79	5	vulene	200 (MM)	10 min

16	7a	5	xylene	200 (MW)	10 min	92 (6a)
17	7a	5	mesitylene	200 (MW)	15 min	89 (6a)
18	7a	3	xylene	200 (MW)	15 min	72 (6a)
19	7a	3	mesitylene	200 (MW)	15 min	74 (6a)
20	7a	2	xylene	200 (MW)	30 min	63 (6a)
21	7b	5	xylene	200 (MW)	10 min	87 (6b)
22	7с	5	xylene	200 (MW)	10 min	89 (6c)
23	7a	5	xylene	200	2	71 (6a)
24	7b	5	xylene	200	2	74 (6b)
25	7c	5	xylene	200	2	69 (6a)

^a Reaction was conducted with (±)-7a-b (0.25 mmol) and solvent (2 mL) unless noted otherwise.

^b Isolated yield after column chromatography.

^c (±)-7b was recovered in 28-37%.

Towards this, we continued our optimization of the Eschenmoser–Claisen rearrangement by using 3-(4-meth-oxyphenyl)cyclohex-2-enol (**7a**) as model substrate in a microwave-assisted process in different solvents (Table 1, entries 13–22). The use of five equivalents DMA-DMA was sufficient to afford **6a** in 92% yield in only 10 minutes at 200 °C in xylene (entries 13–17). However, it was observed that reducing the amount of DMA-DMA led to a drop in the isolated yield of **6a** to 74 and 63% when three and two equivalents of DMA-DMA, respectively, was used (entries 19 and 20). Under the optimized conditions, allylalcohols **7b** and **7c** afforded products **6b** and **6c**, respectively, in 87–89% yields (entries 21 and 22).

Having accomplished the synthesis of (\pm) -**6a**-**c**, we attempted to manipulate the cyclohexene double bond toward the synthesis of more decorated cyclohexenones (Scheme 3). For this purpose, we carried out allylic oxidations of the intermediate (\pm) -**6a** with pyridinium dichromate (PDC) in the presence of *tert*-butyl hydroperoxide to afford enone (\pm) -**12a** in 86% yield, which, on subsequent lithium aluminum hydride mediated reduction, provided (\pm) -**13a** in 90% yield with approximately 1:1 diastereomeric ratio.²⁰ Manganese dioxide mediated oxidation of allylalcohol (\pm) -**13a** completed the total synthesis of (\pm) -**0**-methyl-

joubertiamine (±)-**1b** in 63% yield, from which the total synthesis of (±)-joubertiamine (±)-**1a** was accomplished in 88% yield by treatment with BBr₃ (Scheme 3).

Along similar lines, PDC oxidation²¹ of (\pm) -**6b**,**c** afforded enones (\pm) -**12b**,**c** in 60–62% yield, which, on subsequent reduction using lithium aluminum hydride provided allylalcohols (\pm) -**13b**,**c** in 80–87% yield with approximately 1:1 dr (Scheme 4). The latter were then oxidized with MnO₂ to complete the total synthesis of 3'-methoxy-4'-O-methyljoubertiamine (\pm) -**1c** and related structure (\pm) -**14** in 67– 75% yields.

We then turned our attention to the total syntheses of (\pm) -mesembrane (\pm) -**2a** and (\pm) -crinane (\pm) -**3a**; for these it was required to functionalize the 2-position of the cyclohexene ring of (\pm) -**6b**,**c**. Towards this end, iodolactonization of 1-dimethylacetamido-1-aryl cyclohexenes (\pm) -**6b**,**c** in the presence of iodine in a mixture of THF and water provided iodolactone intermediates (\pm) -**10a**,**b** in 85–86% yield (Scheme 5). Iodolactones (\pm) -**10a**,**b**, upon treatment with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as base, furnished alkenes (\pm) -**15a**,**b** in excellent yields. The latter could be used as advanced intermediates for the synthesis of a variety of *Amaryllidaceae* alkaloids. However, for the total synthesis of (\pm) -mesembrane (**2a**) and (\pm) -crinane (**3a**), γ -keto aldehydes (\pm) -**10a**,**b** were required. Towards this end, iodolactones (\pm) -**10a**,**b** were reduced in the presence of

Syn thesis

M. K. Das et al.

LiAlH₄ to afford 1,4-diols (±)-**16a,b** in quantitative yield (Scheme 5). Among various oxidation procedures investigated to synthesize γ -keto aldehydes (±)-**9a,b**, we found that Swern oxidation²² of 1,4-diols (±)-**16a,b** afforded (±)-**9a,b** in the highest yield (89–92%; Scheme 5). Optimization studies were further conducted to carry out reductive amination of model γ -keto aldehyde (±)-**9a** to complete the total synthesis of (±)-mesembrane (**2a**). The optimization studies are summarized in Table 2. Initially, reductive amination of (±)-**9a** was carried out in the presence of two equivalents of ammonium acetate and four equivalents of sodium cyanoborohydride in solvents such as MeOH, EtOH, and THF in the presence of one equivalent of trifluoroacetic acid and acetic acid.

To our delight, we found that *cis*-3a-aryloctahydroindole (\pm)-**17a** could be obtained in 32–89% isolated yields (Table 2,). Following further optimization, we were pleased to find that secondary amine (\pm)-**17a** could be obtained in 83–85% yields when reductive amination was carried out in the presence of only 10 mol% of each trifluoroacetic acid (TFA) and acetic acid (AcOH) (entries 7 and 8). Gratifyingly, on further reducing the amount of catalyst to 5 mol%, we found that *cis*-3a-aryloctahydroindole (\pm)-**17a** could be obtained in 82–84% in the presence of 5 mol% of each TFA and AcOH, respectively (entries 9 and 10), whereas, 2 mol% of each TFA and AcOH afforded *cis*-3a-aryloctahydroindole (\pm)-**17a** in 69–71% in one day (entries 11 and 12).

Table 2 Optimization of Reductive Amination of (±)-9a^a

^a Reaction conditions: (\pm)-**9a** (0.20 mmol), NH₄OAc (2.0 equiv), NaBH₃CN (4.0 equiv), solvent (2 mL), 0–25 °C, inert atmosphere.

^b Isolated yield after column chromatography.

G

Continuing our studies, carbamates (\pm)-**18a,b** were synthesized in 82–85% yields from *cis*-3a-aryloctahydroindole (\pm)-**17a** by treatment with chloromethylformate and benzyl chloroformate in the presence of NaHCO₃ (Scheme 6).

In fact, carbamates (±)-**18a,b** could serve as potential precursors for the synthesis of the tricyclic core with additional amide functionality (see Scheme 6, red arrows) related to many *Amaryllidaceae* alkaloids (**3a–c**; Figure 2) through a Bischler–Napieralski type process.²³ For the total synthesis of (±)-mesembrane (±)-**2a**, we then carried out LiAlH₄-mediated reduction of carbamates (±)-**18a,b** to afford (±)-**2a** in 64–79% yield (Scheme 6).

A similar reductive amination was carried out with γ -keto aldehyde (±)-**9b** in the presence of 10 mol% of each TFA and AcOH, which afforded *cis*-3a-aryloctahydroindole (±)-**17b** in 84–88% yield in 24 hours (Scheme 7). As found for the earlier case, reductive amination of γ -keto aldehyde (±)-**9b** also afforded (±)-**17b** in 84–88% yield in 24 hours only in the presence of 5 mol% of each TFA and AcOH (Scheme 7). Similar to carbamates (±)-**18a,b**, carbamates (±)-**19a,b** were also synthesized in 79–83% yields from (±)-**17b** by treatment with chloromethylformate and benzyl

chloroformate in the presence of NaHCO₃, which, on reduction using LiAlH₄, afforded *cis*-3a-aryloctahydroindole (±)-**20** in 61–85% (Scheme 6). However, for a direct total synthesis of (±)-mesembrane **2a** from γ -keto aldehyde (±)-**9a**, reductive amination was carried out using methylamine with sodium cyanoborohydride (NaBH₃CN) in the presence of protic acids such as TFA and AcOH. Thus, the total synthesis of (±)-mesembrane (±)-**2a** was accomplished in 79–88% yield (Scheme 8). Along similar lines, we also synthesized *cis*-3a-aryloctahydroindole (±)-**20** in 78–91% isolated yields.

Synthesis M. K. Das et al. $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}$ \left(\pm) \\
\end{array}
\left) \\
\end{array}
\left(\pm) \\
\end{array}
\left(\pm) \\
\end{array}
\left) \\
\end{array}
\left(\pm) \\
\end{array}
\left) \\
\left) \\
\end{array}
\left) \\
\left) \\
\end{array}
\left) \\
\bigg) \\
\bigg) \\
\end{array}
\left) \\
\end{array}
\left) \\
\end{array}
\left) \\
\bigg) \\
\bigg) \\
\end{array}
\left) \\
\bigg) \\
\bigg)

We then shifted our attention to developing a concise synthesis of (\pm) -crinane (\pm) -**3a**. Towards this end, a variety of conditions were investigated to affect Pictet–Spengler reactions with formalin, paraformaldehyde, and 1,3,5-trioxane without success. Finally, *cis*-3a-aryloctahydroindole (\pm) -**17b** was reacted with Eschenmoser's salt (*N*,*N*-dimethylmethyleneammonium iodide),^{11d} in THF at 40 °C for 30 hours to complete the total synthesis of (\pm) -crinane (\pm) -**3a** (Scheme 9).

In conclusion, we have described a general approach to a number of Sceletium alkaloids of the family Aizoaceae and the Amaryllidaceae alkaloids, featuring an Eschenmoser-Claisen rearrangement as the key step to install the allcarbon guaternary stereocenter. By utilizing the aforementioned strategy, we have demonstrated the total syntheses of (±)-joubertiamine (1a), (±)-O-methyljoubertiamine (1b), and (±)-3'-methoxy-4'-O-methyljoubertiamine (1c), and Amaryllidaceae alkaloids mesembrane (2a) and crinane (3a). We believe that this method could be extended to other structural types of Amaryllidaceae alkaloids. Importantly, as allylic alcohols of type 7a-c could easily be accessed in entioenriched form through either resolution or by employing CBS (Corey-Bakshi-Shibata) reduction,²⁴ our strategy could also be adapted to an enantioselective version. Further application of the methodology described herein is under investigation in our laboratories and will be reported in due course.

Chemicals and reagents were purchased from commercial sources and used without further purification. Unless otherwise stated, reactions were performed in oven-dried glassware fitted with rubber septa under an inert atmosphere and were stirred with Teflon-coated magnetic stirring bars. THF and toluene were distilled over sodium/benzophenone ketyl. Dichloromethane, chloroform, and dichloroethane were distilled over calcium hydride. All other solvents such as DMF, MeCN, and MeOH were used as received. Thin-layer chromatography was performed using Silicagel 60 F-254 precoated plates (0.25 mm) and visualized by UV irradiation, anisaldehyde stain, and other stains. Silicagel of particle size 100-200 mesh was used for flash chromatography. $^1\mbox{H}$ and $^{13}\mbox{C}$ NMR spectra were recorded with 400, 500 MHz spectrometers (Bruker) with ¹³C operating frequencies of 100, 125 MHz, respectively. Chemical shifts (δ) are reported in ppm relative to the residual solvent (CDCl₃) signal (δ = 7.26 ppm for ¹H and δ = 77.0 ppm for $^{13}\text{C}).$ Data for ^1H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, number of hydrogen). Abbreviations are as follows: s (singlet), d (doublet), t (tripPaper

let), q (quartet), m (multiplet), br (broad). IR spectra were recorded with a FT-IR system (Spectrum BX) and are reported in frequency of absorption (cm⁻¹). Only selected IR absorbencies are reported. High-resolution mass spectrometry (HRMS) data were recorded with a MicrOTOF-Q-II (Bruker) mass spectrometer using MeOH as solvent.

Stork–Danheiser Sequence Followed by Luche Reduction of Vinylogous Esters; General Procedure

A flame-dried round-bottom flask was charged with vinylogous ester **11** (20.0 mmol, 1.0 equiv) and anhydrous THF (30 mL) and cooled to 0 °C. To this solution, aryl magnesium bromide (24.0 mmol, 1.2 equiv) in anhydrous THF (20 mL) was added dropwise over 10 min by using a syringe. After stirring for 6–8 h at r.t., the reaction was quenched by the addition of 1 M HCl (20 mL) at 0 °C. The reaction mixture was stirred and warmed to r.t. over 3 h, then neutralized by the addition of sat. aq NaHCO₃. The resulting mixture was extracted with EtOAc (4 × 30 mL) and the combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The crude product was purified by flash chromatography (hexanes–EtOAc) to give 3-arylcyclohexenone **8**.

In a round-bottom flask, 3-aryl-cyclohexenone **8** (20.0 mmol, 1.0 equiv) was dissolved in MeOH (40 mL), and CeCl₃-7 H₂O (8.94 g, 24.0 mmol, 1.2 equiv) was added. The reaction mixture was stirred at r.t. for 15 min and then cooled to 0 °C. NaBH₄ (912 mg, 24.0 mmol, 1.2 equiv) was then added over 15 min and the reaction mixture was stirred. Upon completion (TLC, ca. 30 min) the reaction was quenched with sat. aq NH₄Cl (10 mL). After stirring vigorously for 30 min, the solvent was removed under reduced pressure, H₂O (20 mL) was added and the crude reaction mixture was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic extracts were washed with sat. aq NaCl (20 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash chromatography to provide allylic alcohol **7**.

4'-Methoxy-3,4,5,6-tetrahydro-[1,1'-biphenyl]-3-ol [(±)-7a]

Yield: 3.2 g (78% yield over two steps); white solid; mp 59–60 °C; R_f = 0.35 (EtOAc–hexane, 30%).

IR (film): 3390, 3035, 2999, 2933, 2051, 1887, 1606, 1574, 1505, 1454, 1343, 1279, 1250, 1181, 1037, 911 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.30 (d, *J* = 8.8 Hz, 2 H), 6.81 (d, *J* = 8.8 Hz, 2 H), 6.03–6.02 (m, 1 H), 4.33 (d, *J* = 3.5 Hz, 1 H), 3.75 (m, 3 H), 2.77 (br s, 1 H), 2.39–2.25 (m, 2 H), 1.92–1.84 (m, 2 H), 1.70–1.58 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 159.0, 139.0, 133.9, 126.4, 125.2, 113.7, 66.3, 55.2, 31.7, 27.5, 19.6.

Microwave-Assisted Eschenmoser–Claisen Rearrangement; General Procedure

Alcohol (\pm)-7 (generally in 0.25 mmol scale, 1.0 equiv) was charged with *N*,*N*-dimethylacetamide dimethyl acetal (183 µL, 1.25 mmol, 5.0 equiv) and *p*-xylene (2 mL) in a sealed tube at r.t. After sealing, the reaction mixture was heated under microwave irradiation for 10 min (power = 300 W, ramp time = 6 min, ramp to temperature = 200 °C, hold time = 4 min, stirring high). After 10 min, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography to give amide **6**.

2-(4'-Methoxy-1,2,3,4-tetrahydro-[1,1'-biphenyl]-1-yl)-*N*,*N*-dimethylacetamide [(±)-6a]

Yield: 63 mg (92%); yellow gel; *R*_f = 0.25 (EtOAc-hexane, 50%).

н

IR (film): 2930, 2835, 2056, 1888, 1634, 1502, 1394, 1249, 1183, 1139, 1035, 982, 827, 745 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.21 (d, *J* = 8.8 Hz, 2 H), 6.78 (d, *J* = 8.8 Hz, 2 H), 6.13 (dd, *J* = 1.9, 10.3 Hz, 1 H), 5.83 (td, *J* = 3.5, 10.2 Hz, 1 H), 3.72 (s, 3 H), 2.77 (s, 3 H), 2.70 (s, 3 H), 2.64 (t, *J* = 11.0 Hz, 1 H), 2.04–1.86 (m, 4 H), 1.57–1.49 (m, 1 H), 1.37–1.27 (m, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 170.7, 157.5, 139.6, 133.3, 127.8, 127.7, 113.3, 55.1, 45.0, 41.5, 37.7, 36.6, 35.3, 25.2, 18.8.

HRMS (ESI): $m/z [M + H]^+$ calcd for $[C_{17}H_{23}NO_2 + H]^+$: 274.1802; found: 274.1829.

Allylic Oxidation; General Procedure

In an oven-dried round-bottom flask, amide **6a–c** (0.731 mmol, 1.0 equiv) was dissolved in anhydrous benzene (6 mL). To this solution, oven-dried Celite was added and the mixture was stirred vigorously. Pyridinium dichromate (3.66 mmol, 5.0 equiv) and *tert*-butylhydroperoxide solution (6.0 M in decane, 3.66 mmol, 5.0 equiv) were added to the reaction mixture at r.t. and stirring was continued for 18 h. Celite and black tar was filtered out and washed continuously with CH_2Cl_2 (50 mL) and the crude product was purified by flash chromatography to afford enone **12a–c**.

2-(4'-Methoxy-4-oxo-1,2,3,4-tetrahydro-[1,1'-biphenyl]-1-yl)-*N*,*N*-dimethylacetamide [(±)-12a]

Yield: 180 mg (86%); yellowish gel; $R_f = 0.20$ (EtOAc-hexane, 75%).

IR (film): 3091, 2959, 2910, 1818, 1700, 1635, 1431, 1400, 1199, 1041, 811, 714 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.58 (dd, J = 1.3, 10.3 Hz, 1 H), 7.21 (d, J = 8.9 Hz, 2 H), 6.84 (d, J = 8.8 Hz, 2 H), 6.13 (d, J = 10.3 Hz, 1 H), 3.77 (s, 3 H), 2.84 (d, J = 5.1 Hz, 6 H), 2.80–2.66 (m, 2 H), 2.43–2.20 (m, 4 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 199.1, 169.6, 158.3, 156.4, 135.1, 128.7, 127.5, 114.0, 55.3, 44.1, 42.5, 37.6, 36.0, 35.4, 34.5.

HRMS (ESI): m/z [M + Na]⁺ calcd for [C₁₇H₂₁NO₃ + Na]⁺: 310.1414; found: 310.1427.

2-(3',4'-Dimethoxy-4-oxo-1,2,3,4-tetrahydro-[1,1'-biphenyl]-1-yl)-N,N-dimethylacetamide [(±)-12b]

Yield: 201 mg (60%); yellow oil; *R*_f = 0.24 (EtOAc).

IR (film): 3444, 2935, 1644, 1519, 1463, 1410, 1257, 1177, 1146, 1025, 901, 857, 809 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.58 (dd, *J* = 1.1, 10.3 Hz, 1 H), 6.85–6.79 (m, 3 H), 6.13 (d, *J* = 10.3 Hz, 1 H), 3.84 (d, *J* = 1.4 Hz, 6 H), 2.84 (s, 6 H), 2.46–2.18 (m, 4 H), 1.26–1.21 (m, 2 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 199.1, 169.6, 156.2, 148.9, 147.9, 135.6, 128.7, 118.7, 111.1, 110.1, 56.0, 55.9, 44.1, 42.7, 37.6, 36.0, 35.4, 34.6.

HRMS (ESI): m/z [M + Na]⁺ calcd for [C₁₈H₂₃NO₄ + Na]⁺: 340.1519; found: 340.1546.

2-{1-(benzo[d][1,3]dioxol-5-yl)-4-oxocyclohex-2-en-1-yl}-*N*,*N*-dimethylacetamide [(±)-12c]

Yield: 219 mg (62%); yellow gel; *R*_f = 0.28 (EtOAc-hexane, 75%).

IR (film): 3054, 2927, 1837, 1675, 1641, 1488, 1434, 1400, 1240, 1040, 934, 814 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.52 (dd, *J* = 1.0, 10.3 Hz, 1 H), 6.78 (s, 1 H), 6.73 (s, 2 H), 6.12 (d, *J* = 10.3 Hz, 1 H), 5.92 (s, 2 H), 2.90 (s, 3 H), 2.84 (s, 3 H), 2.40–2.30 (m, 2 H), 2.28–2.14 (m, 2 H), 1.52–1.43 (m, 1 H), 1.40–1.37 (m, 1 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 199.1, 169.5, 156.1, 148.0, 146.3, 137.1, 128.8, 119.7, 108.2, 106.9, 101.2, 44.0, 42.9, 37.6, 36.3, 35.5, 34.4.

HRMS (ESI): m/z [M + H]⁺ calcd for [C₁₇H₁₉NO₄ + H]⁺: 302.1387; found: 302.1396.

Synthesis of Amines (±)-13a-c; General Procedure

To a suspension of LiAlH₄ (327 mg, 8.63 mmol, 4.0 equiv) in THF (40 mL) at 0 °C was added a solution of enone **12a–c** (2.16 mmol, 1.0 equiv) in THF (20 mL). The reaction mixture was allowed to warm to r.t., and the flask was fitted with a water condenser, heated to 80 °C and heated to reflux for 20 h. The mixture was cooled to r.t., then to 0 °C and the reaction was quenched with EtOAc, basified with 4N NaOH solution and extracted with EtOAc (3 × 25 mL). The combined organic extracts were washed with sat. aq NaCl (30 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash chromatography to provide amines **13a–c**.

1-(2-(Dimethylamino)ethyl)-4'-methoxy-1,2,3,4-tetrahydro-[1,1'biphenyl]-4-ol (13a)

Yield: 559 mg (90%); colorless oil; $R_f = 0.10$ (EtOAc with one drop $\mathrm{Et}_3\mathrm{N}).$

IR (film): 3361, 2940, 2862, 2824, 2779, 1608, 1511, 1436, 1245, 1249, 1182, 1035, 948, 831, 709 $\rm cm^{-1}$.

¹H NMR (400 MHz, $CDCI_3$): δ = 7.21 (d, J = 8.7 Hz, 1 H), 7.16 (d, J = 8.7 Hz, 1 H), 6.81 (dd, J = 2.3, 8.8 Hz, 2 H), 5.95 (s, 1 H), 5.86 (s, 1 H), 4.22–4.10 (m, 1 H), 3.76 (s, 3 H), 2.13 (s, 6 H), 2.10–1.96 (m, 2 H), 1.94–1.70 (m, 5 H), 1.62–1.57 (m, 1 H), 1.40–1.22 (m, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 157.7, 157.7, 138.6, 138.3, 136.3, 134.8, 131.5, 129.8, 127.9, 127.6, 113.6, 113.5, 67.1, 64.3, 55.2, 55.2, 55.1, 45.5, 45.5, 41.6, 39.9, 39.4, 35.0, 32.7, 28.9, 28.4.

HRMS (ESI): $m/z \,[M + H]^+$ calcd for $[C_{17}H_{25}NO_2 + H]^+$: 276.1958; found: 276.1982.

4-(Benzo[d][1,3]dioxol-5-yl)-4-[2-(dimethylamino)ethyl]cyclohex-2-enol (13c)

Yield: 203 mg (80%); colorless oil; *R*_f = 0.10 (MeOH–CH₂Cl₂, 10%).

IR (film): 3391, 2939, 2863, 2826, 1644, 1503, 1487, 1432, 1238, 1039, 936, 813, 735 $\rm cm^{-1}.$

¹H NMR (400 MHz, $CDCI_3$): $\delta = 6.81$ (d, J = 1.2 Hz, 1 H), 6.75–6.70 (m, 2 H), 5.90 (s, 2 H), 5.90–5.81 (m, 2 H), 4.20 (d, J = 6.0 Hz, 1 H), 2.13 (s, 6 H), 2.11–1.96 (m, 4 H), 1.90–1.68 (m, 4 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 147.7, 145.6, 140.6, 134.6, 131.7, 120.2, 107.7, 107.4, 100.9, 67.2, 55.1, 45.5, 42.1, 40.0, 35.2, 28.8.

HRMS (ESI): m/z [M + H]⁺ calcd for [$C_{17}H_{23}NO_3 + H$]⁺: 290.1751; found: 290.1757.

Procedure for Selective Reduction²⁰

In an oven-dried round-bottle flask compound (±)-**12a** (60 mg, 0.208 mmol, 1.0 equiv) in anhydrous THF (4 mL) was charged with reducing agent (LiBH₄ or LiEt₃BH; 0.46 mmol, 2.2 equiv] at 0 °C under a N₂ atmosphere. The reaction mixture was stirred for 1–2 h at the same temperature, then the reaction was quenched with sat. aq NH₄Cl and the mixture was diluted with EtOAc (10 mL). The combined organic

L

layers were washed with water and brine, and dried over anhydrous Na_2SO_4 . After removal of the solvent, the crude material was purified by flash chromatography.

2-(4-Hydroxy-4'-methoxy-1,2,3,4-tetrahydro-[1,1'-biphenyl]-1-yl)-*N*,*N*-dimethylacetamide (13d)

Yield: 49 mg (82%); colorless gel; *R*_f = 0.15 (EtOAc-hexane, 75%).

IR (film): 3393, 2929, 2883, 1622, 1515, 1478, 1398, 1248, 1059, 912 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.23–7.21 (m, 2 H), 6.81–6.78 (m, 2 H), 6.21 (d, J = 10.2 Hz, 1 H), 5.85 (d, J = 10.2 Hz, 1 H), 4.22 (br s, 1 H), 3.74 (s, 3 H), 2.78 (s, 3 H), 2.74 (s, 3 H), 2.68–2.59 (m, 2 H), 2.04–1.94 (m, 4 H), 1.82 (br s, 1 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 170.4, 157.7, 138.5, 135.2, 131.2, 127.6, 113.5, 67.0, 55.2, 44.6, 41.8, 37.8, 35.4, 34.4, 28.8.

General Procedure for Allylic Oxidation

 MnO_2 (6.91 mmol, 20.0 equiv) was added to a stirred solution of allylic alcohol (0.345 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) in Celite (200 mg) at r.t. under an argon atmosphere. The reaction mixture was stirred at r.t. for 16 h. Upon completion of the reaction (monitored by TLC), the reaction mixture was filtered with CH_2Cl_2 and purified by flash chromatography to provide enone **1** and **14**.

1-[2-(Dimethylamino)ethyl]-4'-methoxy-2,3-dihydro-[1,1'-biphe-nyl]-4(1*H*)-one [(±)-1b]

Yield: 59 mg (63%); colorless gel; R_f = 0.15 (EtOAc with one drop ${\rm Et}_3{\rm N}).$

IR (film): 3036, 2946, 2832, 2771, 2860, 2054, 1684, 1609, 1580, 1463, 1386, 1250, 1184, 1097, 895, 831 cm⁻¹.

¹H NMR (400 MHz, $CDCI_3$): δ = 7.19 (d, J = 8.7 Hz, 2 H), 7.11 (d, J = 10.3 Hz, 1 H), 6.86 (d, J = 8.7 Hz, 2 H), 6.13 (d, J = 10.3 Hz, 1 H), 3.78 (s, 3 H), 2.36–2.19 (m, 4 H), 2.15 (s, 6 H), 2.12–1.93 (m, 4 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 199.5, 158.3, 155.5, 135.1, 129.3, 127.7, 114.0, 55.3, 55.2, 45.6, 42.7, 39.4, 36.4, 34.5.

HRMS (ESI): *m*/*z* [M + H]⁺ calcd for [C₁₇H₂₃NO₂ + H]⁺: 274.1802; found: 274.1802.

1-[2-(Dimethylamino)ethyl]-3',4'-dimethoxy-2,3-dihydro-[1,1'-biphenyl]-4(1H)-one [(±)-1c]

Yield: 70 mg (67% over two steps); colorless oil; $R_f = 0.30$ (MeOH–CH₂Cl₂, 10%).

IR (film): 2945, 2861, 2832, 1681, 1606, 1514, 1463, 1203, 1180, 1149, 833, 768 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.11 (dd, *J* = 4.1, 10.2 Hz, 1 H), 6.86 (dt, *J* = 3.4, 5.2 Hz, 1 H), 6.82–6.76 (m, 2 H), 6.17–6.12 (m, 1 H), 3.85 (s, 3 H), 3.78 (s, 3 H), 2.34–2.18 (m, 4 H), 2.16 (d, *J* = 4.2 Hz, 6 H), 2.12–1.97 (m, 4 H).

HRMS (ESI): $m/z \,[M + H]^+$ calcd for $[C_{18}H_{25}NO_3 + H]^+$: 304.1907; found: 304.1929.

4-(Benzo[d][1,3]dioxol-5-yl)-4-[2-(dimethylamino)ethyl]cyclohex-2-enone [(±)-14]

Yield: 75 mg (75%); yellow oil; $R_f = 0.12$ (EtOAc with one drop Et₃N). IR (film): 2946, 2820, 2773, 2052, 1850, 1681, 1612, 1485, 1388, 1238, 1171, 1097, 1038, 934, 813 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.04 (d, *J* = 10.3 Hz, 1 H), 6.75 (s, 1 H), 6.68 (g, *J* = 8.1 Hz, 2 H), 6.08 (d, *J* = 10.2 Hz, 1 H), 5.90 (s, 2 H), 2.32–

2.16 (m, 5 H), 2.12 (s, 6 H), 2.10–2.02 (m, 1 H), 1.99–1.86 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ = 199.3, 155.1, 148.1, 146.3, 137.0,

129.4, 120.0, 108.0, 107.0, 101.1, 55.1, 45.5, 43.1, 39.4, 36.5, 34.4.

HRMS (ESI): $m/z \,[M + H]^+$ calcd for $[C_{17}H_{21}NO_3 + H]^+$: 288.1594; found: 288.1623.

Total Synthesis of (±)-Joubertiamine (1a)

I

In an oven-dried, long-neck, round-bottle flask, BBr₃ (307 µL, 0.307 mmol, 3.5 equiv) was added to a solution of (\pm) -**1b** (24 mg, 0.088 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (1.5 mL) at -78 °C under a N₂ atmosphere. The reaction mixture was stirred for 1 h at the same temperature, then the reaction was quenched with water at 0 °C and the mixture was diluted with CH₂Cl₂ (5 mL). The combined organic layers were washed with water and brine, and dried over anhydrous Na₂SO₄. After removal of the solvent, the crude material was purified by flash chromatography to afford (\pm) -**1a**.

1-[2-(Dimethylamino)ethyl]-4'-hydroxy-2,3-dihydro-[1,1'-biphe-nyl]-4(1H)-one [(±)-1a]

Yield: 20 mg (88%); white solid; mp 158–160 °C; $R_f = 0.1$ (MeOH–CH₂Cl₂, 10%).

IR (film): 3382, 2999, 2860, 1681, 1608, 1511, 1463, 1386, 1250, 1184, 1097, 1034, 894, 830 $\rm cm^{-1}.$

¹H NMR (400 MHz, $CDCI_3$): δ = 7.04 (t, *J* = 10.1 Hz, 3 H), 6.45 (d, *J* = 8.2 Hz, 2 H), 6.10 (d, *J* = 10.2 Hz, 1 H), 2.34–2.03 (m, 14 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 199.4, 155.9, 155.0, 132.8, 129.2, 127.7, 115.9, 54.3, 44.8, 42.6, 39.0, 36.3, 34.5, 29.7.

HRMS (ESI): $m/z \,[M + H]^+$ calcd for $[C_{16}H_{21}NO_2 + H]^+$: 260.1645; found: 260.1666.

3a-(3,4-Dimethoxyphenyl)-1-methyloctahydro-1*H*-indole [Mesembrane; (±)-2a]

Yield: 17 mg (88%); colorless gel; $R_f = 0.45$ (1 mL MeOH + 30 mL CH₂Cl₂ + 1 mL Et₃N).

IR (film): 2932, 2856, 1589, 1519, 1464, 1410, 1326, 1257, 1148, 1030, 805 $\rm cm^{-1}.$

 ^1H NMR (400 MHz, CDCl_3): δ = 6.94–6.90 (m, 2 H), 6.84–6.81 (m, 1 H), 3.89 (s, 3 H), 3.88 (s, 3 H), 3.28–3.23 (m, 1 H), 2.59 (br s, 1 H), 2.33 (s, 3 H), 2.32–2.29 (m, 1 H), 1.96–1.80 (m, 4 H), 1.67–1.65 (m, 3 H), 1.50–1.45 (m, 2 H), 1.39–1.36 (m, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 148.6, 146.8, 140.3, 118.9, 110.7, 110.6, 68.7, 55.9, 55.8, 54.4, 47.5, 41.0, 40.7, 36.1, 23.7, 22.9, 20.4.

HRMS (ESI): m/z [M + H]⁺ calcd for [C₁₇H₂₅NO₂ + H]⁺: 276.1958; found: 276.1965.

2,3,4,4a-Tetrahydro-1*H,6H-*5,11b-ethano[1,3]dioxolo[4,5*j*]phenanthridine [Crinane; (±)-3a]

An oven-dried, round-bottom flask was charged with (\pm) -**11b** (21 mg, 0.082 mmol, 1.0 equiv) in anhydrous THF (7 mL). To the reaction mixture, Eschenmoser's salt (23 mg, 0.124 mmol, 1.5 equiv) was added and the reaction mixture was heated at 40 °C for 30 h. Upon completion of the reaction (monitored by TLC), THF was removed under vacuum and EtOAc (10 mL) and 1 M NaOH was added until the solution became basic. The organic phases were combined and dried over an

hydrous K_2CO_3 and concentrated under vacuum. The crude product was purified by flash chromatography with basic alumina to give amine **3a**.

Yield: 16 mg (72%); light-yellow gel; $R_f = 0.40$ (MeOH–CH₂Cl₂, 10%).

IR (film): 2929, 2916, 2881, 1649, 1484, 1454, 1238, 1040, 935, 867 $\rm cm^{-1}.$

 ^1H NMR (400 MHz, CDCl₃): δ = 6.69 (s, 1 H), 6.43 (s, 1 H), 5.86 (s, 2 H), 4.31 (d, J = 16.8 Hz, 1 H), 3.72 (d, J = 16.8 Hz, 1 H), 3.27–3.34 (m, 1 H), 2.74–2.83 (m, 2 H), 2.31–2.34 (m, 1 H), 2.15–2.22 (m, 1 H), 1.70–1.84 (m, 6 H), 1.56–1.61 (m, 1 H), 1.47–1.51 (m, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 146.1, 145.5, 142.3, 126.2, 106.2, 103.3, 100.6, 57.3, 62.1, 51.9, 42.8, 37.9, 29.0, 27.6, 24.4, 21.8.

HRMS (ESI): m/z [M + H]⁺ calcd for [C₁₆H₁₉NO₂ + H]⁺: 258.1489; found: 258.1497.

Scheme 10

Acknowledgment

Financial support from the Department of Science and Technology (DST) through FAST-TRACK scheme (SB/FT/CS-54/2011) and the Council of Scientific and Industrial Research (CSIR) [02(0013)/11/EMR-II], Govt. of India is gratefully acknowledged. M.K.D. and S.D. thank the CSIR, New Delhi, for Senior Research Fellowships (SRF). We sincerely thank the Department of Chemistry, IIS-ER Bhopal for infrastructure.

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561583.

References

- For isolation of *Sceletium* alkaloids 1, see: (a) Jeffs, P. W.; Ahmann, G.; Campbell, H. F.; Farrier, D. S.; Ganguli, G.; Hawks, R. L. J. Org. Chem. 1970, 35, 3512. (b) Capps, T. M.; Hargrave, K. W.; Jeffs, P. W.; McPhail, A. T. J. Chem. Soc., Perkin Trans. 2 1977, 1098. (c) Nieuwenhuis, J. J.; Strelow, F.; Strauss, H. F.; Wiechers, A. J. Chem. Soc., Perkin Trans. 1 1981, 284.
- (2) For synthetic approaches to seco-mesembrane alkaloids 1, see:
 (a) Martin, S. F.; Puckette, T. A.; Colapret, J. A. J. Org. Chem. 1979, 44, 3391. (b) Jeffs, P. W.; Capps, T. M.; Redfearn, R. J. Org. Chem. 1982, 47, 3611. (c) Jeffs, P. W.; Molina, G.; Cass, M. W.; Cortese, N. A. J. Org. Chem. 1982, 47, 3871. (d) Jeffs, P. W.; Molina, G.; Hauck, P. R.; Wolfram, J. J. Org. Chem. 1982, 47, 3876. (e) Jeffs, P. W.; Cortese, N. A.; Wolfram, J. J. Org. Chem. 1982, 47, 3881. (f) Jeffs, P. W.; Redfearn, R.; Wolfram, J. J. Org. Chem. 1983, 48, 48,

3861. (g) Hoshino, O.; Ishizaki, M.; Sawaki, S.; Yuasa, M.; Umezawa, B. *Chem. Pharm. Bull.* **1988**, 36, 3373. (h) Asaoka, M.; Fujii, N.; Takei, H. *Chem. Lett.* **1988**, 1655. (i) Taber, D. F.; Mack, J. F.; Rheingold, A. L.; Geib, S. J. *J. Org. Chem.* **1989**, *54*, 3831.

- (3) (a) Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis; Christoffers, J.; Baro, A., Eds.; Wiley-VCH: Weinheim, 2005. (b) For numerous examples, see: Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis, 1st ed.; Wiley-VCH: Weinheim, 1996. (c) Nicolaou, K. C.; Snyder, S. A. Classics in Total Synthesis II, 1st ed.; Wiley-VCH: Weinheim, 2003. For reviews, see: (d) Corey, E. J.; Guzman-Perez, A. Angew. Chem. Int. Ed. 1998, 37, 388. (e) Christoffers, J.; Mann, A. Angew. Chem. Int. Ed. 2001, 40, 4591. (f) Trost, B. M.; Jiang, C. H. Synthesis 2006, 369. (g) Christoffers, J.; Baro, A. Adv. Synth. Catal. 2005, 347, 1473.
- (4) (a) Jeffs, P. M. In *The Alkaloids*; Vol. 19; Rodrigo, R. G. A., Ed.; Academic Press: New York, **1981**, 1–80. (b) Martin, S. F. In *The Alkaloids*; Vol. 30; Brossi, A., Ed.; Academic Press: New York, **1987**, 251–376. (c) Jeffs, P. M. In *MTP International Review of Science, Alkaloids, Organic Chemistry, Series One*; Vol. 9; Hey, D. H.; Wiesner, K. F., Eds.; Butterworth: London, **1973**, 273–318.
- (5) (a) Lin, L.-Z.; Hu, S.-F.; Chai, H.-B.; Pengsuparp, T.; Pezzuto, J. M.; Cordell, G. A.; Ruangrungsi, N. *Phytochemistry* **1995**, *40*, 1295.
 (b) For a detailed report on chemistry, biology, and medicinal potential of narciclasine and its congeners, see: Kornienko, A.; Evidente, A. *Chem. Rev.* **2008**, *108*, 1982.
- (6) For reviews on Amaryllidaceae alkaloids, see: (a) Martin, S. F. The Alkaloids; Vol. 30; Brossi, A., Ed.; Academic: New York, **1987**, 251–376. (b) Hoshino, O. The Alkaloids; Cordell, G. A., Ed.; Academic: New York, **1998**. (c) Tsuda, Y. Heterocycles **1978**, *10*, 555. (d) Lewis, J. R. Nat. Prod. Rep. **2002**, *19*, 223. (e) Jin, Z.; Li, Z.; Hyang, R. Nat. Prod. Rep. **2002**, *19*, 454. (f) Jin, Z. Nat. Prod. Rep. **2005**, *22*, 111. (g) Jin, Z. Nat. Prod. Rep. **2009**, *26*, 363.
- (7) (a) Overman, L. E.; Mendelson, L. T. J. Am. Chem. Soc. 1981, 103, 5579. (b) Martin, S. F.; Campbell, C. L. J. Org. Chem. 1988, 53, 3184. (c) Pearson, W. H.; Lovering, F. E. J. Org. Chem. 1998, 63, 3607. (d) Lebeuf, R.; Robert, F.; Schenk, K.; Landais, Y. Org. Lett. 2006, 8, 4755. (e) Zhang, F.-M.; Tu, Y.-Q.; Liu, J.-D.; Fan, X.-H.; Shi, L.; Hu, X.-D.; Wang, S.-H.; Zhang, Y.-Q. Tetrahedron 2006, 62, 9446. (f) McNulty, J.; Nair, J. J.; Codina, C.; Bastida, J.; Pandey, S.; Gerasimoff, J.; Griffin, C. Phytochemistry 2007, 68, 1068.
- (8) (a) Papas, T. S.; Sandhaus, L.; Chirigos, M. A.; Furusawa, E. Biochem. Biophys. Res. Commun. 1973, 52, 88. (b) Furusawa, E.; Furusawa, S.; Sokugawa, L. Chemotherapy 1983, 29, 294. (c) Furusawa, E.; Lum, M. K. M.; Furusawa, S. Chemotherapy 1981, 27, 277. (d) Abdel-Halim, O. B.; Morikawa, T.; Ando, S.; Matsuda, H.; Yoshikawa, M. J. Nat. Prod. 2004, 67, 1119. (e) Likhitwitayawuld, K.; Angerhofer, C. K.; Chai, H.; Pezzuto, J. M.; Cordell, G. A.; Ruangrungsi, N. J. Nat. Prod. 1993, 56, 1331. (f) Houghton, P. J.; Agbedahunsi, J. M.; Adegbulugbe, A. Phytochemistry 2004, 65, 2893.
- (9) Jeffs, P. W.; Campbell, H. F.; Farrier, D. S.; Ganguli, G.; Martin, N. H.; Molina, G. *Phytochemistry* **1974**, *13*, 933.
- (10) Approaches to cis-3a-aryloctahydroindole alkaloids, see:
 (a) (±)-Martidine (3d): Pandey, G.; Gupta, N. R.; Pimpalpalle, T. M. Org. Lett. 2009, 11, 2547. (b) (-)-Mesembranol (ent-1b): Chida, N.; Sugihara, K.; Amano, S.; Ogawa, S. J. Chem. Soc., Perkin Trans. 1 1997, 275. (c) Asaoka, M.; Fuji, N.; Takei, H. Chem. Lett. 1988, 17, 1655. (d) Nieuwenhius, J. J.; Strauss, H. F.; Wiechers, A. J. Chem. Soc., Perkin Trans. 1 1981, 284. (e) Strauss, H. F.; Wiechers, A. Tetrahedron Lett. 1979, 4495. (f) Psotta, K.;

Wiechers, A. *Tetrahedron* **1979**, 35, 255. (g) Strauss, H. F.; Wiechers, A. *Tetrahedron* **1978**, 34, 127. (h) Schwenker, P.-D. G.; Metz, G. *Arch. Pharm. (Weinheim, Ger.)* **1968**, 301, 592.

- (11) For total synthesis of crinane (3a), see: (a) Kano, T.; Hayashi, Y.; Maruoka, K. J. Am. Chem. Soc. 2013, 135, 7134. (b) Padwa, A.; Brodney, M. A.; Dimitroff, M.; Liu, B.; Wu, T. H. J. Org. Chem. 2001, 66, 3119. (c) Schkeryantz, J. M.; Pearson, W. H. Tetrahedron 1996, 52, 3107. (d) Keck, G. E.; Webb, R. R. J. Am. Chem. Soc. 1981, 103, 3173. (e) Keck, G. E.; Webb, R. R. II J. Org. Chem. 1982, 47, 1302. For total synthesis of mesembrane (2a), see: (f) Taber, D. F.; Neubert, T. D. J. Org. Chem. 2001, 66, 143. (g) Rigby, J. H.; Dong, W. Org. Lett. 2000, 2, 1673. (h) Ogasawara, K.; Tamada, O. Tetrahedron Lett. 1998, 39, 7747. (i) Mori, M.; Kuroda, S.; Zhang, C.; Sato, Y. J. Org. Chem. 1997, 62, 3263. (j) Denmark, S. E.; Marcin, L. R. J. Org. Chem. 1997, 62, 1675. (k) Martin, S. F.; Puckette, T. A.; Colapret, J. A. J. Org. Chem. 1979, 44, 3391.
- (12) For a preliminary communication from our group, see: Das, M. K.; De, S. ShubhashishBisai, A. Org. Biomol. Chem. 2015, 13, 3585.
- (13) For iodolactonization of Eschenmoser–Claisen products, see:
 (a) Bisai, V.; Sarpong, R. Org. Lett. 2010, 12, 2551. (b) Zhu, L.; Luo, J.; Hong, R. Org. Lett. 2014, 16, 2162.
- (14) (a) Hayashi, K.; Tanimoto, H.; Zhang, H.; Morimoto, T.; Nishiyama, Y.; Kakiuchi, K. *Org. Lett.* **2012**, *14*, 5728. (b) Asaoka, M.; Fuji, N.; Takei, H. *Chem. Lett.* **1988**, *17*, 1655. (c) Bruderer, V. H.; Bernauer, K. *Helv. Chim. Acta* **1983**, *66*, 570. (d) Wick, A. E.; Felix, D.; Steen, K.; Eschenmoser, A. *Helv. Chim. Acta* **1964**, *47*, 2425. (e) For a review, see: Castro, A. M. M. *Chem. Rev.* **2004**, *104*, 2939.
- (15) (a) Stork, G.; Danheiser, R. L. J. Org. Chem. 1973, 38, 1775. For recent examples, see: (b) Bisai, A.; West, S. P.; Sarpong, R. J. Am. Chem. Soc. 2008, 130, 7222. (c) Bennett, N. B.; Hong, A. Y.;

Harned, A. M.; Stoltz, B. M. Org. *Biomol. Chem.* **2012**, *10*, 56. (d) Kakde, B. N.; Bhunia, S.; Bisai, A. *Tetrahedron Lett.* **2013**, *54*, 1436. (e) Parida, A.; Sharique, M.; Kakde, B. N.; Ghosh, S.; Bisai, A. Synthesis **2015**, *47*, 2965.

- (16) (a) Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226. (b) Molander, G.
 A. Chem. Rev. 1992, 92, 29. (c) West, S. P.; Bisai, A.; Lim, A. D.;
 Narayan, R. R.; Sarpong, R. J. Am. Chem. Soc. 2009, 131, 11187.
- (17) (a) Wick, A. E.; Felix, D.; Steen, K.; Eschenmoser, A. *Helv. Chim. Acta* **1964**, 47, 2425. (b) Wick, A. E.; Felix, D.; Gschwend-Steen, K.; Eschenmoser, A. *Helv. Chim. Acta* **1969**, *52*, 1030.
- (18) Meerwein, H.; Florian, W.; Schön, N.; Stopp, G. Justus Liebigs Ann. Chem. **1961**, 641, 1.
- (19) For use of Eschenmoser–Claisen rearrangement in total syntheses of natural products, see: (a) Mulzer, J.; Bats, J. W.; List, B.; Optaz, T.; Trauner, D. *Synlett* **1997**, 441. (b) Kato, T.; Tanimoto, H.; Yamada, H.; Chida, N. *Heterocycles* **2010**, *82*, 563.
- (20) Selective reduction of amide functionality of (±)-**12a** with either LiBH₄ or LiEt₃BH were unsuccessful and always afforded (±)-**13d** in 75–82% yields with ca. 4:1 dr (Scheme 10).
- (21) Chidambaram, N.; Chandrasekaran, S. J. Org. Chem. **1987**, 52, 5048.
- (22) (a) Omura, K.; Swern, D. Tetrahedron **1978**, 36, 1651. (b) Tojo, G.; Fernandez, M. I. Oxidation of Alcohols to Aldehyde and Ketones: A Guide to Current Common Practice; Springer: New York, **2006**.
- (23) For a Bischler–Napieralski reaction of carbamate for the synthesis of *trans*-dihydronarciclasine, see: Tam, N. T.; Cho, C.-G. *Org. Lett.* **2008**, *10*, 601.
- (24) (a) Corey, E. J.; Bakshi, R.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 7925. (b) Corey, E. J.; Link, J. O. J. Am. Chem. Soc. 1992, 114, 1906. (c) For numerous examples, see: Corey, E. J.; Helal, C. J. Angew. Chem. Int. Ed. 1998, 37, 1986.