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2,3-Disubstituted indoles bearing 2-hydroxyphenyl moieties at their C3 positions were synthesized from
readily available 2-chlorophenols and alkynylanilines via aminopalladation/reductive elimination using
Pd-dihydroxyterphenylphosphine catalyst. The catalyst accelerates the introduction of the 2-hydrox-
yphenyl group at the C3 position of the indole.
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Multisubstituted indoles are often found in biologically active
compounds and functional materials [1], and a variety of synthetic
methods have been developed to prepare these compounds [2].
Among them, 2,3-disubstituted indoles that often bear one or more
hydroxy groups have attracted considerable attention [3]. The Cac-
chi cyclization reaction is a useful method for the synthesis of 2,3-
disubstituted indoles, which involves the palladium-catalyzed cou-
pling of a 2-alkynylaniline and a haloarene (Scheme 1a) [4]. In this
reaction, an aminopalladation/reductive-elimination sequence
affords a 2,3-disubstituted indole with an aryl group at the C3 posi-
tion. However, the synthesis of hydroxyaryl-group-containing
indoles remains challenging, and the use of readily available and
inexpensive aryl chlorides as arylating agents has been limited [5].

We previously reported the one-pot synthesis of 2,3-disubsti-
tuted benzofurans [6] from readily available 2-chlorophenols and
terminal alkynes using a Pd catalyst ligated with dihydroxyter-
phenylphosphine (DHTP, 1) [7]. The complexation between the
hydroxy groups of the catalyst and the 2-chlorophenol via their
lithium phenoxides accelerates oxidative addition of the 2-chlor-
oaryl group to Pd, while the subsequent oxypalladation/reductive
elimination affords the desired 2,3-disubstituted benzofuran bear-
ing the 2-hydroxyphenyl group at the C3 position. We expected
that the use of ligand 1 would also effectively promote the synthe-
sis of 2,3-disubstituted indoles bearing hydroxyphenyl groups.
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Scheme 1. (a) 2,3-Disubstituted indoles synthesized by the Cacchi cyclization
reaction. (b) 2,3-Disubstituted indoles synthesized from 2-chlorophenols using the
Pd-1 catalyst (this work).

Herein, we report the synthesis of 2,3-disubstituted indoles bear-
ing 2-hydroxyphenyl groups at their C3 positions from readily
available 2-chlorophenols and alkynylaniline derivatives using
the Pd-1 catalyst (Scheme 1b) [8].
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We began optimizing the reaction conditions using a catalyst
derived from PdCl,(CH3CN), and 1-HBF,. 2-(Phenylethynyl)aniline
derivatives 2-4 and 2-chlorophenol were selected as model sub-
strates. Based on our previous indole-synthesis study [9], lithium
tert-butoxide was used as the base (Table 1). Tosyl- and acetyl-pro-
tected 2 and 3 did not afford the desired N-protected 2,3-diarylated
product 5a or N-deprotected 5b; instead, only the C3-protonated
indole 6 was obtained (entries 1 and 2). Trifluoroacetyl-protected
4 was found to effectively give the desired 2,3-disubstituted indole
in 46% yield (entry 3). In this case, both 5b and 5c¢, in which the
hydroxy group was trifluoroacetylated, were obtained. The trifluo-
roacetyl group of 5c¢ was easily cleaved by methanolysis
(Scheme S1). Neither decreasing nor increasing the amount of
lithium tert-butoxide improved the yield of 5b (entries 4 and 5).
The use of 6 mol% of the Pd catalyst significantly increased the
yield of the product to 57%, with trifluoroacetylated 5c¢ produced
as the major product (entry 6). The reaction was then conducted
at a higher temperature (140 °C) by changing the solvent from
toluene to xylene (entry 7). As a result, the product was obtained
in 56% yield with a higher relative amount of 5b. Mesitylene as

Table 1
Optimizing the reaction conditions.

PdCI,(CH3CN), (x mol%)

M. Yamaguchi et al./ Tetrahedron Letters Xxx (XXxX) XXX

the solvent gave the product in 50% yield (entry 8). On the other
hand, the use of 1,4-dioxane did not afford any of the desired pro-
duct, providing 6 in 50% yield (entry 9). Other ligands such as
XPhos [10], JohnPhos [11], and (t-Bu)sP-HBF,4 gave no C3-arylated
products, and only byproduct 6 was obtained in moderate yields
(entries 10-12). These results support our hypothesis that the
ligand 1 promotes the reaction by accelerating the oxidative addi-
tion of 2-chlorophenol to Pd through the formation of a complex
between the lithium phenoxides of 2-chlorophenol and 1.

Reactions using other haloarenes were next examined. The use
of 2-bromophenol instead of 2-chlorophenol resulted in a dramatic
decrease in the yield of the C3-arylated product 5 to 19%, and 77%
of 6 was also produced (entry 13). 2-Chloroanisole afforded the
corresponding C3-arylated product 7 in only 19% yield (entry 14),
while the use of 4-chlorotoluene also gave the C3-arylated product
8 in low yield (entry 15), and C3-arylation did not proceed at all in
the case of 4-chlorophenol, with 6 obtained in 40% yield (entry 16).
These results suggest that the ortho relationship between the
hydroxy and chloro groups in these arylating agents plays an
important role in accelerating the reaction.

P Ph ligand (2x mol%)
Z Cl t-BuOLi (y equiv) A N
- X e [y
NHR OH  solvent, temp, 24 h | ”
Y
2:R=Ts 1.0 equiv 5a:Y=R,Z=H 6
3:R=Ac S5b:Y=H,Z=H
4: R = CF3CO 5c:Y=H,Z=R
Entry R PdCl,(CH3CN), Ligand t-BuOLi Solvent Temp (°C) Yield (%)*
x (mol%) y (equiv.) 5 (5a/5b/5c) 6
1 Ts (2) 6 1.HBF, 3 toluene reflux nd 51°
2 Ac (3) 4 1.HBF, 3.5 toluene reflux trace (nd/trace/nd) 16
3 CF5CO (4) 4 1.-HBF, 3 toluene reflux 46 (nd/23/23) 21
4 CF5CO (4) 4 1.-HBE, 2.5 toluene reflux 37 (nd/25/12) 34
5 CF3CO (4) 4 1-HBF, 3.5 toluene reflux 44 (nd/32/12) 16
6 CF5CO (4) 6 1.-HBE, 3 toluene reflux 57 (nd/11/46) 3
7 CF5CO (4) 6 1.HBE, 3 xylene 140 56 (nd/31/25) 14
8 CF5CO (4) 6 1.HBF, 3 mesitylene 160 50 (nd/32/18) 28
9 CF3CO (4) 4 1.HBF, 3 1,4-dioxane reflux nd 50
10 CF3CO (4) 6 XPhos 3 xylene 140 nd 55
11 CF3CO (4) 6 JohnPhos 3 xylene 140 nd 58
12 CF3CO (4) 6 (t-Bu)sP-HBF4 3 xylene 140 nd 55
13¢ CF5CO (4) 6 1-HBF4 3 xylene 140 19 (nd/19/nd) 77
144 CF5CO (4) 6 1.HBE, 3 xylene 140 18¢ 23
15° CF5CO (4) 6 1.HBF, 3 xylene 140 20¢ 32
16" CF5CO (4) 6 1-HBF,4 3 xylene 140 0 40
Me OH
MeO O O O
-0 U0 -0
N N N
H H H
7 8 9

Isolated yield. nd = not detected.

Obtained as 2-phenyl-1-tosyl-1H-indole.
2-Bromophenol was used instead of 2-chlorophenol.
2-Chloroanisole was used instead of 2-chlorophenol.
7 was obtained.

4-Chlorotoluene was used instead of 2-chlorophenol.
& 8 was obtained.

" 4-Chlorophenol was used instead of 2-chlorophenol.
i 9 was not obtained.

f
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Table 2
Chlorophenol scope.”

Z0 R3

1-HBF,4 (12 mol%)

PN PdCI(CH,CN),
(6 mol%)
NHCOCF

#-BuOLi (3 equiv) O Neph
4 N
ol xylene, reflux, 24 h H
R?’@[ 5b, 10b-13b:
OH Z=H
5¢, 10c-13c:
1.0 equiv Z = COCF;

Entry 2-Chlorophenol Product

0
A\
N
H
M

@[ O (5b: 31%/5¢: 25%)
cl
) /@[ Z0 51%
OH (10b: 39%/10c: 12%)

(11b: 15%/11c: 16%)

(12b: 31%/12¢: 14%)

) (136: 33%/13c: 36%)

@ Isolated yield.

With the optimized conditions in hand, we next examined the
range of 2-chlorophenols tolerated by this reaction (Table 2). The
reaction proceeded smoothly when 2-chloro-5-methylphenol was
used, with the corresponding 3-arylated indole 10 obtained in
51% yield (entry 2). 2-Chloro-4-methoxyphenol can also be intro-
duced (entry 3), and the C3-arylated product 12 was obtained in
45% yield when 2-chloro-4-fluorophenol was used (entry 4). It is
noteworthy that the reaction involving 2,4-dichlorophenol pro-
ceeded selectively at the 2-chloro group to give the desired indole
13 in 69% yield (entry 5). This high site-selectivity is attributable to
the formation of a heteroaggregate involving the lithium phenox-
ides of 2,4-dichlorophenol and ligand 1 which accelerates the
oxidative addition of the 2-chloro group to the Pd.

We next conducted reactions using various 2-alkynylanilines
and 2-chlorophenol (Table 3), with the corresponding 2,3-diary-

lated indoles obtained in moderate yields (entries 1-4). An
improved yield was obtained for the 2-decyl-substituted indole,
with 18 obtained in 72% yield (entry 5), while the 2-phenethyl-
substituted indole 19 was also obtained in good yield (entry 6).
However, a low (19%) yield of the 5-methyl-substituted indole 20
was obtained, with 46% of the C3-protonated indole produced (en-
try 7), while the 5-trifluoromethyl-substituted indole 21 was also
obtained in a low yield (entry 8). It should be noted that the 5-
chloro substituted indole 22 was obtained in 32% yield with 39%
of the C3-protonated indole produced and no other byproducts
observed (entry 9). This result reveals that ligand 1 selectively
accelerates the oxidative addition of 2-chlorophenol to Pd.
Although the reason is unclear, the introduction of substituents
on the aniline lowered the yield of the product 20-22.
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Table 3
2-Alkynylaniline scope.”

1 P R? PdCl,(CH3CN), O
R 7 (6 mol%) Z0
+ 1-HBF4 (12 mol%) R!
NHCOCF3  ¢BuOLi (3 equiv) O N—R2
N
Cl xylene, reflux, 24 h H
@[ 14b-22b:
OH Z=H
) 14c-22c:
1.0 equiv Z = COCF,
Entry R'/R? Product
R'=H yde) O 50%
1 R2- (14b: 37%/14c: 13%)
4-MeCgHg O \ Me
Y,
H
20-L)
R1 =H © 45%
> R2- O N O (15b: 35%/15¢: 10%)
2-M9C6H4 N
H mé
zo O 31%
E; =H (16b: 25%/16¢: 6%)
3 =
4-MGOC6H4 O '\T O OMe
H
zoz 54%
4 R'=H . 4739 . 419
R? = 4-FCqH, { F(17|o_ 43%/M17c: 11%)
O N O
H
1 20-0)
5 Rl=H 72%
R® = CqoHa2q O ’: CioHpq (18b:47%/18c: 25%)
H
R'=H Z0 65%
6 R2- (19b: 50%/ 19¢: 15%)
PhCH,CH, O D
N
H
20-0)
R1=Me Me 19%
T R ,\} { ) (20b: 19%/20¢: nd)
H
N R U
- 3 O \ (21b:11%/21c: 3%)
N
H
20-0)
9 R;=CI 32%
R%=Ph cl O A\ O (22b: 32%/22¢: nd)
N

2 Isolated yield.
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Scheme 2. Proposed reaction pathways.

We assume that reaction pathways involved in this chemistry
are as shown in Scheme 2. The lithium salts of 1 and 2-chlorophe-
nol form a heteroaggregate A, in which the palladium is located
close to the 2-chloro group of the 2-chlorophenoxide. Therefore,
the 2-chloro group oxidatively adds selectively and efficiently to
the Pd to give intermediate B, which subsequently coordinates to
the alkyne moiety of the 2-alkynylaniline C. The resulting interme-
diate D undergoes aminopalladation to give the c-indolylpalla-
dium intermediate E, and subsequent reductive elimination/
detrifluoroacetylation gives the desired product F. Detrifluo-
roacetylation by t-BuOLi then affords G. The O-trifluoroacetylated
product H is also formed through intermolecular O-
trifluoroacetylation.

In summary, we synthesized 2,3-disubstituted indoles bearing
2-hydroxyphenyl groups at their C3 positions from readily avail-
able 2-alkynylanilines and 2-chlorophenols using Pd-1 as the cat-
alyst. Various 2-alkynylanililnes bearing either aryl or alkyl groups
can be used for this reaction, and substrates having alkyl groups
gave the products in higher yield. Ligand 1 accelerates oxidative
addition at the 2-chloro group of the 2-chlorophenol, resulting in
the formation of the target 2,3-disubstituted indole in moderate-
to-good yield.
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