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Summary of main observation and conclusion This paper discloses the reaction mechanism of two consecutive but different visible light photo-induced 
chain processes for the rapid construction of spirobi[indene] skeletons. The first process is triggered by a photo-induced single-electron-transfer (SET) of 
an electron donor-accepter (EDA) complex. The second process is initiated by a direct SET process between aryldiazonium salt and the excited allenic 
intermediate. In these two processes, another SET took place respectively on the in situ formed radical intermediate to realize a redox-neutral outcome. 
The mechanistic studies have been carried out by control experiments, kinetic and spectroscopic analyses, deuterium labeling experiments to support 
these two chain processes. 

 

Background and Originality Content 
In the past decade, photoredox catalysis has played a much 

crucial role for the efficient construction of molecular 
complexity in a sustainable manner under mild and 
environment friendly conditions with a high chemoselectivity.[1] 
Generally, the most significant feature of this synthetic 
approach is the use of metal complex/organic dye for the 
energy transfer or electron energy to a variety of organic 
substrates via visible-light photoexcitation to generate highly 
reactive species.[2] Thus far, a series of efficient strategies have 
been explored in photoredox catalysis such as metal-to-ligand 
charge transfer (MLCT),[3] ligand-to-metal charge transfer 
(LMCT),[4] hydrogen atom transfer (HAT),[5] proton-coupled 
electron transfer (PCET)[6] and so on (Scheme 1a). Moreover, 
photo-induced intermolecular charge transfer through 
noncovalent interactions of donor and acceptor molecules is 
renowned in photochemistry.[7] These exciting findings inspired 
us to develop a much facilitated photocatalytic protocol in 
organic synthesis. 

Our group has been working on the chemical transformation 
of strained small rings for the rapid construction of poly- and 
heterocyclic compounds.[8] On the basis of the aforementioned 
outstanding photoredox catalytic processes, we attempted to 
develop new synthetic methods by merging photoredox 
catalysis strategy with strained small rings to explore new 
reaction modes with regard to these small carbocyclic 
compounds. Recently, our group has reported a visible-light 
photo-induced reaction for rapidly constructing spirobi[indene]s 
in good yields and with good functional group tolerance 
(Scheme 1b).[9] However, the related mechanistic studies on this 
new reaction are insufficient and the real catalytic process has 
not been clearly unveiled. The preliminary study indicated that 
this reaction must be initiated by the visible-light irradiation. In 
addition, the use of a catalytic loading of aryldiazonium salt 
suggests that an autocatalytic or a chain process might take 
place during the reaction process. Thus, we envisaged that this 
reaction may proceed through an unprecedented 
photochemical pathway. Thus, it is important to further perform 

the mechanistic investigations on this reaction to well 
understanding the detailed reaction process, shedding light on 
the merger of photoredox catalysis with the transformation of 
strained small rings. 

 
Scheme 1  Previous work and this work. 
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Results and Discussion 
On the basis of the preliminary study, the acid-catalytic 

process has been excluded and a simplified reaction pathway 
has been provided.[9] Meanwhile, the allenic product has been 
identified under the reaction condition, implying that it was the 
intermediate to give 4a. However, the detailed reaction 
pathway and the evidence to support this mechanism have not 
been fully clarified. To illustrate the real reaction pathway, we 
firstly utilized allene intermediate 3a as substrate to examine its 
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reaction outcome under the standard reaction conditions and 
identified that the desired product 4a could be obtained even 
using 0.1 equiv of 2a or in the absence of MeOH, suggesting 
that 3a was the intermediate for the formation of 4a (Scheme 
2). To simplify the mechanistic investigation, we divided the 
reaction pathways into two parts: (1) the formation of 3a from 
1a; (2) the formation of 4a from 3a.  

Scheme 2  Transformation of 3a to 4a under different reaction 
conditions 
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Next, we turned our attention to the mechanistic study of 
the first part starting with evaluation of the role of 
aryldiazonium salt 2. It has been well known that aryldiazonium 
salt 2 can act as an oxidant as it often does in photoredox 
catalysis. However, the redox potential of 1a and 2a did not 
support its direct oxidation pathway (see cyclic voltammetry at 
Chapter 9 in the Supporting Information). Upon mixing 1a and 
2a, a significant color change was observed at the beginning of 
the reaction, implying the formation of an electron 
donor-accepter (EDA) complex.[7,10] This observation was further 
supported by appearance of a new absorption peak upon mixing 
1a and 2a in DCM solution in their electronic spectra (Figure 1). 
According to their absorption spectra, neither 1a nor 2a can be 
effectively photoexcited by the broad-band blue LED light 
(380−530 nm). Therefore, it suggested that the radical cation 
generated upon the visible light photoexcitation of the formed 
EDA complex followed by a subsequent tandem cyclization, ring 
opening and nucleophilic attack of MeOH accounted for the 
formation of 3a. Moreover, the reaction proceeded smoothly 
even with a catalytic amount of 2a, suggesting that 2a might be 
an initiator in this reaction. In a catalytic sense, the reaction 
should therefore be possible to proceed through a chain 
transfer or an autocatalytic process. The autocatalysis could be 
easily ruled out since 3a itself did not catalyze or accelerate the 
transformation of 1a to 3a under the standard conditions 
(Figures 2a and 2b). Furthermore, a series of control 
experiments were conducted to investigate the reaction 
mechanism. The kinetic experiments on reaction rates showed 
that the concentration of 2a could affect the reaction rate and 
the reaction was accelerated if using 0.2 or 0.5 equiv of 2a. 
Meanwhile, the shapes of their kinetic curves also implied the 
existence of an induction period and a chain process (Figure 2c). 
Next, the light-dark interval experiment confirmed that constant 

illumination of light is not an essential element for the 
formation of 3a after the reaction is initiated (Figure 2d). 
Moreover, the quantum yield of this reaction was measured to 
be 5.7, supporting the domination of chain process without light 
irradiation. These results validated that the second SET did not 
involve with the excited species and it might take place with a 
substrate on the ground state to generate a radical cationic 
species. All these evidences demonstrated the existence of a 
chain process and the irradiation of visible light is unnecessary 
while the reaction has been initiated.  

 

Figure 1.  (a) UV-vis absorption spectra of 1a, 2a and their mixture. (b) 
The color change after mixing 1a and 2a. 
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Figure 2.  (a) A direct autocatalytic examination experiment of 1a to 3a. 
(b) Autocatalytic examination experiment of 1a to 3a under the reaction 
conditions. (c) The kinetic experiments from 1a to 3a. (d) Light/dark 
cycle experiments for the templet reaction from 1a to 3a. 
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Notably, the allenic product 3a is a bright yellow solid, 
indicating the possibility on the absorption of visible light 
irradiation. As expected, the UV-vis absorption spectrum of 3a 
showed a broad absorption band over 400 nm (Figures 3a and 
3b). On the basis of its absorption spectrum, fluorescence 
quenching experiment of 3a demonstrated that its excited state 
could be quenched by aryldiazonium salt 2a, indicating that a 
SET process or an energy transfer could take place between 3a 
and 2a (Figure 3c). Thus, we assumed that the second reaction 
pathway might proceed via a SET process to generate the 
radical cation of 3a under the reaction condition. In a seminal 
work by Wu and his coworkers, it has been shown that the 
allenic moiety of 3a could be oxidized to radical cation followed 

This article is protected by copyright. All rights reserved.



 

 
Chin. J. Chem. 2019, 37, XXX－XXX © 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cjc.wiley-vch.de  

Running title Chin. J. Chem. 

by a nucleophilic attack.[11] Indeed, while using catalytic amount 
of 2a, the reaction could proceed smoothly from 3a to 4a, 
suggesting a similar chain process or autocatalytic pathway. The 
measurement on the fluorescence decay of compound 3a 
indicated that its fluorescence lifetime is 0.80 ns (see page S26 
in the Supporting Information). The control experiments 
showed that 4a itself could not catalyze the transformation of 
3a to 4a, and upon treating 3a with 4a (10 mol%) under the 
reaction conditions, no accelerated transformation could be 
realized from 3a to 4a, thereby excluding the autocatalytic 
pathway (Figures 3d and 3e). Therefore, the second reaction 
pathway might have a similar chain process as that of the first 
pathway. To explain the formation of product 4a, we 
hypothesized that the radical cation of 3a was quenched by an 
intramolecular Friedel-Crafts-type cyclization to generate a 
spirobi[indene] skeleton fused alkenyl radical, which underwent 
a hydrogen transfer to afford the final product.  

Figure 3.  (a) UV-vis absorption spectrum of 3a. (b) The physical 
property of 3a. (c) The fluorescence quenching experiment. (d) A direct 
autocatalytic examination experiment of 3a to 4a. (e) Autocatalytic 
examination experiment of 3a to 4a under the reaction conditions.  
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Scheme 3  The deuterium labeling experiments.  
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Another key issue is to illustrate the way of alkenyl radical 
to capture a H atom to produce 4a, whether it comes from a 
HAT process or a SET process. To clarify this point, a series of 
deuterium labeling experiments were carried out. As shown in 
Scheme 3, when the reaction was performed by using 1a as the 
starting material in CD2Cl2 in the presence of deuterium oxide 
(5.0 equiv) and CD3OD (2.0 equiv), only 15% of the alkenyl 
hydrogen in product 4a was deuterated. In the meantime, no 
deuterium incorporation was observed when the reaction was 
carried out in CD2Cl2 using intermediate 3a as the starting 
material. Next, we prepared the deuterated 3a to further 
investigate the hydrogen source and found that when the 
reaction was carried out in anhydrous DCM, 4a was obtained in 
90% yield along with 60% deuterium incorporation; however, 
when the reaction was directly performed in commercially 
available DCM, 4a was formed in 88% yield without significant 
deuterium incorporation (< 10% D content), due to the higher 
water content (0.035%) of commercially available DCM (see Karl 
Fischer analytic result in the Supporting Information). These 
results suggested that the H atom is derived from an 
electrophilic addition pathway rather than a HAT process. 
Meanwhile, a kinetic isotope experiment gave a kH:kD = 0.73, 
also indicating an electrophilic pathway in the hydrogen transfer 
process (Figure 4a). In addition, the intermolecular HAT 
between alkenyl radical and the phenyl group in 3a could be 
also ruled out, suggesting a complete proton transfer process. 
More importantly, the light-dark interval experiment confirmed 
that constant illumination of light is an indispensable element 
for formation of 4a from allenic intermediate 3a (Figure 4b). 
This experimental result may validate that the photoexcitation 
of 3a to 3a* is an essential element for the chain transfer 
process. Furthermore, the kinetic experiments illustrated that 
the reaction rate was not related to the concentration of 2a 
from reaction pathway of 3a to 4a, demonstrating that the rate 
of SET between 3a* and 2a is much slower than that of 3a* and 
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alkenyl radical species (Figure 4c). The quantum yield of this 
process was measured to be 0.5, which implied the chain 
process without light irradiation is not a dominant process, 
partially supporting the chain process with the continuous light 
irradiation (see page S16 in the Supporting Information). The 
similar shape of the kinetic curves suggested the existence of a 
similar induction period and chain process as that of the first 
reaction pathway. 

Figure 4.  (a) Experiment of kinetic isotope effect; (b) Light/dark cycle 
experiments for the templet reaction of 3a to 4a; (c) The kinetic 
experiment from 3a to 4a. 
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On the basis of above mechanistic investigations and the 

pervious results, a plausible reaction mechanism for this novel 
process is outlined in Scheme 4. The visible light irradiation of 
an in situ generated electron donor-accepter (EDA) complex 
between propargyl alcohol-tethered alkylidenecyclopropane 1 
and aryldiazonium salt 2 would generate a radical cation I via a 
SET event, which underwent a cyclization to give intermediate 
II. The cyclopropane in intermediate II underwent a 
ring-opening process upon nucleophilic attack of methanol to 
deliver the corresponding radical intermediate III, and the 
release of water leads to a radical cation IV. It can accept an 
electron from another molecule of propargyl alcohol-tethered 
alkylidenecyclopropane 1 to give the indene fused allenic 
product 3. The two SET processes constituted the first chain 
process. Visible light direct irradiation of 3 could produce a 
excited 3* species, which underwent another SET event with 
aryldiazonium salt 2 to afford a radical cationic species V. Once 
V was formed, it would rapidly undergo an intramolecular 
Friedel-Crafts reaction to give a cyclized radical intermediate VI 
along with the release of a proton. At this stage, another SET 
process could take place between VI and the excited 3* to 
afford V and the alkenyl anion VII, which captured a proton to 
afford the desired spirobi[indene] derivative 4 (path a). 
However, we could not exclude the possiblity of a direct PCET 
from VI to 4 without the formation of intermeidate VII at the 
present stage (path b).6 The two SET processes constituted the 
second chain process. 

 
Scheme 4.  Proposed reaction mechanism 
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Conclusions 
In summary, we have disclosed the reaction pathway to 

rapidly construct spirobi[indene] skeletons, and a two 
consequent chain processes has been suggested. This process 
has been established through the detailed mechanistic 
investigations. This unusual process occurs, through utilizing 
photoactive substrate in chain process with visible light 
irradiation. Upon photo-irradiation, the redox-active 
intermediate can be generated as radical ion or the substrate 
can be excited to the singlet or triplet state to take part in the 
following chain transfer process. To the best of our knowledge, 
this is the unique example of a photo-induced chain process 

with a photoactive substrate in organic synthesis. The utilization 
of this novel synthetic method for the synthesis of natural 
products or pharmaceutical molecules is currently under 
investigation.  
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