

S0040-4020(96)00139-1

Stepwise Controlled Reduction of α -Oxoketene Dithioacetals with Zn/ZnCl₂-TMEDA in Ethanol

K. Mallik Yadav, Joghee R. Suresh, Balaram Patro, Hiriyakkanavar Ila^{*} and Hiriyakkanavar Junjappa^{*}

Department of Chemistry, North-Eastern Hill University, Shillong-793 003, Meghalaya, India.

Abstract: α -Oxoketene dithioacetals 1 are shown to undergo highly selective conjugate reduction with Zn/ZnCl₂-TMEDA in refluxing ethanol under controlled reaction conditions to afford β -methylthiomethylene ketones 6, β -methylthioketones 7 and the completely desulphurized α -methylketones 8 in sequential manner.

Regioselective reduction of $\alpha\beta$ -unsaturated carbonyl compounds is an important synthetic transformation in organic chemistry.¹ Particularly, the related systems with β-heteroatoms functionalities further add to synthetic challenges as they significantly influence the differential electrophilicity of all the three carbon atoms.^{2,3} The α -oxoketene dithioacetals with two alkylthio groups at β -position of the enone serve as excellent models for regio-, stereo- and chemoselective reduction and C-C bond formation reactions,⁴ besides, the resulting reduced functionalities are usuful intermediates for further synthetic transformations.^{4,5} Several studies on regiospecific reduction of α -oxoketene dithioacetals with various reducing agents have been reported in the literature (Scheme 1). Thus 1,2- and 1,2,3,4-reductions are mostly achieved with nucleophilic metal hydride (NaBH₄^{5c-e} and LiAlH₄^{5b}) and the resulting carbinols (2 and 5) with latent ester (or aldehyde) functionalities are useful substrates for 1,3-carbonyl transpositions affording $\alpha\beta$ -unsaturated polyene esters or aldehydes respectively.^{5c-e} Of particular importance are conjugate 1,4 reduction^{4,6} of α -oxoketene dithioacetals, since the products in these reactions are β -functionalized carbonyl compounds in which the oxidation level of α - and β-carbon can be adjusted by the choice of the reducing agents. Thus sodium borohydride (in acetic acid),^{6b} magnesium (in methanol),^{6c} and DIBAL.TEA^{6a} reduction afford β -oxodithioacetals 4 which are shown to be useful precursors for aromatic annelation^{7a} and enealdehydes synthesis.^{7b} In our laboratory, we have further demonstrated selective dethiomethylation of 1 with either NiCl₂/NaBH₄⁸ or NaCNBH₃^{6b} yielding β -alkylthioenones 6 (Scheme 1). However yields of 6 were inconsistant particularly for aliphatic B-alkylthioenones which are used as intermediates for the synthesis of both natural and unnatural polyenes with terminal aldehyde functionality.⁹ Finally, the reduction of 1 with weaker electrophilic reagents like 9-BBN^{6a} or catecholborane^{6a} affords β -alkylthio ketones 7 (or mixture of 7

i. NaBH₄ /MeOH ii. BF₃.Et₂O/MeOH or BF₃.Et₂O/H₂O iii. NaBH₄ /AcOH or DIBAL iv. LiAlH₄ /THF v. NiCl₂ /NaBH₄ or NaBH₃CN vi. 9-BBN

Scheme 1

and 4) in which reductive dethiomethylation is accompanied with concurrent reduction of double bond also. As part of our programme to explore the chemistry of α -oxoketene dithioacetals, we were interested in developing a mild reducing system capable of controlling the oxidation levels at the β -carbon of α -oxoketene dithioacetals in a sequential manner by manipulation of the reaction conditions and the stoichiometry of the reagent. In particular, we were interested in an efficient high yield method for conversion of 1 to β -alkylthioenones 6, in view of their utility in organic synthesis.⁹ We now report in this paper an efficient reagent system involving Zn/ZnCl₂-TMEDA complex for the reduction of 1 in a controlled manner. Depending on the stoichiometry of the reagent and the reaction time, 1 undergoes reduction at various stages to afford exclusively either 6 in high yields or 7 and 8 in moderate yields.

RESULTS AND DISCUSSION

Reduction of 1 with $Zn/ZnCl_2$ in ethanol (Dekker's procedure¹⁰) was first investigated. Thus a suspension of 1a, Zn (3 eqv.) and $ZnCl_2$ (1.5 eqv.) in ethanol was stirred at room temperature (7 hr) followed by work up of the reaction mixture to afford 6a in 85% yield. However the yield of 6a was not

consistent due to the hygroscopic nature of ZnCl₂, besides, the subsequent reduction of 1 did not show any selectivity for their conversion to either 7 or 8 under controlled conditions. We have found that clear reduction of 1a to β -methylthioenone 6a could be achieved in consistently high yields by using Zn (3 eqv.) and ZnCl₂-TMEDA complex¹¹ (1.5 eqv.) in refluxing ethanol (4hr). The yields of 6a were identical in all repeat experiments. Scheme 2 displays some of the results obtained for the reduction of few selected α -oxoketene dithioacetals from aromatic and aliphatic acyclic and cyclic ketones. Especially, the reduction of α -acetylketene dithioacetal 1d from acetone is particularly important, since the corresponding S-(t-butyl) analog of the resulting β -methylthioenone 6d is a useful intermediate in the synthesis of polyenealdehydes.⁹ Similarly the other aliphatic (1e-f) and cyclic (1g-i and 1j-k) ketene dithioacetals yielded the corresponding β -methylthioenones 6e-k in 75-95% overall yields.¹²The products

Scheme 2

Table 1: Selective Reduction of α -Oxoketene Dithioacetals 1a-k to β -Methylthioenones 6a-k.

Entry	1	6	R ⁱ	R ²	% Yield 6 (Time hr)	
1	1a	ба	C ₆ H ₅	Н	85 (4)	
2	1b	6b	C ₆ H ₅	CH3	80 (3)	
3	1c	6с		Н	60 (2)	
4	1d	6d	CH ₃	Н	95 (7)	
5	1e	6e	CH ₃	CH3	95 (3)	
6	1f	6f	CH3	C ₂ H ₅	95 (3)	
7	1g	бg	-(CH	y3-	75 (3)	
8	1h	6h	-(CH	2)4-	95 (3)	
9	1i	6i	-(CH	2)6-	92 (3)	
10	1 j	бј			90 (3)	
11	1k	6k	MeO	~	90 (3)	

K. M. YADAV et al.

of overreduction were not detected. In an another experiment, when 1a was treated with 3 eqv. of $Zn/ZnCl_2$ -TMEDA complex and the reaction mixture was refluxed for 8 hr (monitored by tlc), the corresponding β -methylthic ketone 7a was obtained in 65% yield. Similarly the other dithicacetals (1b-e, 1h and 1k) yielded the respective β -methylthic ketones 7b-e, 7h and 7k in moderate to good yields under controlled conditions (Scheme 3). Finally, treatment of 1a with 5 eqv.of the reagent under identical reaction conditions for prolonged time (18 hr) resulted in complete reductive desulphurization of both the methylthic groups to afford the corresponding α -methylketone (propiophenone) 8a in 55% yield (Scheme 3). Similarly the other representative ketene dithicacetals 1b-e, 1h and 1k could also be converted to the corresponding fully desulphurized α -methylketones 8b-e and 8h and 8k in 50-85% overall yields under similar reaction conditions.

Scheme 3

Table 2: Reduction of α -Oxoketene Dithioacetals 1 to β -Methylthioketones 7 and α -Methylketones 8.

Entry	1	R ¹	R ²	% Yield 7 (Time hr)	% Yield 8 (Time hr)
1	1a	C ₆ H ₅	Н	65 (8)	55 (18)
2	1b	C ₆ H ₅	CH3	68 (7)	82 (16)
3	lc		н	65 (7)	50 (20)
4	1 d	CH ₃	н	55 (7)	53 (17)
5	1e	CH ₃	CH3	73 (12)	65 (25)
6	1h	-(CH	2)4-	55 (8)	59 (22)
7	1k	MeO	$\overline{\checkmark}$	70 (7)	85 (16)

4682

In summary, we have demonstrated the potentiality of $Zn/ZnCl_2$ -TMEDA system for selective reduction of α -oxoketene dithioacetals to more important β -methylenones in high yields. The methodology is also applicable with equal efficiency for the preparation of 7 and 8 with full control on product distribution. Several routes for the synthesis of β -alkylthioenones 6 have been reported in the literature.^{9,13} The most commmonly employed methods involve the treatment of α -formylketones (or their tosyl derivatives) with butyl mercaptan.^{9a-b,13a} The other methods involve either 1,4-addition of alkyl/aryl mercaptans to β -ketoacetylene^{9c-d,13b-c} or the displacement reaction on β -chlorovinyl ketones with appropriate mercaptans.^{9d,13d} The present method constitutes a simple and cheap high yield alternative for these class of compounds from α -oxoketene dithioacetals.

EXPERIMENTAL

Melting points were determined on a "Thomas Hoover" capillary melting point apparatus and are uncorrected. IR spectra were obtained on a Perkin-Elmer 297 spectrophotometer. ¹H NMR spectra were recorded on a Varian EM-390 (90 MHz) spectrometer in CDCl₃ or CCl₄ using TMS as internal standard and chemical shifts are expressed in δ (ppm) units downfield from TMS. The coupling constants are given in Hertz (Hz). Elemental analyses were carried out on a Heraeus CHN-O-Rapid analyzer.

Commercially available zinc dust (AR grade, Merck), $ZnCl_2$ (Merck), TMEDA (Merck), and ethanol were used for reactions. Zn dust was activated with 1,2-dibromoethane and $ZnCl_2$ was fused and powdered prior to use. The $ZnCl_2$ -TMEDA complex was made according to the reported procedure.^{11a} Thin-layer chromatography was performed on glass plates coated with Acme's silica gel containing 13% calcium sulphate as binder and the spots were detected in iodine chamber or by spraying the plates with a solution of acidic KMnO₄. Acme's silica gel (60-120 mesh) was used for column chromatography.

All the α -oxoketene dithioacetals required for the present investigation were prepared according to the earlier reported procedures.¹⁴

General Procedure for the Reduction of α -Oxoketene Dithioacetals with $Zn/ZnCl_2$ -TMEDA in Ethanol.

To a well stirred solution of α -oxoketene dithioacetals 1 (10 mmol) in ethanol (25 mL), Zn dust (30 mmol) and ZnCl₂-TMEDA complex (15 mmol in the case of 6, 30 mmol in the case of 7 and 50 mmol in the case of 8) were added. The reaction mixture was refluxed for 3-25 hr (monitored by t.l.c.) (Table), cooled and the inorganic material was filtered off. The filtrate was poured over crushed ice, treated with 5% sulphuric acid and extracted with chloroform (3 x 50 ml). The combined organic extracts was washed with water (2 x 100 ml), dried over sodium sulphate and concentrated to give the viscous residues, which on column chromatography over silica gel using hexane:ethyl acetate (47:3) as eluent gave the corresponding products 6,7 and 8.

The following known compounds were characterized by comparison of their IR and NMR spectal data with those reported in the literature $(6a),(6d),(6g),(6h),^8$ $(6b),(6e),(6k),^{6b}$ $(8a),(8b),^{15a}$ $(8c),^{15b}$

(8d), ^{15c} (8e), ^{15d} (8h), ^{15e} and (8j)¹⁶. The spectral and analytical data of the unknown compounds are given below.

E-3-Methylthio-1-(2-furyl)-2-propen-1-one (*6c*). Viscous oil; IR (CCl₄) 1645, 1625 cm⁻¹; ¹H NMR (CCl₄) δ 2.42 (s, 3H, SCH₃), 6.52 (m, 1H, *furyl*), 6.73 (d, 1H, J=16, *olefinic*), 7.21 (m, 1H, *furyl*), 7.61 (brs, 1H, *furyl*), 7.98 (d, 1H, J=16, *olefinic*). [Anal. calcd. for C₈H₈O₂S (168.21): C, 57.12; H, 4.79%. Found C, 57.31; H, 4.74%].

E-4-Methylthio-3-ethyl-3-buten-2-one (6f). Viscous oil; IR (CCl₄) 1674 cm⁻¹; ¹H NMR (CCl₄) δ 0.85 (t, 3H, J=6, CH₂CH₃), 2.20 (s, 3H, SCH₃), 2.26 (q, 2H, J=6, CH₂CH₃), 2.45 (s, 3H, CH₃), 7.32 (s, 1H, *olefinic*). [Anal. calcd. for C₇H₁₂OS (144.23): C, 58.29; H, 8.39%. Found C, 58.15; H, 8.42%].

E-2-(Methylthiomethylene)cyclooctanone (6i). Yellow crystalline solid; m.p. 40-41°C; IR (CCl₄) 1715, 1660, cm⁻¹; ¹H NMR (CCl₄) δ 1.43-1.90 (m, 8H), 2.50 (s, 3H, SCH₃), 2.43-2.77 (m, 4H), 7.40 (s, 1H, *olefinic).* [Anal. calcd. for C₁₀H₁₆OS (184.30): C, 65.17; H, 8.75%. Found: C, 65.32; H, 8.72%].

3-Methylthio-1-phenylpropan-1-one (7a). Viscous oil; IR (CCl₄) 1706 cm⁻¹; ¹H NMR (CCl₄) δ 2.03 (s, 3H, SCH₃), 2.63-3.30 [m, 4H, (CH₂)₂], 7.28-7.63 (m, 3H, ArH), 7.82-8.18 (m, 2H, ArH). [Anal. calcd. for C₁₀H₁₂OS (180.26): C, 66.63; H, 6.71%. Found C, 66.72, H, 6.68%].

3-Methylthio-2-methyl-1-phenylpropan-1-one (7b). Viscous oil; IR (CCl₄) 1685 cm⁻¹; ¹H NMR (CCl₄) δ 1.26 (d, 3H, J=7, CH₃), 2.03 (s, 3H, SCH₃), 2.50 (dd, 1H, J=15, 6.5, CH₂), 2.90 (dd, 1H, J=15, 6.5, CH₂), 3.41-3.80 (m, 1H, CH), 7.32-7.68 (m, 3H, ArH), 7.85-8.13 (m, 2H, ArH). [Anal. calcd. for C₁₁H₁₄OS (194.29): C, 68.00; H, 7.26%. Found C, 67.89, H, 7.30%].

3-Methylthio-1-(2-furyl)propan-1-one (7c). Viscous oil; IR (CCl₄) 1714 cm⁻¹; ¹H NMR (CCl₄) δ 2.12 (s, 3H, SCH₃), 2.51-3.10 [m, 4H, (CH₂)₂], 6.48 (m, 1H, furyl), 7.09 (m, 1H, furyl), 7.58 (brs, 1H, furyl). [Anal. calcd. for C₈H₁₀O₂S (170.23): C, 56.45; H, 5.92%. Found C, 56.18; H, 5.97%].

4-Methylthiobutan-2-one (7d). Viscous oil; IR (CCl₄) 1730, cm⁻¹; ¹H NMR (CCl₄) δ 2.02 (s, 3H, CH₃), 2.11 (s, 3H, SCH₃), 2.67 [brs, 4H, (CH₂)₂]. [Anal. calcd. for C₅H₁₀OS (118.19): C, 50.81; H, 8.53%. Found C, 50.87; H, 8.58%].

4-Methylthio-3-methylbutan-2-one (7e). Viscous oil; IR (CCl₄) 1713 cm⁻¹; 1H NMR (CCl₄) δ 1.15 (d, 3H, J=7, CH₃), 2.08 (s, 3H, CH₃), 2.16 (s, 3H, SCH₃), 2.33-2.64 (m, 1H, CH), 2.66-2.92 (m, 2H, CH₂). [Anal. calcd. for C₆H₁₂OS (132.22): C, 54.50; H, 9.15%. Found C, 54.38; H, 9.18%].

2-Methylthiomethylcyclohexanone (7h). Viscous oil; IR (CCl₄) 1707 cm⁻¹; ¹H NMR (CCl₄) δ 2.01 (s, 3H, SCH₃), 1.31-2.91(m, 11H, CH₂, CH). [Anal. calcd. for C₈H₁₄OS (158.26): C, 60.72; H, 8.92%. Found C, 60.94; H, 8.86%].

2-Methylthiomethyl-6-methoxy-1-tetralone (7k). Viscous oil; IR (CCl₄) 1674, 1599 cm⁻¹; ¹H NMR (CCl₄)

δ 2.35 (s, 3H, SCH₃), 2.48-3.22 (m, 7H, CH₂, CH), 3.70 (s, 3H, OCH₃), 6.65-6.93 (m, 2H, ArH), 7.82 (d, 1H, J=8.5, ArH). [Anal. calcd. for $C_{13}H_{16}O_2S$ (236.33): C, 66.07; H, 6.82%. Found C, 66.14; H, 6.80%].

Acknowledgement: KMY and JRS thank CSIR, New Delhi for Senior Research Fellowship and Junior Research Fellowship respectively. Financial assistance under CSIR research scheme is also acknowledged.

REFERENCES AND NOTES

- (a) Gammill, R.B.; Nash, S.A.; Bell, L.T.; Watt, W.; Mizsak, S.A.; Scahill, T.A.; Sobieray, D. Tetrahedron Lett. 1990, 31, 5303-5306 and references cited therein; (b) Hudlicky, M. Reductions in Organic Chemistry, Ellis Horwood Limited, England, 1984.
- (a) Nishio, T.; Omote, Y. J. Chem. Soc. Perkin Trans. 1 1981, 934-938; (b) Nishio, T.; Omote, Y. Chemistry Lett. 1979, 365-368; (c) Nishio, T.; Omote, Y. Chemistry Lett. 1979, 1223-1224.
- 3. Paderes, G.D.; Metivier, P.; Jorgensen, W.L.J. Org. Chem. 1991, 56, 4718-4733 and references cited therein.
- 4. Reviews : (a) Dieter, R.K. *Tetrahedron* **1986**, 43, 3029-3096; (b) Junjappa, H.; Ila, H.; Asokan, C.V. *Tetrahedron* **1990**, 46, 5423-5506.
- (a) Dieter, R.K.; Jenkitkasemwong, Y. Tetraheron Lett. 1982, 23, 3747-3750; (b) Gammill, R.B.;
 Gold, P.M.; Mizsak, S.A. J. Am. Chem. Soc. 1980, 102, 3095-3100; (c) Myrboh, B.; Ila, H.;
 Junjappa, H.J. Org. Chem. 1983, 48, 5327-5332; (d) Myrboh, B.; Asokan, C.V.; Ila, H.; Junjappa,
 H. Synthesis 1984, 50-51; (e) Asokan, C.V.; Ila, H.; Junjappa, H. Synthesis 1985, 163-165.
- (a) Gammill, R.B.; Sobieray, D.M.; Gold, P.M.J. Org. Chem. 1981, 46, 3555-3558; (b) Rao, Ch.S.; Chakrasali, R.T.; Ila, H.; Junjappa, H. Tetrahedron 1990, 46, 2195-2204; (c) Choi, E.B.; Youn, I.K.; Pak, C.S. Synthesis 1988, 792-794.
- (a) Rao, Ch.S.; Balu, M.P.; Ila, H.; Junjappa, H. Tetrahedron 1991, 47, 3499-3510; (b) Rao, Ch.S.;
 Chandrasekharam, M.; Patro, B.; Ila, H.; Junjappa, H. Tetrahedron 1994, 50, 5783-5794.
- 8. Myrboh, B.; Singh, L.W.; Ila, H.; Junjappa, H. Synthesis 1982, 307-309.
- (a) Ireland, R.E.; Marshall, J.A. J. Org. Chem. 1962, 27, 1620-1627; (b) Bernstein, P.R. Tetrahedron Lett. 1979, 1015-1016; (c) Akiyama, S.; Iyoda, M.; Nakagawa, M. J. Am. Chem. Soc. 1976, 98, 6410-6412; (d) Akiyama, S.; Nakatsuji, S.; Hamamura, T.; Kataoka, M.; Nakagawa, M. Tetrahedron Lett. 1979, 2809-2812; (e) Akiyama, S.; Nakatsuji, S.; Eda, S.; Kataoka, M.; Nakagawa, M. Tetrahedron Lett. 1979, 2813-2816.
- (a) Dekker, J.; Martins, F.J.C.; Kruger, J.A.; Goosen, A.J. Tetrahedron Lett. 1974, 3721-3724; (b) Dekker, J.; Martins, F.J.C.; Kruger, J.A. Tetrahedron Lett. 1975, 2489-2490; (c) Murphy, W.S.; Wattanasin, S. Tetrahedron Lett. 1981, 22, 695-698.
- (a) Isobe, M.; Kondo, S.; Nagasawa, N.; Goto, T. Chem. Lett. 1977, 679-682; (b) Kjonaas, R.A.; Vawter, E.J. J. Org. Chem. 1986, 51, 3993-3996.

- 12. The reduction showed high stereoselectivity and only E stereoisomers of **6** were obtained in all the cases except for **6b**.
- (a) Coates, R.M.; Sowerby, R.L. J. Am. Chem. Soc. 1971, 93, 1027-1029; (b) Omar, M.T.; Basyouni, M.N.Bull Chem. Soc. Japan 1974, 47, 2325-2326; (c) Bowden, K.; Braude, E.A.; Jones, E.R.H. J. Chem. Soc. 1946, 945-948; (d) Pohland, A.E.; Benson, W.R. Chem. Rev. 1966, 66, 161-197.
- (a) Chauhan, S.M.S.; Junjappa, H. Tetrahedron 1976, 32, 1779-1787; (b) Thuillier, A.; Vialle, J. Bull. Soc. Chim. Fr. 1962, 2182-2186; (c) Maignan, J.; Vialle, J. Bull. Soc. Chim. Fr. 1973, 2388-2392.
- CRC Atlas of Spectral Data and Physical Constants for Organic Compounds Ed., Grasselli, J.G.; Ritchey, W.M. (a) Vol.IV, p.289; (b) Vol.IV, p.287; (c) Vol.II, p.621; (d) Vol.II, p.624; (e) Vol.III, p.130.
- 16. Packer, R.A.; Whitehurst, J.S.J. Chem. Soc. Perkin Trans. 1 1978, 110-116.

(Received in UK 13 November 1995; revised 29 January 1996; accepted 1 February 1996)