Tetrahedron: Asymmetry 23 (2012) 60-66

Contents lists available at SciVerse ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Diastereoselective synthesis of (+)-nephrosterinic acid and (+)-protolichesterinic acid

Rodney A. Fernandes*, Mahesh B. Halle, Asim K. Chowdhury, Arun B. Ingle

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India

ARTICLE INFO

ABSTRACT

Article history: Received 15 November 2011 Accepted 22 December 2011 Available online 10 February 2012

A diastereoselective synthesis of (+)-nephrosterinic acid and (+)-protolichesterinic acid, common members of the paraconic acids is described. The synthesis is based on a diastereoselective orthoester Johnson–Claisen rearrangement of a (*Z*)-allyl alcohol with a vicinal dioxolane moiety as key steps. The synthesis is completed in 10 steps and with overall yields of 15.9% for (+)-nephrosterinic acid and 16.4% for (+)-protolichesterinic acid.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Nephrosterinic acid¹ isolated from *Centraria endocrocea* and protolichesterinic acid² isolated from *Cetraria islandica* and *Parm*elia sinodensis are important members of the family of paraconic acids. The latter are characterized by the presence of a highly substituted γ -butyrolactone with a β -COOH group and an α methyl or methylene group and display varied stereochemical relationships of substituents on adjacent carbon atoms. These compounds are known for their biological activities such as antibacterial,³ antifungal,^{3b} antitumor⁴ and growth-regulating effects.⁵ The activity arises mainly due to the α,β -unsaturated carbonyl system which acts as a Michael acceptor to various biological nucleophiles. The syntheses of nephrosterinic acid⁶ and protolichesterinic acid⁷ have been reported both in racemic and either of the enantiomer forms. In the course of studies directed toward the enantioselective synthesis of bioactive molecules⁸ employing the orthoester Johnson-Claisen rearrangement (JCR)⁹ of allyl alcohols with a vicinal chiral dioxolane functionality, we recently completed the synthesis of (+)-nephrosteranic acid 1, (+)-roccellaric acid 2, (-)-methylenolactocin **3**, and (–)-phaseolinic acid **4** (Fig. 1).^{8e,f} The strategy was based on the separation of diastereomeric mixture 8/9 (or ent-8/ ent-9) obtained in a 1.1:1 to 2.5:1 ratio by the orthoester Johnson–Claisen rearrangement of (*E*)-7 [or (*E*)-*ent*-7, Fig. 1]. Although the diastereomeric lactones were easily separable for further synthetic exploration, the brevity was overshadowed by the poor diastereoselectivity which was a major concern to us, and so we undertook a detailed study to improve this aspect. A stereochemical feature of 7 or ent-7 available for variation apart from our earlier work was the olefin geometry. We report here a remarkable improvement in the diastereoselectivity in the orthoester

^{*} Corresponding author. Tel.: +91 22 25767174; fax: +91 22 25767152. *E-mail address:* rfernand@chem.iitb.ac.in (R.A. Fernandes).

Figure 1. Strategic considerations to paraconic acids.

^{0957-4166/\$ -} see front matter \odot 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2011.12.012

Scheme 1. Synthesis of allyl alcohols 7a-d.

Table 1Diastereoselective orthoester Johnson–Claisen rearrangement of 7a or 7b

Entry	Solvent (reaction time, h)	Allyl alcohol	8a:8b ^a (% yield)	9a:9b ^a (% yield)
1	Benzene (120)	7a	1:1 (78)	-
2	"	7b	_	1.3:1 (83)
3	MeC(OMe) ₃ (44)	7a	1.3:1 (57)	_
4	"	7b	_	1.5:1 (57)
5	Toluene (24)	7a	2:1 (89)	_
6	"	7b	_	2:1 (86)
7	Xylene (4)	7a	1.1:1 (88)	_
8	"	7b	_	1.1:1 (88)
9	Mesitylene (4)	7a	1.2:1 (72)	_
10	"	7b	_	1.3:1 (71)
11	Decalin (2)	7a	1.1:1 (82)	_
12	"	7b	—	1.2:1 (78)

^a Determined by ¹H NMR.

Johnson–Claisen rearrangement of allyl alcohols with a vicinal chiral dioxolane functionality and (*Z*)-olefin geometry. The results were successfully utilized in the total synthesis of (+)-nephrosterinic acid **5** and (+)-protolichesterinic acid **6**.

2. Results and discussion

We prepared the desired allyl alcohols **7a–d** as shown in Scheme 1. The allyl alcohols **7a** and **7b** were prepared from commercially available dodecanal **10a** and tetradecanal **10b** as reported earlier.^{8e} The synthesis of **7c** and **7d** commenced from olefins **11a** and **11b** which on cross-metathesis¹⁰ (using G-II, **13**, 0.2 mol %) with ethylacrylate **12**, provided α , β -unsaturated esters

14a¹¹ and **14b**,¹² respectively, in quantitative yields and excellent (*E*)-stereoselectivity. The asymmetric dihydroxylation of **14a** and **14b** afforded the diols **15a** and **15b**, each in 92% yields and excellent enantioselectivity of 98.5%¹¹ and 96% ee,¹³ respectively. The acetonide protection of diols provided **16a** and **16b**, each in a 97% yield. Subsequent DIBAL-H reduction of these esters to the corresponding aldehydes and (*Z*)-selective Wittig olefination with Ph₃P=CHCO₂Et in MeOH gave (*Z*)- α , β -unsaturated esters **17a** (65%) and **17b** (67%).¹⁴ Further reduction of the ester groups with DIBAL-H afforded the desired allyl alcohols **7c** and **7d** each in a 95% yield.

With the four allyl alcohols **7a–d** in hand, we subjected them to orthoester Johnson–Claisen rearrangement to investigate the

Table 2

Diastereoselective orthoester Johnson-Claisen rearrangement of 7c or 7d

Entry	Solvent (reaction time, h)	Allyl alcohol	8a:8b ^a (% yield)	9a:9b ^a (% yield)
1	Benzene (120)	7c	7:1 (61)	_
2	"	7d	_	5:1 (60)
3	MeC(OMe) ₃ (24)	7c	5:1 (88)	_
4	"	7d	_	6:1 (85)
5	Toluene (24)	7c	8:1 (89)	-
6	"	7d	-	8.7:1 (86)
7	Xylene (4)	7c	5:1 (88)	_
8	"	7d	_	45:1 (86)
9	Mesitylene (4)	7c	4:1 (89)	-
10	**	7d	_	4.5:1 (94)
11	Decalin (3)	7c	4:1 (84)	_
12	"	7d	_	3.5:1 (99)

^a Determined by ¹H NMR.

diastereoselectivity based on the geometry of olefinic bond and the presence of a chiral vicinal dioxolane moiety. The results are shown in Tables 1 and 2. The allyl alcohol **7a** with an (*E*)-olefinic bond after orthoester Johnson-Claisen rearrangement in benzene and subsequent lactonization provided 8a and 8b as a 1:1 mixture (78%, entry 1, Table 1). The reaction was rather slow and required a longer time (120 h) for completion. The assignment of relative stereochemistry to lactones 8a and 8b comes from their ¹H NMR spectra. In lactone **8a** the proton H_a is syn to the double bond and gets shielded to δ = 4.09 ppm, while the same proton in **8b** is *anti* to the double bond and appears downfield at δ = 4.38 ppm. We have further confirmation of this stereochemistry from X-ray studies of similar lactones.^{8c} The lactones **8a/8b** or **9a/9b** were easily separable by column chromatography. The allyl alcohol **7b** similarly gave 9a and 9b as a 1.3:1 mixture (83%, entry 2). A neat reaction in Me- $C(OMe)_3$ did not improve the diastereoselectivity; and also yields of the mixture were lower (57%, entries 3 and 4). On changing the solvent to toluene and then to higher boiling solvents (entries 5-12), the diastereoselectivity did not change much except in toluene when the mixture of diastereomeric lactones were obtained in a 2:1 ratio (entries 5 and 6).

The allyl alcohol **7c** with (*Z*)-olefinic bond after orthoester Johnson–Claisen rearrangement in benzene and subsequent lactonization provided **8a** and **8b** as a 7:1 mixture (61%, entry 1, Table 2). Similarly **7d** gave **9a** and **9b** as a 5:1 mixture (60%, entry 2). The neat reaction in MeC(OMe)₃ gave similar results (entries 3 and 4). Changing the solvent to toluene, **7c** provided **8a** and **8b** as an 8:1 mixture and in good yields of 89% (entry 5), Similarly **7d** gave **9a** and **9b** in good diastereoselectivity of 8.7:1 and 86% yield (entry 6). With higher boiling solvents (entries 7–12), the diastereoselectivity gradually decreased. Thus the reaction in toluene over 24 h gave the best diastereoselectivity. In all cases the *anti*-diastereomer **8a** or **9a** was the major product.

The observed diastereoselectivity is in accordance with the literature reports.⁹ Considering chairlike transition states, compound **7a** giving **8a** and **8b** in almost equal amounts could be due to the transition states of almost equal energy in which the chiral dioxolane moiety is placed equatorial. Similar is the case with **7b** giving **9a** and **9b** in equal amounts. However for **7c** (or **7d**) giving **8a** (or **9a**) as the major product could be due to involvement of lower energy transition state A (Scheme 2) wherein the new σ bond is formed from the side of the smaller H atom and away from the

Scheme 2. Transition state models for orthoester Johnson-Claisen rearrangement of 7c and 7d.

axially placed dioxolane moiety. For transition state B, the new σ bond would be formed from the side of axially placed dioxolane moiety which would be sterically less favored. Hence **8b** or **9b** are minor products.

The best results of this study were further utilized to complete the total synthesis of (+)-nephrosterinic acid **5** and (+)-protolichesterinic acid **6** as shown in Scheme 3. The orthoester Johnson–Claisen rearrangement of the allyl alcohol (*Z*)-**7c** with trimethylorthoacetate in the presence of catalytic amounts of propionic acid in toluene solvent over 24 h and the same-pot hydrolysis (4 N HCl) provided a mixture of **8a** and **8b** in an 8:1 ratio. Flash column chromatography of this mixture yielded pure diastereomer **8a** in 75% and **8b** in 8% yields. Similarly, (*Z*)-**7d** gave **9a** (74%) and **9b** (7%). The lactones were fully characterized by spectroscopic and analytical data.^{8e} The lactones **8a** and **9a** had the required functionality to set the β , γ -stereocenters of the target molecules **5** and **6**, respectively, while the free hydroxyl group in the side chain needs to be removed.

Scheme 3. Synthesis of (+)-nephrosterinic acid, 5 and (+)-protolichesterinic acid, 6.

Further conversion of **8a** and **9a** to β -carboxylic acid group containing lactones **18a** and **18b**, respectively, was carried out as reported earlier in three steps^{8e} in a 59% overall yield for **18a** and 60% for **18b**. The α -methylene group was very efficiently introduced following the literature procedure.¹⁵ Thus treatment of **18a** with methoxy magnesium methylcarbonate, followed by formaldehyde and *N*-methylaniline gave (+)-nephrosterinic acid **5** in a 65% yield, $[\alpha]_D^{25} = +12.5$ (*c* 0.1, CHCl₃), lit.^{6b} $[\alpha]_D^{32} = +13.0$ (*c* 0.6, CHCl₃). The introduction of α -methylene group similarly as above in **18b** provided (+)-protolichesterinic acid **6** in a 65% yield, $[\alpha]_D^{25} = +13.9$ (*c* 0.16, CHCl₃), lit.^{7j} $[\alpha]_D^{25} = +14.2$ (*c* 0.95, CHCl₃). The spectral data for **5** and **6** were in full agreement with the literature data.^{6b,7j}

3. Conclusions

In summary, we have synthesized varied allyl alcohols with an (*E*)- or (*Z*)-olefin geometry and having a chiral vicinal dioxolane moiety and demonstrated the strategic utility of the orthoester Johnson–Claisen rearrangement of these compounds to furnish the chiral β , γ -disubstituted- γ -lactones with good diastereoselectivity. These lactone diastereomers were efficiently separated and carried forward to complete the total synthesis of paraconic acids: (+)-nephrosterinic acid **5**, and (+)-protolichesterinic acid **6** in 10 steps and 15.9% and 16.4% overall yields, respectively. Further application of this strategy toward the synthesis of other natural products is in progress in our laboratory.

4. Experimental

4.1. General information

Dry reactions were carried out under an atmosphere of Ar or N₂. Solvents and reagents were purified by standard methods. Thinlayer chromatography was performed on EM 250 Kieselgel 60 F254 silica gel plates. The spots were visualized by staining with KMnO₄ or by a UV lamp. ¹H NMR and ¹³C NMR were recorded on Varian Mercury Plus, AS400 spectrometer and Bruker, AVANCE III 400 spectrometer. The chemical shifts are based on TMS peak at δ = 0.00 pm for proton NMR and CDCl₃ peak at δ = 77.00 ppm (t) in carbon NMR. IR spectra were obtained on Perkin Elmer Spectrum One FT-IR spectrometer. Optical rotations were measured with Jasco P-2000 polarimeter. HRMS was recorded using Micromass: Q-Tof micro (YA-105) spectrometer. HPLC was performed with JASCO-PU-2089PLUS quaternary gradient pump with MD-2010 PLUS multiwavelength Detector.

4.1.1. (E)-Ethyl tridec-2-enoate 14a¹¹

A solution of dodecene **11a** (1.0 g, 5.94 mmol), ethyl acrylate (1.3 mL, 12.18 mmol, 2.05 equiv), and *p*-cresol (0.321 g, 2.97 mmol, 50 mol %) in CH₂Cl₂ (20 mL) was degassed with N₂ for 20 min. Grubbs II catalyst (10.1 mg, 11.9 µmol, 0.2 mol %) was then added and the reaction mixture refluxed for 12 h. It was then concentrated and the residue purified by silica gel column chromatography using petroleum ether/EtOAc (4:1) as eluent to afford **14a** (1.42 g, quant) as a colorless oil. IR (CHCl₃): v_{max} = 3019, 2930, 2858, 1711, 1656, 1471, 1366, 1274, 1125, 1044, 929, 669 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, *J* = 6.9 Hz, 3H, *CH*₃), 1.24–1.46 (m, 19H, *CH*₃, *H*-5, *H*-6, *H*-7, *H*-8, *H*-9, *H*-10, *H*-11, *H*-12), 2.17–2.21 (m, 2H, *H*-4), 4.17 (q, *J* = 7.1 Hz, 2H, *OCH*₂), 5.80 (dt, *J* = 15.7, 1.5 Hz, 1H, *H*-2), 6.96 (dt, *J* = 15.6, 6.9 Hz, 1H, *H*-3). HRMS (ESI⁺): Calcd for [C₁₅H₂₈O₂+H] 241.2168. Found: 241.2174.

4.1.2. (E)-Ethyl pentadec-2-enoate 14b¹²

The title compound was prepared from tetradecene **11b** (1.0 g, 5.09 mmol) by a procedure similar to that described for the conversion of **11a** to **14a** to give **14b** (1.366 g, quant) as a colorless oil. IR (CHCl₃): v_{max} 3021, 2928, 2856, 1715, 1656, 1467, 1369, 1274, 1128, 1045, 981, 669 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, J = 6.8 Hz, 3H, *CH*₃), 1.22–1.46 (m, 23H, *CH*₃, *H*-5, *H*-6, *H*-7, *H*-8, *H*-9, *H*-10, *H*-11, *H*-12, *H*-13, *H*-14), 2.16–2.21 (m, 2H, *H*-4), 4.21 (q, J = 7.1 Hz, 2H, *OCH*₂), 5.81 (dt, J = 15.7, 1.5 Hz, 1H, *H*-2), 6.96 (dt, J = 15.6, 6.9 Hz, 1H, *H*-3). ¹³C NMR (100 MHz, CDCl3): δ 166.8, 149.6, 121.1, 60.1, 32.2, 31.9, 29.64 (2C), 29.61, 29.5, 29.4, 29.3, 29.1, 28.0, 22.7, 14.3, 14.1. HRMS(ESI⁺): Calcd for [C₁₇H₃₂O₂+H] 269.2481. Found: 269.2488.

4.1.3. (2R,3S)-Ethyl 2,3-dihydroxytridecanoate 15a¹¹

To a mixture of $K_3Fe(CN)_6$ (4.11 g, 12.48 mmol, 3.0 equiv), K₂CO₃ (1.726 g, 12.48 mmol, 3.0 equiv), MeSO₂NH₂ (0.395 g, 4.16 mmol, 1.0 equiv), (DHQ)₂-PHAL (32.4 mg, 0.0416 mmol, 1.0 mol %) and K₂OsO₄·2H₂O (6.2 mg, 16.7 µmol, 0.4 mol %) in t-BuOH (11 mL) and water (21 mL) at 0 °C was added α,β-unsaturated ester 14a (1.0 g, 4.16 mmol) in t-BuOH (10 mL). The reaction mixture was stirred at 0 °C for 24 h and then quenched with solid Na₂SO₃ and stirred for 30 min. The solution was extracted with EtOAc (3×30 mL) and combined organic layers were washed with 1 M KOH (20 mL), water (25 mL), brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (1:1) as eluent to afford **15a** (1.05 g, 92%) as a white solid. Mp 63–65 °C. $[\alpha]_{D}^{25} = -9.9$ (*c* 1.26, CHCl₃). IR (CHCl₃): v_{max} 3449, 3020, 2928, 2857, 1735, 1467, 1370, 1101, 1020, 930, 669 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, J = 6.8 Hz, 3H, CH₃), 1.26–1.41 (m, 19H, CH₃, H-5, H-6, H-7, H-8, H-9, H-10, H-11, H-12), 1.58-1.63 (m, 2H, H-4), 3.88 (dt, J = 6.3, 1.8 Hz, 1H, H-3), 4.09 (d, J = 2.0 Hz, 1H, H-2), 4.30 (q, I = 7.2 Hz, 2H, OCH₂). ¹³C NMR (100 MHz, CDCl₃): δ 173.7, 73.0, 72.5, 62.1, 33.8, 31.9, 29.6 (2C), 29.5, 29.48, 29.3, 25.7, 22.7, 14.1, 14.09. HRMS (ESI⁺): Calcd for [C₁₅H₃₀O₄+H] 275.2223. Found: 275.2220.

4.1.4. (2R,3S)-Ethyl 2,3-dihydroxypentadecanoate 15b¹³

The title compound was prepared from **14b** (1.3 g, 4.84 mmol) by a procedure similar to that described for the conversion of **14a** to **15a** to give **15b** (1.345 g, 92%) as a white solid. Mp 70–71 °C. $[\alpha]_D^{25} = -7.8$ (*c* 1.4, CHCl₃). IR (CHCl₃): v_{max} 3514, 3020, 2928, 2856, 1732, 1524, 1467, 1446, 1422, 1390, 1102, 1029, 929, 669, 626 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, *J* = 6.8 Hz, 3H, *CH*₃), 1.26–1.42 (m, 23H, *CH*₃, *H*-5, *H*-6, *H*-7, *H*-8, *H*-9, *H*-10, *H*-11, *H*-12, *H*-13, *H*-14), 1.57–1.64 (m, 2H, *H*-4), 1.85 (br s, 1H, *OH*), 3.05 (br s, 1H, *OH*), 3.89 (dt, *J* = 6.8, 1.9 Hz, 1H, *H*-3), 4.08 (d, *J* = 2.0 Hz, 1H, *H*-2), 4.29 (q, *J* = 7.1 Hz, 2H, *OCH*₂). ¹³C NMR (100 MHz, CDCl₃): δ 173.7, 73.0, 72.5, 62.1, 33.8, 31.9, 29.64 (2C), 29.61, 29.55, 29.53, 29.5, 29.3, 25.7, 22.7, 14.1, 14.08. HRMS (ESI⁺): Calcd for [C₁₇H₃₄O₄+H] 303.2536. Found: 303.2542.

4.1.5. (2R,3S)-Ethyl 2,3-(isopropylidenedioxy)tridecanoate 16a

To a solution of diol **15a** (0.84 g, 3.06 mmol) in acetone (25 mL) was added *p*-TsOH (catalytic) and 2,2-dimethoxypropane (0.94 mL, 7.65 mmol, 2.5 equiv) and the reaction mixture stirred at room temperature for 12 h. NaHCO₃ (0.2 g) was added to the reaction mixture and stirred for additional 30 min and then filtered through a pad of silica gel. The filtrate was concentrated and the residue purified by silica gel column chromatography using petroleum ether/EtOAc (3:2) as eluent to afford 16a (0.933 g, 97%) as a colorless oil. $[\alpha]_{D}^{25} = -14.6$ (*c* 0.6, CHCl₃). IR (CHCl₃): v_{max} 2988, 2928, 2857, 1755, 1660, 1466, 1382, 1373, 1216, 1099, 1034, 861, 668 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, J = 6.8 Hz, 3H, CH₃), 1.27-1.36 (m, 19H, CH₃, H-5, H-6, H-7, H-8, H-9, H-10, H-11, H-12), 1.48 (s, 3H, CH₃), 1.49 (s, 3H, CH₃), 1.63-1.87 (m, 2H, H-4), 4.11–4.13 (m, 2H, H-2, H-3), 4.24 (q, J = 7.0 Hz, 2H, OCH₂). ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 110.7, 79.2, 79.1, 61.3, 33.5, 31.9, 29.6, 29.54, 29.5, 29.46, 29.3, 27.2, 25.64, 25.6, 22.7, 14.2, 14.1. HRMS (ESI⁺): Calcd for [C₁₈H₃₄O₄+H] 315.2536. Found: 315.2545.

4.1.6. (2*R*,3*S*)-Ethyl 2,3-(isopropylidenedioxy)pentadecanoate 16b

The title compound was prepared from **15b** (1.2 g, 3.96 mmol) by a procedure similar to that described for the conversion of **15a** to **16a** to give acetonide ester **16b** (1.32 g, 97%) as a colorless oil. $[\alpha]_D^{25} = -10.8$ (*c* 0.74, CHCl₃). IR (CHCl₃): v_{max} 3020, 2991, 2928, 2856, 1749, 1657, 1523, 1467, 1383, 1374, 1099, 1031,

929, 877, 857, 669, 626 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, *J* = 6.8 Hz, 3H, *CH*₃), 1.25–1.31 (m, 23H, *CH*₃, *H*-5, *H*-6, *H*-7, *H*-8, *H*-9, *H*-10, *H*-11, *H*-12, *H*-13, *H*-14), 1.44 (s, 3H, *CH*₃), 1.47 (s, 3H, *CH*₃), 1.63–1.80 (m, 2H, *H*-4), 4.10–4.20 (m, 2H, *H*-2, *H*-3), 4.22 (q, *J* = 7.0 Hz, 2H, *OCH*₂). ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 110.7, 79.2, 79.1, 61.2, 33.5, 31.9, 29.61 (2C), 29.6, 29.5, 29.46, 29.4, 29.3, 27.1, 25.6, 25.58, 22.6, 14.1, 14.06. HRMS (ESI⁺): Calcd for [$C_{20}H_{38}O_4$ +H] 343.2849. Found: 343.2855.

4.1.7. (4S,5S,Z)-Ethyl 4,5-(isopropylidenedioxy)pentadec-2enoate 17a

To a solution of ester 16a (0.8 g, 2.54 mmol) in CH₂Cl₂ (40 mL) at -78 °C was added DIBAL-H (1.54 mL, 2.69 mmol, 1.75 M solution in toluene, 1.06 equiv). The reaction mixture was stirred for 2 h and then guenched by adding a saturated aqueous solution of potassium-sodium-tartarate (5 mL) and stirred for 1 h. It was then extracted with CH_2Cl_2 (3 × 20 mL) and the combined organic extracts were washed with water, brine, dried (Na₂SO₄), and concentrated. The crude aldehyde was dissolved in MeOH (25 mL), cooled to -78 °C and Ph₃P=CHCO₂Et (1.062 g, 3.05 mmol, 1.2 equiv) was added. The reaction mixture was stirred at -78 °C for 2 h and then at -40 °C for 12 h. It was warmed to room temperature and concentrated. The residue was purified by flash column chromatography using petroleum ether/EtOAc (5:1) as eluent to afford 17a (0.563 g, 65%) as a colorless oil. $[\alpha]_D^{25} = +37.1$ (*c* 0.6, CHCl₃). IR (CHCl₃): v_{max} 3020, 2928, 2856, 1719, 1659, 1512, 1467, 1419, 1372, 1031, 929, 876, 669 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, J = 6.9 Hz, 3H, CH₃), 1.25–1.50 (m, 19H, CH₃, H-7, H-8, H-9, H-10, H-11, H-12, H-13, H-14), 1.42 (s, 3H, CH₃), 1.43 (s, 3H, CH₃), 1.58-1.65 (m, 2H, H-6), 3.68-3.73 (m, 1H, H-5), 4.18 (q, J = 7.1 Hz, 2H, OCH₂), 5.27 (dt, J = 8.5, 1.0 Hz, 1H, H-4), 5.94 (dd, J = 11.8, 1.0 Hz, 1H, H-2), 6.13 (dd, J = 11.7, 8.8 Hz, 1H, H-3). ¹³C NMR (100 MHz, CDCl₃): *δ* 165.4, 145.4, 123.1, 109.1, 81.1, 76.1, 60.4, 32.0, 31.9, 29.7, 29.6, 29.55, 29.5, 29.3, 27.3, 27.1, 26.1, 22.7, 14.2, 14.1. HRMS (ESI+): Calcd for [C₂₀H₃₆O₄+H] 341.2693. Found: 341.2688.

4.1.8. (4S,5S,Z)-Ethyl 4,5-(isopropylidenedioxy)heptadec-2enoate 17b

The title compound was prepared from **16b** (0.9 g, 2.63 mmol) by a procedure similar to that described for the conversion of **16a** to **17a** to give acetonide ester **17b** (0.65 g, 67%) as a colorless oil. $[\alpha]_D^{25} = +32.6$ (*c* 0.4, CHCl₃). IR (CHCl₃): v_{max} 2986, 2927, 2855, 1725, 1657, 1466, 1418, 1380, 1371, 1193, 1047, 929, 874, 826, 668 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, *J* = 6.9 Hz, 3H, *CH*₃), 1.27–1.50 (m, 23H, *CH*₃, H-7, *H*-8, *H*-9, *H*-10, *H*-11, *H*-12, *H*-13, *H*-14, *H*-15, *H*-16), 1.42 (s, 3H, *CH*₃), 1.43 (s, 3H, *CH*₃), 1.60–1.65 (m, 2H, *H*-6), 3.68–3.74 (m, 1H, *H*-5), 4.18 (q, *J* = 7.1 Hz, 2H, *OCH*₂), 5.27 (dt, *J* = 8.5, 1.0 Hz, 1H, *H*-4), 5.94 (dd, *J* = 11.8, 1.1 Hz, 1H, *H*-2), 6.13 (dd, *J* = 11.7, 8.8 Hz, 1H, *H*-3). ¹³C NMR (100 MHz, CDCl₃): δ 165.4, 145.5, 123.1, 109.1, 81.1, 76.1, 60.4, 32.0, 31.9, 29.7, 29.63 (3C), 29.6, 29.5, 29.3, 27.4, 27.1, 26.1, 22.7, 14.2, 14.1. HRMS (ESI⁺): Calcd for [C₂₂H₄₀O₄+H] 369.3006. Found: 369.3011.

4.1.9. (4S,5S,Z)-4,5-(Isopropylidenedioxy)pentadec-2-en-1-ol 7c

To a solution of the acetonide ester **17a** (0.41 g, 1.204 mmol) in CH_2Cl_2 (20 mL) was added DIBAL-H (1.51 mL, 2.65 mmol, 1.75 M solution in toluene, 2.2 equiv) dropwise at 0 °C. The reaction mixture was stirred for 2 h and warmed to room temperature and stirred for 2 h. It was then quenched by adding a saturated aqueous solution of potassium–sodium–tartarate (5 mL) and stirred for 2 h. It was then extracted with CH_2Cl_2 (3 × 20 mL) and the combined organic extracts were washed with water, brine, dried (Na₂SO₄), and concentrated. The residue was purified by flash column chromatography using petroleum ether/EtOAc (3:2) as eluent

to afford **7c** (0.34 g, 95%) as a colorless oil. $[\alpha]_D^{25} = +2.1$, (*c* 0.54, CHCl₃). IR (CHCl₃): ν_{max} 3682, 3613, 3448, 3019, 2989, 2929, 2856, 1602, 1523, 1466, 1381, 1372, 1164, 1042, 930, 876, 669, 626 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.87 (t, *J* = 6.8 Hz, 3H, CH₃), 1.15–1.70 (m, 18H, *H*-6, *H*-7, *H*-8, *H*-9, *H*-10, *H*-11, *H*-12, *H*-13, *H*-14), 1.41 (s, 3H, CH₃), 1.42 (s, 3H, CH₃), 3.65–3.70 (m, 1H, *H*-5), 4.11–4.21 (m, 1H, *H*-4), 4.31–4.36 (m, 2H, *H*-1), 5.48–5.54 (m, 1H, *H*-2), 5.85–5.92 (m, 1H, *H*-3). ¹³C NMR (100 MHz, CDCl₃): δ 134.2, 128.5, 108.6, 80.9, 76.7, 58.6, 31.9, 31.7, 29.7, 29.54, 29.5, 29.4, 29.3, 27.3, 27.0, 26.0, 22.6, 14.1. HRMS (ESI⁺): Calcd for [C₁₈H₃₄O₃+H] 299.2587. Found: 299.2594.

4.1.10. (4*S*,5*S*,*Z*)-4,5-(Isopropylidenedioxy)heptadec-2-en-1-ol 7d

The title compound was prepared from **17b** (0.5 g, 1.36 mmol) by a procedure similar to that described for the conversion of **17a** to **7c** to give allyl alcohol **7d** (0.42 g, 95%) as a colorless oil. $[\alpha]_D^{25} = +2.9$ (*c* 0.6, CHCl₃). IR (CHCl₃): v_{max} 3684, 3616, 3432, 3019, 2928, 2856, 1687, 1603, 1523, 1468, 1422, 1382, 1047, 929, 877, 669, 626 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.87 (t, *J* = 6.7 Hz, 3H, CH₃), 1.15–1.80 (m, 22H, *H*-6, *H*-7, *H*-8, *H*-9, *H*-10, *H*-11, *H*-12, *H*-13, *H*-14, *H*-15, *H*-16), 1.41 (s, 3H, CH₃), 1.42 (s, 3H, CH₃), 3.64–3.70 (m, 1H, *H*-5), 4.16–4.21 (m, 1H, *H*-4), 4.31–4.36 (m, 2H, *H*-1), 5.50–5.56 (m, 1H, *H*-2), 5.85–5.92 (m, 1H, *H*-3). ¹³C NMR (100 MHz, CDCl₃): δ 134.1, 128.5, 108.6, 80.9, 76.7, 58.6, 31.9, 31.7, 29.7, 29.62 (2C), 29.6, 29.5, 29.46, 29.3, 27.3, 27.0, 26.0, 22.6, 14.1. HRMS (ESI⁺): Calcd for [C₂₀H₃₈O₃+H] 327.2900. Found: 327.2908.

4.1.11. (4*R*,5*S*)-5-[(*S*)-1-Hydroxyundecyl]-4-vinyl-4,5dihydrofuran-2(3*H*)-one 8a and (4*S*,5*S*)-5-[(*S*)-1hydroxyundecyl]-4-vinyl-4,5-dihydrofuran-2(3*H*)-one 8b

To a solution of allyl alcohol 7c (0.6 g, 2.01 mmol) in toluene (15 mL) were added trimethylorthoacetate (2.41 g, 20.10 mmol, 10.0 equiv) and EtCO₂H (catalytic), and the solution refluxed for 24 h. After cooling to room temperature, the volatile material was removed under reduced pressure and the residue (0.72 g)was dissolved in MeOH (30 mL). To this was added 4 N HCl (5 mL) and stirred for 12 h at room temperature. It was then quenched with powdered NaHCO₃ (1.0 g) and filtered. The filtrate was concentrated and the residue purified by silica gel flash column chromatography (petroleum ether/EtOAc, 9:1) to provide 8b (45 mg, 8%) as a colorless oil. Further elution gave 8a (426 mg, 75%) as a colorless oil. Data for **8a**: $[\alpha]_D^{25} = +37.0$ (*c* 0.32, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 0.87 (t, J = 6.5 Hz, 3H, CH₃), 1.25– 1.39 (m, 16H, H-3', H-4', H-5', H-6', H-7', H-8', H-9', H-10'), 1.38-1.74 (m, 3H, H-2', OH), 2.46 (dd, J = 17.7, 10.3 Hz, 1H, H_A-3), 2.78 $(dd, J = 17.7, 8.9 Hz, 1H, H_B-3), 3.21-3.25 (m, 1H, H-4), 3.58-3.61$ (m, 1H, H-1'), 4.09 (d, J = 8.3 Hz, 1H, H-5), 5.16 (d, J = 10.7 Hz, 1H, H-vinyl), 5.21 (d, J = 17.4 Hz, 1H, H-vinyl), 5.71-5.78 (m, 1H, H-vinyl). Data for **8b**: $[\alpha]_D^{25} = +40.1$ (*c* 0.28, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 0.87 (t, J = 6.8 Hz, 3H, CH₃), 1.18–1.31 (m, 16H, H-3', H-4', H-5', H-6', H-7', H-8', H-9', H-10'), 1.36-1.77 (m, 3H, H-2', OH), 2.59 (dd, J = 17.2, 9.2 Hz, 1H, H_A-3), 2.69 (dd, J = 17.2, 9.2 Hz, 1H, H_B-3), 3.21-3.25 (m, 1H, H-4), 3.71-3.80 (m, 1H, H-1'), 4.38 (dd, J = 8.1, 2.9 Hz, 1H, H-5), 5.20 (d, J = 15.8 Hz, 1H, H-vinyl), 5.22 (d, J = 11.4 Hz, 1H, H-vinyl), 5.85–6.02 (m, 1H, H-vinyl). Other spectroscopic data and analysis for 8a and 8b are the same as reported earlier.8e

4.1.12. (4*R*,5*S*)-5-[(*S*)-1-Hydroxytridecyl]-4-vinyl-4,5dihydrofuran-2(3*H*)-one 9a and (4*S*5*S*)-5-[(*S*)-1hydroxytridecyl]-4-vinyl-4,5-dihydrofuran-2(3*H*)-one 9b

The title compounds were prepared from **7d** (0.5 g, 1.53 mmol) by a procedure similar to that described for the conversion of **7c** to **8a** and **8b**. The reaction afforded **9b** (33 mg, 7%) and **9a** (352 mg,

74%) as colorless oils. Data for **9a**: $[\alpha]_D^{25} = +37.6$ (*c* 0.22, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 0.87 (t, *J* = 6.9 Hz, 3H, CH₃), 1.18– 1.30 (m, 20H, H-3', H-4', H-5', H-6', H-7', H-8', H-9', H-10', H-11', H-12'), 1.35–1.75 (m, 3H, H-2', OH), 2.47 (dd, J = 17.7, 10.1 Hz, 1H, H_{A} -3), 2.78 (dd, J = 17.4, 8.9 Hz, 1H, H_{B} -3), 3.21–3.25 (m, 1H, H-4), 3.56–3.61 (m, 1H, H-1'), 4.10 (dd, J = 8.3, 2.4 Hz, 1H, H-5), 5.18 (d, J = 10.7 Hz, 1H, H-vinyl), 5.22 (d, J = 17.1 Hz, 1H, H-vinyl), 5.72–5.79 (m, 1H, *H*-vinyl). Data for **9b**: $[\alpha]_{D}^{25} = +34.2$ (*c* 0.38, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 0.87 (t, J = 6.7 Hz, 3H, CH₃), 1.19-1.33 (m, 20H, H-3', H-4', H-5', H-6', H-7', H-8', H-9', H-10', H-11', H-12'), 1.36-1.76 (m, 3H, H-2', OH), 2.59 (dd, J = 17.3, 9.0 Hz, 1H, H_A -3), 2.69 (dd, J = 17.5, 9.0 Hz, 1H, H_B -3), 3.20–3.24 (m, 1H, H-4), 3.71-3.80 (m, 1H, H-1'), 4.38 (dd, J = 7.9, 2.7 Hz, 1H, H-5), 5.21 (d, J = 11.3 Hz, 1H, H-vinyl), 5.22 (d, J = 15.9 Hz, 1H, H-vinyl), 5.85-6.01 (m, 1H, H-vinyl). Other spectral data and analysis for **9a** and **9b** are same as reported earlier.^{8e}

4.1.13. (2R,3S)-4-Methylene-5-oxo-2-undecyltetrahydrofuran-3-carboxylic acid/(+)-nephrosterinic acid 5

Methoxy magnesium methylcarbonate (Stiles reagent, 4.3 mL, 8.64 mmol, 38.0 equiv, 2 M solution in DMF) was added under an inert atmosphere to 18a (64.5 mg, 0.227 mmol) and the solution stirred at 135 °C for 60 h. After cooling the reaction mixture was acidified with dropwise addition of cold 10% HCl (15 mL) at 0 °C. Then CH₂Cl₂ (25 mL) was added to the mixture and stirred for 0.5 h. The aqueous layer was extracted with CH_2Cl_2 (4 × 30 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated. The residue was treated with 3 mL of a freshly prepared stock solution [HOAc (10 mL), 37% formaldehyde in water (7.5 mL), N-methylaniline (2.6 mL) and NaOAc (0.3 g)] and stirred for 3 h at room temperature. Brine solution (20 mL, containing 2 mL conc. HCl) was added and the aqueous layer extracted with Et_2O (5 \times 20 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel flash column chromatography (CH₂Cl₂/EtOAc, 19:1) to furnish 5 (43.7 mg, 65%) as a white solid. Mp 82–84 °C, $[\alpha]_D^{25} = +12.5$ (c 0.1, CHCl₃); lit.^{6b} Mp 86–88 °C, $[\alpha]_{D}^{32} = +13.0$ (*c* 0.66, CHCl₃). IR (CHCl₃): v_{max} 3684, 3020, 2958, 2928, 2856, 1763, 1719, 1602, 1523, 1475, 1423, 1117, 1018, 929, 850, 669, 626 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 0.87 (t, I = 6.8 Hz, 3H, CH_3), 1.11–1.60 (m, 18H, H-2', H-3', H-4', H-5', H-6', H-7', H-8', H-9', H-10'), 1.65-1.80 (m, 2H, H-1'), 3.58-3.64 (m, 1H, H-3), 4.78–4.82 (m, 1H, H-2), 6.01 (d, J = 3.0 Hz, 1H, H-vinyl), 6.45 (d, J = 3.0 Hz, 1H, H-vinyl). ¹³C NMR (CDCl₃, 100 MHz): δ 172.2, 168.2, 132.7, 125.6, 78.9, 49.4, 35.7, 31.9, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 24.8, 22.7, 14.1. HRMS (ESI⁺): Calcd for [C₁₇H₂₈O₄+H] 297.2066. Found: 297.2072.

4.1.14. (2R,3S)-4-Methylene-5-oxo-2-tridecyltetrahydrofuran-3carboxylic acid/(+)-protolichesterinic acid (6)

The title compound was prepared from **18b** (55 mg, 0.176 mmol) by a procedure similar to that described for the conversion of **18a** to **5** to give **6** (37.1 mg, 65%) as a white solid. Mp 101–103 °C, $[\alpha]_D^{25} = +13.9$ (*c* 0.16, CHCl₃); lit.^{7j} Mp 103–104 °C, $[\alpha]_D^{25} = +14.2$ (*c* 0.95, CHCl₃). IR (CHCl₃): v_{max} 3682, 3020, 2927, 2855, 1759, 1714, 1602, 1516, 1466, 1378, 1109, 1023, 929, 669, 626 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 0.87 (t, *J* = 6.7 Hz, 3H, *CH*₃), 1.08–1.62 (m, 22H, *H*-2', *H*-3', *H*-4', *H*-5', *H*-6', *H*-7', *H*-8', *H*-9', *H*-10', *H*-11', *H*-12'), 1.65–1.81 (m, 2H, *H*-1'), 3.59–3.63 (m, 1H, *H*-3), 4.78–4.82 (m, 1H, *H*-2), 6.01 (d, *J* = 2.9 Hz, 1H, *H*-vinyl), 6.45 (d, *J* = 2.9 Hz, 1H, *H*-vinyl). ¹³C NMR (CDCl₃, 100 MHz): δ 172.9, 168.3, 132.7, 125.6, 79.0, 49.6, 35.7, 31.9 (2C), 29.6, 29.5 (3C), 29.4, 29.3, 29.2, 24.8, 22.7, 14.1. HRMS (ESI⁺): Calcd for [C₁₉H₃₂O₄+H] 325.2379. Found: 325.2386.

Acknowledgements

The authors are indebted to the IRCC, IIT-Bombay and the Department of Science and Technology, New Delhi (Grant No. SR/S1/OC-25/2008) for financial support. M.B.H., A.K.C., and A.B.I. are grateful to the Council of Scientific and Industrial Research (CSIR) New Delhi for a research fellowship.

References

- 1. Asahina, Y.; Yanagita, M.; Sakurai, Y. Chem. Ber. 1937, 70B, 227.
- (a) Zopf, W. Liebigs Ann. Chem. 1902, 324, 39; (b) Asahina, Y.; Asano, M. J. Pharm. Soc. Jpn. 1927, 539, 1; Chem. Abstr. 1928, 22, 4470; (c) Asano, M.; Kanematsu, T. Chem. Ber. 1932, 65B, 1175; (d) Asahina, Y.; Yanagita, M. Chem. Ber. 1936, 69B, 120; (e) Asahina, Y.; Yasue, M. Chem. Ber. 1937, 70B, 1053; (f) Gertig, H. Diss. Pharm. 1963, 15, 235; Chem. Abstr. 1964, 60, 2041f; (g) Shah, L. G. J. Ind. Chem. Soc. 1954, 31, 253; (h) Aghoramurty, K.; Neelakantan, S.; Seshadri, T. R. J. Sci. Ind. Res. (India) 1954, 13B, 326; Chem. Abstr. 1955, 49, 8900c; (i) Rangaswami, S.; Subba Rao, V. Ind. J. Pharm. 1955, 17, 50.
- (a) Bérdy, J. In Handbook of Antibiotic Compounds; CRS Press: Boca Raton, FL, 1982; Vol. IX.; (b) Cavallito, C J.; Fruehauf, McK. D.; Bailey, J. N. J. Am. Chem. Soc. 1948, 70, 3724; (c) Shibata, S.; Miura, Y.; Sugimura, H.; Toyoizmi, Y. J. Pharm. Soc. Jpn. 1948, 68, 300; Chem. Abstr. 1951, 45, 6691; (d) Fijikawa, F.; Hitosa, Y.; Yamaoka, M.; Fijiwara, Y.; Nakazawa, S.; Omatsu, T.; Toyoda, T. J. Pharm. Soc. Jpn. 1953, 73, 135; Chem. Abstr. 1954, 48, 230a; (e) Borkowski, B.; Wozniak, W.; Gertig, H.; Werakso, B. Diss. Pharm. 1964, 16, 189; Chem. Abstr. 1965, 62, 1995; (f) Sticher, O. Pharm. Acta Helv. 1965, 40, 183; Chem. Abstr. 1965, 63, 8778d; (g) Sticher, O. Pharm. Acta Helv. 1965, 40, 385; Chem. Abstr. 1965, 63, 12026c
- 4. Hirayama, T.; Fijikawa, F.; Kasahara, T.; Otsuka, M.; Nishida, N.; Mizuno, D. Yakugaku Zasshi **1980**, *100*, 755; Chem. Abstr. **1980**, 93, 179563f
- 5. Huneck, S.; Schreiber, K. Phytochemistry 1972, 11, 2429.
- For racemic synthesis of nephrosterinic acid, see (a) Carlson, R. M.; Oyler, A. R. J. Org. Chem. **1976**, 41, 4065; For chiral synthesis, see: (b) Kongsaeree, P.; Meepowpan, P.; Thebtaranonth, Y. Tetrahedron: Asymmetry **2001**, *12*, 1913; (c) Jongkol, R.; Choommongkol, R.; Tarnchompoo, B.; Nimmanpipug, P.; Meepowpan, P. Tetrahedron **2009**, 65, 6382.
- For a synthesis of racemic protolichesterinic acid see: (a) van Tamelen, E. E.; Bach, S. R. J. Am. Chem. Soc. **1958**, 80, 3079; (b) Martin, J.; Watts, P. C.; Johnson, F. J. Org. Chem. **1974**, 39, 1676; (c) Ref. 6a.; (d) Damon, R. E.; Schlessinger, R. H. Tetrahedron Lett. **1976**, 17, 1561; (e) Ghatak, A.; Sarkar, S.; Ghosh, S. Tetrahedron

1997, 53, 17335; (f) Mandal, P. K.; Maiti, G.; Roy, S. C. J. Org. Chem. 1998, 63, 2829; (g) Chen, M.-J.; Liu, R.-S. Tetrahedron Lett. 1998, 39, 9465; For chiral synthesis, see: (h) Murta, M. M.; de Azevedo, M. B. M.; Greene, A. E. J. Org. Chem. 1993, 58, 7537; (i) Sibi, M. P.; Deshpande, P. K.; La Loggia, A. J. Synlett 1996, 343; (j) Martín, T.; Rodríguez, C. M.; Martín, V. S. J. Org. Chem. 1996, 61, 6450; (k) Masaki, Y.; Arasaki, H.; Itoh, A. Tetrahedron Lett. 1999, 40, 4829; (l) ref. 6b.; (m) Chhor, R. B.; Nosse, B.; Sörgel, S.; Böhm, C.; Seitz, M.; Reiser, O. Chem. Eur. J. 2003, 9, 261; (n) Braukmüller, S.; Brückner, R. Eur. J. Org. Chem. 2006, 2110; (o) Saha, S.; Roy, S. C. Tetrahedron 2010, 66, 4278.

- (a) Fernandes, R. A.; Ingle, A. B. Tetrahedron Lett. 2009, 50, 1122; (b) Fernandes, R. A.; Dhall, A.; Ingle, A. B. Tetrahedron Lett. 2009, 50, 5903; (c) Fernandes, R. A.; Chowdhury, A. K. J. Org. Chem. 2009, 74, 8826; (d) Fernandes, R. A.; Ingle, A. B.; Chavan, V. P. Tetrahedron: Asymmetry 2009, 20, 2835; (e) Fernandes, R. A.; Chowdhury, A. K. Eur. J. Org. Chem. 2011, 1106; (f) Fernandes, R. A.; Chowdhury, A. K. Tetrahedron: Asymmetry 2011, 22, 1114.
- For the Johnson-Claisen rearrangement see: (a) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.-T.; Faulkner, D. J.; Peterson, M. R. J. Am. Chem. Soc. 1970, 92, 741; (b) Chan, K.-K.; Cohen, N.; De Noble, J. P.; Specian, A. C., Jr.; Saucy, G. J. Org. Chem. 1976, 41, 3497; (c) Hiyama, T.; Kobayashi, K.; Fujita, M. Tetrahedron Lett. 1984, 25, 4959; (d) Ziegler, F. Chem. Rev. 1988, 88, 1423; (e) Agami, C.; Couty, F.; Evano, G. Tetrahedron Lett. 2000, 41, 8301; (f) Brenna, E.; Fuganti, C.; Gatti, F. G.; Passoni, M.; Serra, S. Tetrahedron: Asymmetry 2003, 14, 2401.
- For similar cross-metathesis with acrylates to generate α,β-unsaturated esters, see: (a) Forman, G. S.; Tooze, R. P. J. Organomet. Chem. **2005**, 690, 5863; (b) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. **2003**, 125, 11360; (c) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem. Soc. **2000**, 122, 3783.
- Olefin **14a** is known in literature and prepared by Wittig olefination, see: Gurjar, M. K.; Pramanik, C.; Bhattasali, D.; Ramana, C. V.; Mohapatra, D. K. J. Org. Chem. **2007**, 72, 6591. Compound **15a** is also known in the above paper.
- Olefin 14b is known in the literature and prepared by Wittig-Horner olefination, see: (a) Bonini, C.; Federici, C.; Rossi, L.; Righi, G. J. Org. Chem. 1995, 60, 4803; (b) Chun, J.; Byun, H.-S.; Bittman, R. .J. Org. Chem. 2003, 68, 348.
- Asymmetric dihydroxylation of 14b was similar to that reported for the preparation of *ent*-15b.¹² Enantiomeric excess was determined by chiral HPLC.
- 14. The (Z)-selective Wittig olefination was carried out similar to literature reports, see: Reddy, D. K.; Shekhar, V.; Prabhakar, P.; Babu, D. C.; Ramesh, D.; Siddhardha, B.; Murthy, U. S. N.; Venkateswarlu, Y. *Bio. Org. Med. Chem. Lett.* **2011**, *21*, 997. ¹H NMR indicated ca.17:83 (*E*/*Z*) mixture. The pure (*Z*) isomer was isolated by column chromatography.
- 15. de Azevedo, M. B. M.; Murta, M. M.; Greene, A. E. J. Org. Chem. 1992, 57, 4567.