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AIb.g~aot: ¢t-Oxoketene dithioacetals 1 are shown to undergo highly selective conjugate reduction 
with Zn/ZnCI2-TMEDA in refluxing ethanol under controlled reaction conditions to afford 
13-methylthiomethylene ketones 6, I]-methylthioketones 7 and the completely desulphurized 
~X-methylketones 8 in sequential manner. 

Regioselective reduction of-,,8-unsaturated carbonyl compounds is an important synthetic 

transformation in organic chemistry.1 Particularly, the related systems with fi-heteroatoms functionalities 

further add to synthetic challenges as they significantly influence the differential electrophilicity of all 

the three carbon atoms. 2'3 The a-oxoketene dithioacetals with two alkylthio groups at f;-position of the 

enone serve as excellent models for regio-, stereo- and chemoselective reduction and C-C bond 

formation reactions, a besides, the resulting reduced functionalities are usuful intermediates for further 

synthetic transformations. 4'5 Several studies on regiospecific reduction of ct-oxoketene dithioacetals with 

various reducing agents have been reported in the literature (Scheme 1). Thus 1 , 2 - a n d  

1,2,3,4-reductions are mostly achieved with nucleophilic metal hydride (NaBH45c-~ and LiA1H45b) and 

the resulting carbinols (2 and 5) with latent ester (or aldehyde) functionalities are useful substrates for 

1,3-carbonyl transpositions affording a,8-unsaturated polyene esters or aldehydes respectively. 5~" Of 

particular importance are conjugate 1,4 reduction 4'6 of a-oxoketene dithioacetals, since the products 

in these reactions are i3-functionalized carbonyl compounds in which the oxidation level of a-  and 

I~-carbon can be adjusted by the choice of the reducing agents. Thus sodium borohydride (in acetic 

acid), 6b magnesium (in methanol), 6c and DIBAL.TEA 6" reduction afford fi-oxodithioacetals 4 which are 

shown to be useful precursors for aromatic annelation 7" and enealdehydes synthesis, r° In our laboratory, 

we have further demonstrated selective dethiomethylation of 1 with either NiCI2/NaBH4 n or 

NaCNBH36b yielding l~-alkylthioenones 6 (Scheme 1). However yields of 6 were inconsistant particularly 

for aliphatic l~-alkylthioenones which are used as intermediates for the synthesis of both natural and 

unnatural polyenes with terminal aldehyde functionality. 9 Finally, the reduction of 1 with weaker 

electrophilic reagents like 9-BBN 6" or catecholborane 6" affords 8-alkylthio ketones 7 (or mixture of 7 
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Scheme I 

and 4) in which reductive dethiomethylation is accompanied with concurrent reduction of double bond 

also. As part of our programme to explore the chemistry of a-oxoketene dithioacetals, we were 

interested in developing a mild reducing system capable of controlling the oxidation levels at the 

B-carbon of a-oxoketene dithioacetals in a sequential manner by manipulation of the reaction conditions 

and the stoichiometry of the reagent. In particular, we were interested in an efficient high yield method 

for conversion o f l  to I~-alkylthioenones 6, in view of their utility in organic synthesis. 9 We now report 

in this paper an efficient reagent system involving Zn/ZnCI2-TMEDA complex for the reduction of 1 

in a controlled manner. Depending on the stoichiometry of the reagent and the reaction time, 1 

undergoes reduction at various stages to afford exclusively either 6 in high yields or 7 and 8 in moderate 

yields. 

RESULTS AND DISCUSSION 

Reduction of 1 with Zn/ZnC12 in ethanol (Dekker's procedure ~°) was first investigated. Thus a 

suspension o f l a ,  Zn (3 eqv.) and ZnCI 2 (1.5 eqv.) in ethanol was stirred at room temperature (7 hr) 

followed by work up of the reaction mixture to afford 6a in 85 % yield. However the yield of 6a was not 
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consistent due to the hygroscopic nature of ZnCI 2, besides, the subsequent reduction of 1 did not show 

any selectivity for their conversion to either 7 or 8 under controlled conditions. We have found that 

clear reduction o f l a  to 13-methylthioenone 6a could be achieved in consistently high yields by using Zn 

(3 eqv.) and ZnC12-TMEDA complex u (1.5 eqv.) in refluxing ethanol (4hr). The yields of 6a were 

identical in all repeat experiments. Scheme 2 displays some of the results obtained for the reduction 

of few selected a-oxoketene dithioacetals from aromatic and aliphatic acyclic and cyclic ketones. 

Especially, the reduction of a-acetylketene dithioacetal ld  from acetone is particularly important, since 

the corresponding S-(t-butyl) analog of the resulting l~-methylthioenone 6d is a useful intermediate in 

the synthesis of polyenealdehydes. 9 Similarly the other aliphatic (le-f) and cyclic (lg-i and l j-k) ketene 

dithioacetals yielded the corresponding g-methylthioenones 6e-k in 75-95 % overall yields.t2The products 

0 SMe 0 H 
R i . , ~ S M .  Zn / ZnCI2--TNIEDA ("Seqv) 

R2 EtOH / A / 5 - 6 h  ~_ R t SMe 
R = 

± 6_ 

Scheme 2 

Table 1: Selective Reduction of a-Oxoketene Dithioacetals ia-k to f~-Methylthioenones 6a-k. 

Entry 1 6 R t R 2 % Yield 6 
(Time hr) 

1 la 6a C6H 5 H 85 (4) 

2 lb 6b C6H 5 CH 3 80 (3) 

3 le 6c ~ H 60 (2) 

4 ld 6d CH 3 H 95 (7) 

5 le 6e CH 3 CH 3 95 (3) 

6 I f  6f CH 3 C2H 5 95 (3) 

7 lg 6g -(CHz) 3- 75 (3) 

8 lh 6h -(CH2) 4- 95 (3) 

9 li 6i -(CH2) 6- 92 (3) 

10 lj 6j ~ I ' ~  .J 90 (3) 
W 

11 lk  6k [ ~ "  I 90 (3) 

MeO 
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of overreduction were not detected. In an another experiment, when la was treated with 3 eqv. of 

ZnlZnCI2-TMEDA complex and the reaction mixture was refluxed for 8 hr (monitored by tic), the 

corresponding l]-methylthio ketone 7a was obtained in 65 % yield. Similarly the other dithioacetals (lb-e, 

lh  and lk)  yielded the respective l}-methylthio ketones 7b-e, 7b and 7k in moderate to good yields 

under controlled conditions (Scheme 3). Finally, treatment of la with 5 eqv.of the reagent under 

identical reaction conditions for prolonged time (18 hr) resulted in complete reductive desulphurization 

of both the methylthio groups to afford the corresponding a-methylketone (propiophenone) 8a in 55% 

yield (Scheme 3). Similarly the other representative ketene dithioacetals lb-e, lh  and lk  could also be 

converted to the corresponding fully desulphurized a-methylketones 8b-e and 8h and 8k in 50-85 % 
overall yields under similar reaction conditions. 

0 SMe 

R 1 " J ~ S M e  
R 2 
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0 
Zn/ZnCI2--TMEDA (~ eqv) > R 4 ~ S M e  

E t O H / A / 7 - 1 3 h  
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Table 2: Reduction of ~x-Oxoketene Dithioacetals 1 to B-Methylthioketones 7 and et-Methylketones 8. 

Entry 1 R t R 2 % Yield 7 % Yield 8 
(Time hr) (Time hr) 

1 la C6H 5 H 65 (8) 55 (18) 

2 lb C6H 5 CH a 68 (7) 82 (16) 

3 lc ~ - ~  H 65 (7) 50 (20) 

4 ld CH 3 H 55 (7) 53 (17) 

5 le CH 3 CH 3 73 (12) 65 (25) 

6 lh -(CH2) 4- 55 (8) 59 (22) 

7 lk  f f ' ~ "  ~ 70 (7) 85 (16) 
MeO 
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In summary, we have demonstrated the potentiality of Zn/ZnCI2-TMEDA system for selective 

reduction of ~,-oxoketene dithioacetals to more important ll-methylenones in high yields. The 

methodology is also applicable with equal efficiency for the preparation of 7 and 8 with full control on 

product distribution. Several routes for the synthesis of 13-alkylthioenones 6 have been reported in the 

literature. 9'13 The most commmonly employed methods involve the treatment of ct-formylketones 

(or their tosyl derivatives) with butyl mercaptan. 9"-b'Jaa The other methods involve either 1,4-addition 

of alkyl/aryl mercaptans to B-ketoacetylene 9cd't3b-c or the displacement reaction on B-chlorovinyl 

ketones with appropriate mercaptans. 9d'130 The present method constitutes a simple and cheap high yield 

alternative for these class of compounds from ~-oxoketene dithioacetals. 

EXPERIMENTAL 

Melting points were determined on a "Thomas Hoover" capillary melting point apparatus and 

are uncorrected. IR spectra were obtained on a Perkin-Elmer 297 spectrophotometer. ~H NMR spectra 

were recorded on a Varian EM-390 (90 MHz) spectrometer in CDCI 3 or CCI 4 using TMS as internal 

standard and chemical shifts are expressed in 6 (ppm) units downfield from TMS. The coupling 

constants are given in Hertz (Hz). Elemental analyses were carried out on a Heraeus CHN-O-Rapid 

analyzer. 

Commercially available zinc dust (AR grade, Merck), ZnCI 2 (Merck), TMEDA (Merck), and 

ethanol were used for reactions. Zn dust was activated with 1,2-dibromoethane and ZnCI 2 was fused 

and powdered prior to use. The ZnC12-TMEDA complex was made according to the reported 

procedure, l~a Thin-layer chromatography was performed on glass plates coated with Acme's silica gel 

containing 13% calcium sulphate as binder and the spots were detected in iodine chamber or by 

spraying the plates with a solution of acidic KMnO 4. Acme's silica gel (60-120 mesh) was used for 

column chromatography. 

All the ~t-oxoketene dithioacetals required for the present investigation were prepared according 

to the earlier reported procedures. 14 

General Procedure for the Reduction of a-Oxoketene Dithioacetals with Znl7~nCI2-TMEDA in Ethanol. 

To a well stirred solution of a-oxoketene dithioacetals 1 (10 mmol) in ethanol (25 mL), Zn dust 

(30 mmol) and ZnC12-TMEDA complex (15 mmol in the case o f r ,  30 mmol in the case of 7 and 50 

mmol in the case of S) were added. The reaction mixture was refluxed for 3-25 hr (monitored by t.l.c.) 

(Table), cooled and the inorganic material was filtered off. The filtrate was poured over crushed ice, 

treated with 5% sulphuric acid and extracted with chloroform (3 x 50 ml). The combined organic 

extracts was washed with water (2 x 100 ml), dried over sodium sulphate and concentrated to give the 

viscous residues, which on column chromatography over silica gel using hexane:ethyl acetate (47:3) as 

eluent gave the corresponding products 6 ,7  and 8. 

The following known compounds were characterized by comparison of their IR and NMR spectal 

data with those reported in the literature (ra),(rd),(rg),(rh), s (rb),(re),(rk), 6b (Sa),(gb), 15a (Be), lsb 
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(Sd),ts¢(se),lsa($h),tSeand (Sj)16.The spectral and analytical data of the unknown compounds are given 

below. 

E-3-Methylthio-l-(2-furyl)-2-propen-l-one (6c). Viscous oil; IR (CC14) 1645, 1625 cmt; IH NMR (CC14) 
6 2.42 (s, 3H, SCH3), 6.52 (m, lH,furyl), 6.73 (d, IH, J = 16, olefinic), 7.21 (m, IH,furyl), 7.61 (brs, 1H, 

furyl), 7.98 (d, 1H, J=16, olefinic). [Anal. calcd, for CsHsO2S (168.21): C, 57.12; H, 4.79%. Found C, 
57.31; H, 4.74%]. 

E-4-Methylthio-3-ethyl-3-buten-2-one (6j'9. Viscous oil; IR (CC14) 1674 cmt; IH NMR (CC14) 6 0.85 (t, 
3H, J=6, CH2CH3), 2.20 (s, 3H, SCH3), 2.26 (q, 2H, J=6, CH2CH3), 2.45 (s, 3H, CH3), 7.32 (s, IH, 
olefinic). [Anal. calcd, for C7H12OS (144.23): C, 58.29; H, 8.39%. Found C, 58.15; H, 8.42%]. 

E-2-(Methylthiomethylene)cyclooctanone (6i). Yellow crystalline solid; m.p. 40-41°C; IR (CC14) 1715, 

1660,cm~; ~H NMR (CC14) 5 1.43-1.90(m, 8H), 2.50 (s, 3H, SCH3), 2.43-2.77(m, 4H), 7.40 (s, IH, 
olefinic). [Anal. calcd, for CIoHI6OS (184.30): C, 65.17; H, 8.75%. Found: C, 65.32; H, 8.72%]. 

3-Methylthio-l-phenylpropan-l-one (Ta). Viscous oil; IR (CC14) 1706 cmt; IH NMR (CC14) b 2.03(s, 3H, 
SCH3), 2.63-3.30[m, 4H, (CH2)2] , 7.28-7.63(m, 3H, ArH), 7.82-8.18(m, 2H, ArH). [Anal. caled, for 
C10Hl2OS (180.26): C, 66.63; H, 6.71%. Found C, 66.72, H, 6.68%]. 

3-Methylthio-2-methyl-l-phenylpropan-l-one (To). Viscous oil; IR (CC!4) 1685 cml; IH NMR (CC14) 5 
1.26 (d, 3H, J=7, CH3) , 2.03 (s, 3H, SCH3), 2.50 (dd, 1H, J=15, 6.5, CH2), 2.90 (dd, 1H, J=15, 6.5, 
CH2), 3.41-3.80 (m, 1H, CH), 7.32-7.68 (m, 3H, ArH), 7.85-8.13 (m, 2H, ArH). [Anal. calcd, for 
CIIHI4OS (194.29): C, 68.00; H, 7.26%. Found C, 67.89, H, 7.30%]. 

3-Methylthio-l-(2-furyl)propan-l-one (7c). Viscous oil; IR (CC14) 1714 cml; IH NMR (CC14) 6 2.12 (s, 
3H, SCH3), 2.51-3.10[m, 4H, (CH2)2], 6.48 (m, 1H,furyl), 7.09 (m, 1H,furyl), 7.58 ( brs, 1H,furyl). 
[Anal. calcd, for CsHt002S (170.23): C, 56.45; H, 5.92%. Found C, 56.18; H, 5.97%]. 

4-Methylthiobutan-2-one (7d). Viscous oil; IR (CC14) 1730, cml; JH NMR (CC14) 5 2.02 (s, 3H, CH3), 
2.11 (s, 3H, SCH3), 2.67 [brs, 4H, (CH2)2]. [Anal. calcd, for CsHIoOS (118.19): C, 50.81; H, 8.53%. 
Found C, 50.87; H, 8.58%]. 

4-Methylthio-3-methylbutan-2-one (7e). Viscous oil; IR (CC14) 1713 cm~; IH NMR (CC14) b 1.15 (d, 3H, 
J =7, CH3) , 2.08 (s, 3H, CH3), 2.16 (s, 3H, SCH3), 2.33-2.64(m, 1H, CH), 2.66-2.92(m, 2H, CH2). [Anal. 
calcd, for C6H12OS (132.22): C, 54.50; H, 9.15%. Found C, 54.38; H, 9.18%]. 

2-Methylthiomethylcyclohexanone (7h). Viscous oil; IR (CCI4) 1707 cml; IH NMR (CC14) 6 2.01 (s, 3H, 
SCH3), 1.31-2.91(m, 11H, CH2, CH). [Anal. calcd, for CsH14OS (158.26): C, 60.72; H, 8.92%. Found C, 
60.94; H, 8.86%]. 

2-Methylthiomethyl-6-methoxy-l-tetralone (Tk). Viscous oil; IR (CC14) 1674, 1599 cm-I; IH NMR (CC14) 
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6 2.35 (s, 3H, SEn3) , 2.48-3.22(m, 7H, CH2, CH), 3.70(s, 3H, ocn3)  , 6.65-6.93(m, 2H,ArH), 7.82 (d, 

1H, J=8.5,ArH). [Anal. calcd, for Ct3HI602 S (236.33): C, 66.07; H, 6.82%.Found C, 66.14;H, 6.80%]. 
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