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The first Suzuki–Miyaura reactions of 2,3,5-tribromo-N-methylpyrrole are reported. These reactions pro-
ceed with very good site-selectivity in favour of position 5 which is more reactive than position 2, due to
steric reasons. The second attack occurs at position 2 which is more electron deficient than position 3.

� 2011 Elsevier Ltd. All rights reserved.
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The pyrrole system is of great importance in organic chemistry,
due to its occurrence in many natural products and pharmacolog-
ically active molecules.1 For example, a pyrrole core structure is
present in marine natural products, such as the lamellarines, stor-
niamide A, ningalin A and halitulin, which show considerable po-
tential for the treatment of various cancers and AIDS.2 Pyrroles
also occur in the structure of atorvastatin (lipitor), an oral drug
which lowers the level of cholesterol in the blood.3 They are also
found in the natural product porphobilinogen, a trisubstituted pyr-
role which is a biosynthetic precursor of many natural products
such as haemoglobin.4 Structurally more simple pyrroles have
been also isolated as natural products, for example, pyrrolnitrin,
isolated from Pseudomonas pyrrocinia, which possesses potent anti-
fungal and antibiotic activities (Chart 1).5

Site-selective palladium(0)-catalyzed cross-coupling reactions
of polyhalogenated heterocycles provide an efficient approach to
more complex substituted derivatives.6,7 This methodology has
been applied also to the synthesis of natural products and pharma-
ceuticals.8 Schröter and Bach studied Suzuki–Miyaura (S–M)
reactions of 2,3,4-tribromopyrrole-5-carboxylate and of 2,3-dibro-
mo-5-nitropyrrole and observed site-selectivity in favour of posi-
tion 2.9 Handy and co-workers reported site-selective one-pot
double S–M reactions of 4,5-dibromopyrroles using ligand free
conditions.10 Beaumard and co-workers reported one-pot S–M
reactions of 2,5-dibromo-N-Boc-pyrrole.11

Recently, we have reported site-selective S–M reactions of
various polyhalogenated heterocycles, such as tetrabromo-N-
ll rights reserved.

nger).
methylpyrrole, tetrabromothiophene, tetrabromo–selenophene,
tribromopyrazoles, and tribromothiophenes. The site-selectivity
of such reactions is controlled by electronic and steric effects.
Directing groups at sites neighbouring the reactive position also
play a significant role in the selectivity. Herein, we report what
are, to the best of our knowledge, the first site-selective Suzuki–
Miyaura reactions of 2,3,5-tribromo-N-methylpyrrole. These
reactions provide a convenient approach to novel 5-aryl-2,3-dibro-
mo-N-methylpyrroles, 2,5-diaryl-3-bromo-N-methylpyrroles and
2,3,5-triaryl-N-methylpyrrole.

2,3,5-Tribromo-N-methyl-pyrrole 2 was prepared, following a
known procedure,12 by reaction of N-methylpryrrole (1) with
NBS (3.1 equiv) in THF (Scheme 1).

The S–M reaction of 2 with 1.1 equiv of various arylboronic
acids afforded 5-aryl-2,3-dibromo-N-methylpyrroles 3a–g in 43–
82% yields (Scheme 2, Table 1).13 The reactions proceeded with
OH

Chart 1. Structure of pyrrolnitrin.
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Figure 1. Ortep plot of 3a.

Table 2
Synthesis of 2,3,5-triaryl-N-methylpyrrole 4a

4 Ar1 Ar2 (%) (4)a

a 4-tBuC6H4 4-(MeO)C6H4 74

a Yields of isolated products.
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Scheme 3. Synthesis of 5a–d and 6a,b. Reagents and Conditions: (i) 2 (1.0 equiv),
Ar1B(OH)2 (2.3 equiv), Pd(PPh3)4 (5 mol %), K3PO4 (4.0 equiv), 1,4-dioxane/tolu-
ene = 1:1, 100 �C, 12 h; (ii) 5d,f (1.0 equiv), Ar2B(OH)2 (2.0 equiv), Pd(PPh3)4

(5 mol %), K3PO4 (4.0 equiv), toluene, 110 �C, 36 h.

Table 3
Synthesis of 2,5-diaryl-3-bromo-N-methylpyrroles 5a–f

5 Ar1 (%) (5)a

a 3-(MeO)C6H4 53
b 3,5-Me2C6H3 42
c 2-(EtO)C6H4 45
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Scheme 2. Synthesis of 3a–g and 4a. Reagents and Conditions: (i) 2 (1.0 equiv),
Ar1B(OH)2 (1.1 equiv), Pd(PPh3)4 (5 mol %), K3PO4 (4.0 equiv), 1,4-dioxane/tolu-
ene = 1:1, 100 �C, 8 h; (ii) 3d (1.0 equiv), Ar2B(OH)2 (3 equiv), Pd(PPh3)4 (5 mol %),
K3 PO4(4.0 equiv), toluene, 110 �C, 36 h.
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Scheme 1. Synthesis of 2. Reagents and Conditions: 1 (1.0 equiv), NBS (3.1 equiv),
THF, �78? 20 �C, 12 h.
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very good site-selectivity in favour of position 5. The relatively low
yield of 3a can be explained by the steric hindrance of 2,6-
di(methoxy)phenylboronic acid. Good yields were obtained for
nearly all products when Pd(PPh3)4 (5 mol %) and K3PO4 (4.0 equiv)
were employed as the catalyst and as the base, respectively, when
1.1 equiv of the boronic acid was used and when the reaction was
carried out at 100 �C (8 h). The temperature should not be too high
and the reaction time not too long to avoid multiple coupling.
Employment of a solvent mixture dioxane/toluene proved to be
important, due to reasons of solubility of the boronic acids. Analy-
sis of the crude product mixture (GC–MS, 1H NMR) shows that
small amounts of products derived from double-coupling are pres-
ent which could, however, be removed by chromatography. The
structure of 3a was independently confirmed by X-ray crystal
structure analysis (Fig. 1).14

The S–M reaction of 3d with 4-methoxyphenylboronic acid
afforded the 2,3,5-triaryl-N-methylpyrrole 4a in 74% yield (Scheme
2, Table 2). The best yield of this compound was obtained when an
excess of the boronic acid was employed (3.0 equiv) and when the
reaction time was extended to 36 h and the temperature elevated
to 110 �C. The yield of the one-pot synthesis of 4a from 2 (sequen-
tial addition of the boronic acids) was less than the yield of the
stepwise process. Therefore, the one-pot synthesis was not further
studied.
d 4-(MeO)C6H4 58
e 2,6-(MeO)2C6H3 40
f 4-tBuC6H4 37

a Yields of isolated products.

Table 4
Synthesis of 2,3,5-triaryl-N-methylpyrroles 6a,b

6 Ar1 Ar2 (%) (6)a

a 4-(MeO)C6H4 4-ClC6H4 72
b 4-tBuC6H4 2-(EtO)C6H4 83

a Yields of isolated products.

Table 1
Synthesis of 5-aryl-2,3-dibromo-N-methylpyrroles 3a–g

3 Ar1 T [�C] t [h] (%) (3)a

a 2,6-(MeO)2C6H3 90 8 43
b 4-MeC6H4 100 8 82
c 4-EtC6H4 100 6 73
d 4-tBuC6H4 90 8 64
e 2-(MeO)C6H4 90 8 61
f 3,5-Me2C6H3 110 6 58
g 3-FC6H4 90 8 51

a Yields of isolated products.



Figure 2. Ortep plot of 6a.
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Scheme 4. Synthesis of 7a–f. Reagents and Conditions: (i) 2 (1.0 equiv), ArB(OH)2

(4.0 equiv), Pd(OAc)2 (5 mol %)/P(Cy)3 (10 mol %), K3PO4 (4.0 equiv), toluene, 110 �C,
36 h.
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Scheme 5. Synthesis of 8. Reagents and Conditions: (i) 3d (1.0 equiv), Ar2B(OH)2

(1.1 equiv), Pd(PPh3)4 (5 mol %), K3PO4 (4.0 equiv), 1,4-dioxane/toluene = 1:1,
100 �C, 6 h; (ii) Ar3B(OH)2 (2.0 equiv), K3PO4 (2.0 equiv), 110 �C, 24 h.

Table 5
Synthesis of 2,3,5-triaryl-N-methylpyrroles 7a–f

7 Ar1 (%) (7)a

a 4-MeC6H4 68
b 4-(MeO)C6H4 89
c 3-(MeO)C6H4 76
d 4-tBuC6H4 72
e 2,3,4-(MeO)3C6H2 92
f 3-FC6H4 62

a Yields of isolated products; Cy = cyclohexyl.

Table 6
Synthesis of 2,3,5-triaryl-N-methylpyrrole 8a

Ar1 Ar2 Ar3 (%) (8)

8% 4-tBuC6H4 2-(MeO)C6H4 4-Et C6H4 43

aYields of isolated products.
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Figure 3. Possible explanation for the site-selectivity of the reactions of 2.
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The S–M reaction of 2 with 2.3 equiv of arylboronic acids gave
2,5-diaryl-3-bromo-N-methylpyrroles 5a–f in 40–53% yields
(Scheme 3, Table 3).15 The reactions were carried out at 100 �C
(12 h). The S–M reactions of 5d,f with 2.0 equiv of arylboronic
acids afforded the 2,3,5-triaryl-N-methylpyrroles 6a,b (Scheme 3,
Table 4). Similar to the synthesis of 4a, the yield of the one-pot syn-
thesis of 6a was lower compared to the stepwise synthesis. The
structure of 6a was independently confirmed by X-ray crystal
structure analysis (Fig. 2).14

The moderate yields of compounds 5a–f can be explained by
the need to separate small amounts of trisubstituted compounds
and of starting material by chromatography. Due to close Rf values,
the separations were difficult and resulted in a decrease of the
yield.

The S–M reaction of 2 with 4.0 equiv of arylboronic acids
resulted in the formation of the 2,3,5-triarylpyrroles 7a–f in
68–92% yields (Scheme 4, Table 4).16 The reactions were carried
using Pd(OAc)2/P(Cy)3 (Cy = cyclohexyl) which gave better yields
than Pd(PPh3)4.

The reaction of 5-aryl-3,4-dibromopyrazoles 4 with arylboronic
acids 3a,b,d,g,o afforded the 3,4,5-triarylpyrazoles 7a–i in 74–92%
yield (Scheme 5, Table 5).

One-pot reaction of 3d with two different arylboronic acids,
which were sequentially added, gave 2,3,5-triaryl-N-methylpyrrole
8 containg three different aryl groups in 43% yield (Scheme 5, Table
6).

The site-selectivites can be explained by electronic and steric
parameters.6,17 Position 5 is the most reactive because it is more
electron deficient than position 3 and less sterically hindered than
position 2 (Fig. 3). From the electronic viewpoint, positions 2 and 5
are similar.



S.-M. Tengho Toguem et al. / Tetrahedron Letters 52 (2011) 3732–3735 3735
In conclusion, we have reported the first Suzuki–Miyaura reac-
tions of 2,3,5-tribromo-N-methylpyrrole. The reactions provide a
convenient and site-selective approach to various arylated pyrroles
which are not readily available by other methods.
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