

Check fo updates

### WILEY-VCH

# Nal-Catalyzed Oxidative Amination of Aromatic Sodium Sulfinates: Synergetic Effect of Ethylene Dibromide and Air as Oxidants

Ying Fu,\*<sup>[a]</sup> Quan-Zhou Li<sup>[a]</sup>, Qin-Shan Xu<sup>[a]</sup>, Helmut Hügel<sup>[b]</sup>, Ming-Peng Li<sup>[a]</sup> and Zhengyin Du<sup>[a]</sup>

#### Dedication ((optional))

**Abstract:** A novel Nal-catalyzed oxidative amination of sodium sulfinates, employing both ethylene dibromide (EDB) and air as the oxidants, is described. EDB was first demonstrated to be a promising mild organic oxidant that in air, converted Nal into molecular iodine to promote the cross-coupling reactions of aromatic sodium sulfinates with amines to produce arylsulfonamides. Mechanistic studies indicated that a radical pathway might be involved in the reaction process.

#### Introduction

The importance of sulfonamide containing drugs, also called sulfa drugs,<sup>[1]</sup> has attracted much attention on the construction of this privileged structural motif. Traditionally, sulfonamides are prepared via coupling of sulfonyl chlorides with amines.<sup>[2]</sup> However, the harsh reaction conditions associated with sulfonyl chlorides preparation, e.g., use of hazardous chlorine reagents such as aqueous chlorine,<sup>[3]</sup> SOCl<sub>2</sub><sup>[4]</sup> and SO<sub>2</sub>Cl<sub>2</sub>,<sup>[5]</sup> limited the accessibility of some highly functionalized sulfonyl chlorides. Thus, complementary methodologies, especially these employing bench-stable, nonhygroscopic sodium sulfinates<sup>[6]</sup> as the sulfonylating agents have been extensively developed in recent years. Notably, Jiang and co-workers first reported in 2013 an efficient synthesis of sulfonamides via coppercatalyzed aerobic oxidative coupling of sodium sulfinates with amines.<sup>[7]</sup> The amine substrate was further expanded to Obenzoyl hydroxylamines, azoles and other amine derivatives.<sup>[8]</sup>

Molecular iodine was recognized as a transition metal surrogate to catalyze, or as a selective environmentally friendly oxidant, to perform a wide range of coupling reactions of sodium sulfinates with, e.g. imidazopyridines,<sup>[9]</sup> alkynes,<sup>[10]</sup> acids,<sup>[11]</sup> 1,3-dicarbonyl compounds,[12] cinnamic enol acetates,<sup>[13]</sup> benzotriazoles<sup>[14]</sup> and NH-1,2,3-triazoles<sup>[15]</sup> etc. Recently, Yotphan<sup>[16]</sup> et al. disclosed an efficient iodinecatalyzed, sodium percarbonate participated oxidative amination of sodium sulfinates whereby sulfonamides were prepared in good yields. Concomitantly, two communications from Song and Yuan<sup>[17]</sup> groups respectively reported that molecular iodine alone could efficiently promote the coupling reactions of sodium sulfinates and amines. Furthermore, the

- [a] Dr. Y. Fu, Q.-Z. Li, Q.-S. Xu, M.-P. Li and Prof. Dr. Z. Du College of Chemistry and Chemical Engineering Northwest Normal University, Lanzhou, 730070, China E-mail: <u>fu yingmail@126.com</u>
   [b] Assoc. Prof. H. Hügel
  - Assoc. Prof. H. Hügel College of Science, Engineering & Health, School of Science, ACES, RMIT University, Melbourne, 3001, Australia.

Supporting information for this article is given via a link at the end of the document.



Scheme 1.l<sub>2</sub>/l- mediated coupling of sodium sulfinates with amines.

combination of molecular iodine and TBHP (tert-butyl hydroperoxide) could initiate N-dealkylative coupling of tertiary amines with sodium sulfinates.[18] These procedures are advantageous in that the coupling reactions were carried out in water under metal-free conditions. However, considering to the volatility and toxicity of molecular iodine or the excessively employed explosive peroxide, these protocols still have shortcomings in large scale syntheses, especially in industry sulfonamide pharmaceutical syntheses. Very recently, several greener electrochemical routes[19] employing metal iodide au the redox catalyst, for the cross-coupling of sodium sulfinates and amines, were developed (Scheme 1a). These excellent advances on S-N coupling reactions as well as our interests on developing greener and practical methods for the synthesis of sulfur containing compounds<sup>[20]</sup> prompted us to present here the milder Nal-catalyzed ethylene dibromide (EDB) and air cooxidized coupling reactions of sodium sulfinates with amines whereby good to high yields of sulfonamides can be obtained (Scheme 1b).

#### **Results and Discussion**

Initially, the coupling reaction between *N*-methylaniline (**1a**, 1.0 mmol) and sodium *p*-toluene sulfinate (**2a**, 1.5 mmol) was chosen as the model reaction system. Gratifyingly, when the reaction was conducted in the presence of a catalytic amount of Nal (0.3 mmol, 20 mol% with respect to sodium sulfinate **2a**) and EDB (3.0 mmol, 2.0 molar equivalents with respect to sodium sulfinate **2a**) at 60 °C for 8h, the desired compound **3aa** was isolated in 36% yield (Table 1, entry 1). Without Nal or EDB, sulfonamide **3aa** was not formed (entries 2 & 3). Solvent screening (Table 1, entries 4-13) showed that when the reaction was carried out in PEG-400/H<sub>2</sub>O (2 mL, 1:1, v/v) the highest yield of sulfonamide **3aa** (entry 13) was produced. Previously, EtOH was demonstrated as an ideal solvent in I<sub>2</sub> mediated cross-coupling reactions between sodium sulfinates and amines.<sup>[17a]</sup> However, in our reaction protocol, it was an

### WILEY-VCH

| Table 1.Optimization of reaction conditions [a]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                          |                         | Table 2. Substrate scope of amines [a]                                                                                                                                                                                                      |                                                                       |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------|
| $CH_{3} \xrightarrow{\qquad SO_{2}Na} SO_{2}Na \xrightarrow{\qquad PhNHMe \ 1a} CH_{3} \xrightarrow{\qquad O \qquad Me} S \xrightarrow{\qquad O \qquad Me} S \xrightarrow{\qquad O \qquad Me} S \xrightarrow{\qquad O \qquad Ne} S $ |                   |                          |                         | RR'NH (1, 1.0 mmol)         O           p-TolSO <sub>2</sub> Na         Nal (0.3 mmol), EDB (4.5 mmol)         p-Tol-S-NRR'           PEG-400/H <sub>2</sub> O (2 mL, 1:1), air         O         O           2a (1.5 mmol)         3ab-3ay |                                                                       |                                     |
| Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lodide            | Solvent                  | Yield <sup>[b]</sup> /% |                                                                                                                                                                                                                                             |                                                                       |                                     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nal               | DMF                      | 36                      |                                                                                                                                                                                                                                             | <b>3ab</b> : $R^1 = Me$ ,<br><b>3ac</b> : $R^1 = Me$                  | X = 3-Me, 71%<br>X = 4-Me 80%       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                 | DMF                      | No reaction             | ×                                                                                                                                                                                                                                           | <b>3ad</b> : R <sup>1</sup> = H,                                      | X = 2-Me-4-Cl, 63%                  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nal               | DMF                      | No reaction [c]         | Ts-N-                                                                                                                                                                                                                                       | <b>3ae</b> : $R^1 = H$ ,<br><b>3af</b> : $R^1 = H$                    | X = 4-Me 82%<br>$X = 2_{-i}$ Pr 43% |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nal               | DMA                      | 52                      | Ŕ¹ \∕                                                                                                                                                                                                                                       | <b>3ag</b> : $R^1 = H$ ,                                              | X = 2-0Me 73%                       |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nal               | DMSO                     | 62                      |                                                                                                                                                                                                                                             | <b>3ah</b> : $R^1 = H$ ,<br><b>3ai</b> : $R^1 = H$                    | $X = 4 - OCF_3$ , 66%               |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nal               | EtOH                     | 43                      |                                                                                                                                                                                                                                             | <b>3aj</b> : R <sup>1</sup> = H,                                      | X = 3-1000, 3770<br>X = H, 78%      |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nal               | DCE                      | 17                      |                                                                                                                                                                                                                                             | <b>3ak</b> : $R^1 = H$ ,<br><b>3al</b> : $P^1 = H$                    | X = 4 - F 74%                       |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nal               | Anisole                  | 43                      |                                                                                                                                                                                                                                             | <b>3am</b> : R <sup>1</sup> = H,                                      | X = 3-CI-4-F, 74%                   |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nal               | 1,4-Dioxane              | 31                      |                                                                                                                                                                                                                                             | 3an: R <sup>1</sup> = H,<br>3ao: R <sup>1</sup> = H                   | X = 4-Br, 78%<br>X = 4-1 73%        |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nal               | Toluene                  | 24                      |                                                                                                                                                                                                                                             | <b>3ap</b> : $R^1 = H$ ,                                              | $X = 3-CF_3,$ 59%                   |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nal               | DMF/H <sub>2</sub> O     | 68                      | $\mathbb{R}^2$                                                                                                                                                                                                                              | <b>3aq</b> : R <sup>2</sup> = H,                                      | Y = H, 75%                          |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nal               | H <sub>2</sub> O         | 56                      | Ts-N                                                                                                                                                                                                                                        | <b>3ar</b> : R <sup>2</sup> = H,<br><b>3as</b> : R <sup>2</sup> = Me. | Y = 4-F, 63%<br>Y = 3-F. 61%        |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nal               | PEG-400/H <sub>2</sub> O | 82                      | H                                                                                                                                                                                                                                           | ,                                                                     |                                     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nal               | PEG-400/H <sub>2</sub> O | 42 <sup>[d]</sup>       | Ts <sup>-N</sup>                                                                                                                                                                                                                            | Ts-N                                                                  | Ts-N                                |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KI                | PEG-400/H <sub>2</sub> O | 80%                     | <b>3at</b> : 66%                                                                                                                                                                                                                            | <b>3au</b> : 69%                                                      | <b>3av</b> : 72%                    |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NH <sub>4</sub> I | PEG-400/H <sub>2</sub> O | 76                      |                                                                                                                                                                                                                                             |                                                                       |                                     |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cul               | PEG-400/H2O              | 31                      | IS-N                                                                                                                                                                                                                                        |                                                                       | IS-IN                               |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nal               | PEG-400/H <sub>2</sub> O | 67 <sup>[e]</sup>       | <b>3aw</b> : 58%                                                                                                                                                                                                                            | /<br><b>3ax</b> : trace                                               | <b>3ay</b> : 0%                     |

[a] Reaction conditions: A mixture of 1a (1.0 mmol), 2a (1.5 mmol), jodides (0.3 mmol) and EDB (3.0 mmol) in designated solvent (2 mL) was heated to 60 °C under air for 8 h. [b] Isolated yields. [c] EDB was not used. [d] 1.5 mmol of EDB was employed. [e] Under nitrogen atmosphere.

[a] Isolated yields based on amines 1.

unsatisfactory solvent, since a significant amount of TsOEt was formed, affording only 43% yield of 3aa (entry 6). The employment of water<sup>[17b]</sup> alone as solvent, due to the poor solubility of methylaniline 1a, provided a lower yield of product 3aa (56%, entry 12). Decreasing the amount of EDB to 1.5 mmol resulted in a significant reduction on the yield of 3aa (42%, entry 14). Other iodides screened did not improve the yield of 3aa further (entries 15-17). Moreover, performing this reaction under a nitrogen atmosphere led to a lower yield of 3aa. In this case, a significant amount of N,N'-dimethyl-N,N'diphenylhydrazine, derived from the homocoupling of Nmethylaniline 1a was generated (entry 18).

With the optimized conditions in hand, the substrate scope of amines was first investigated employing sodium ptolylsulfinate 2a as the model substrate (Table 2). Anilines

(Me, iPr, OMe and OCF<sub>3</sub>) or electron-withdrawing groups (F, Cl, Br, I and  $CF_3$ ) reacted smoothly with 2a to give the corresponding p-tolylsulfonamide products in good yields (Table 2, 3ab-3ap). N-Methylanilines exhibit similar reactivity to primary anilines in terms of reaction rates and yields of sulfonamide products. Steric constraints on the phenyl rings of anilines significantly affected the yields of sulfonamides as the reactions of ortho-substituted anilines (2-iPr and 2-Me, produced relatively lower yields of sulfonamides (3ad & 3af). Remarkably, the peroxide-sensitive substituent, viz. SCH<sub>3</sub>, was tolerated under these reaction conditions (3ai), suggesting an advantage of our protocol over the previously reported method.<sup>[16]</sup> Primary and secondary aliphatic amines (including benzylic amines) all react with 2a under these optimized reactions, giving the corresponding sulfonamides (3ag-3aw) in moderate to good yields. Steric hindered aliphatic secondary



Table 3. Substrate scope of sodium sulfinates[a]

[a] Isolated yields based on amines 1a.

amines, *viz.*, diisopropylamine and 2,2,6,6-tetramethylpiperidine, do not react with **2a** at all (**3x** & **3y**).

The scope of sodium sulfinates was then investigated by reactions with N-methylaniline (1a) under our experimental conditions. As shown in Table 3, both electron-rich and electron-deficient aromatic substituents on the sodium sulfinates were tolerant under the novel transformation (Table 3, 3ba-3bi). However, the latter reactions generally gave lower product yields than the former, that may be attributed to the electron-withdrawing inductive effect. The steric constraints imposed by the substituents on aromatic rings of sodium benzenesulfinates are the dominant influences on the yields of sulfonamides as the highly sterically hindered sodium 2,4,6trimethylbenzenesulfinate substrate was unreactive (3bh). Heteroaryl sulfinates as represented by sodium quinoline-8sulfinate and sodium thiophene-2-sulfinate also afforded the corresponding sulfonamides (3bj & 3bk) in acceptable yields. Unfortunately, the aliphatic sodium sulfinates that were screened failed to yield the corresponding products (3bl-3bo), possibly because the unstability of aliphatic sulfonyl radicals under these reaction conditions.<sup>[21]</sup>

Further exploration of this protocol with different arylsulfinates and amines (Table 4) showed that aliphatic amines including benzylamine (**3ca**), diethylamine (**3cb**, **3ch**, **3cl** & **3cn**), cyclopropylamine (**3co**) and morpholine (**3ci**) all reacted to generate the corresponding sulfonamides. Reactions of peroxide sensitive 3-methylthioaniline with sodium 2naphthylsulfinate and sodium quinoline-8-sulfinate afforded the corresponding sulfonamides (**3cj** & **3ck**) in moderate yields. Highly sterically hindered arylamines including 2,4,6triisopropylaniline, 2,4,6-trichloroaniline, 2-amino-3,5dibromobenzaldehyde and 2,6-dimethyl-4-nitroaniline were unreactive (**3cd-3cg**). Unexpectedly, 2-hydroxyaniline did not Table 4. Substrate scope of sodium sulfinates and amines [a]



[a] Isolated yields based on amines 1a.

react with sodium benzenesulfinate (**3cc**), possibly because the intramolecular hydrogen bond formed between the OH and NH<sub>z</sub> groups that weakened the nucleophilicity of the amino group. Attempts to prepare the diphenylamine-sulfonamide (**3cp**) were unsuccessful.

Control experiments were performed in order to elaborate and gain insight into the reaction mechanism (Scheme 2). Firstly, replacement of EDB with *n*-BuBr, 1,6-dibromohexane, ethylene dichloride or acetylene tetrachloride did not initiate the desired sulfonamide 3aa in a comparable yield to that of EDB (Scheme 3, eqn1). When only sodium p-tolylsulfinate 2a (without 1a) was reacted, compound 4 was isolated in 38% yield that may be produced via capture of the in situ formed sulfonyl iodide<sup>[16]</sup> from sodium sulfinate **2a** (eqn 2). On the other hand, when N-Methyl-p-toluidine 1b (without 2a) was reacted, the dimer 1,2-dimethyl-1,2-di-p-tolylhydrazine (5) was the only product isolated in 62% yield (eqn 3), suggesting that 1b in the reaction conditions formed a radical intermediate. <sup>1</sup>H NMR analysis of the crude reaction mixture of stilbene dibromide (6) and Nal in  $D_2O$  in air showed that styrene (7) was generated. Notably, the color of all these reactions involving Nal and EDB, when heated up to 60 °C, changed gradually into brown red which may be ascribed to the in situ generated I<sub>2</sub> (eqn 4).<sup>[22]</sup> Finally, when a radical trapping agent TEMPO (2 equiv.) was added into the model reaction of 1a and 2a, the yield of 3aa

WILEY-VCH



Scheme 2. Control experiments.



Scheme 3. Proposed reaction mechanism.

dramatically dropped to 35%. Adducts **8** and **9** were detected by ESI-MS, demonstrating the occurrence of both amine radical and sulfonyl radical (eqn 5).

Based on the outcomes of these control reactions, a plausible reaction mechanism is proposed (Scheme 3). First, the I/Br exchange reaction<sup>[24]</sup> with EDB produced 1-bromo-2-

10.1002/ejoc.201801386

### WILEY-VCH

iodoethane that after elimination of bromide via intramolecular  $S_N2$  substitution, generated a cyclopropa-iodinium cation (I) which was immediately trapped by an iodine anion to form ethene and I2. The reaction of ArSO2Na (III) with I2 generates the reactive sulfonyl iodide (IV).[25] Displacement of sulfonyl iodide (IV) with amine (II) produces the sulfonamide product (V), regenerating the iodine anion. Decomposition of sulfonyl iodide species yields a sulfonyl radical (VI) and an iodine radical.[16] Additionally, amine (II) could be oxidized by O2,[26] or more likely, first combine with molecular iodine to form an amineiodine complex<sup>[27]</sup> (VII). Decomposition of VII yields a nitrogencentered radical (VIII)[28] which combined with sulfonyl iodide (IV) to form the sulfonamide product (V). Furthermore, VII could form the iodo-amine intermediate IX, which reacts with sodium sulfinate (III) to produce the sulfonamide product (V). Another possibility is that the mixture of EDB with O2 produces H2O2[29] that could oxidize the iodide anion to form molecular iodine that enhances the reaction rate.

#### Conclusions

This work represents the first systematic investigation of Nal catalyzed oxidative cross-coupling reactions of aromatic sodium sulfinates with primary/secondary amines to produce sulfonamides. The coupling reagents are catalytic Nal, air and EDB that was found to be a mild organic oxidant. EDB with air converted Nal into *in situ* l<sub>2</sub> that then promoted/facilitated the cross-coupling reactions of both sulfinateand amine radical intermediates. Various types of sulfonamides could be generated in moderate to good yields. Compared with previous works, this study illustrates catalytic simplicity, environment 'friendliness, low-cost and tolerance of a wide range of functional groups.

### Experimental Section

#### General

All reactions were performed in Schlenck tubes under air. <sup>1</sup>H (400 or 600 MHz), <sup>13</sup>C (101 or 151 MHz) spectra were recorded in CDCl<sub>3</sub> solutions. Flash chromatography was performed on silica gel (300-400 mesh). Sodium sulfinates and amines were obtained commercially and used as supplied.

#### Synthesis of sulfonamides

To a 10 mL Schlenk tube equipped with a stirring bar, sodium sulfinate **2** (1.5 mmol), amine **1** (1.0 mmol), Nal (45 mg, 0.3 mmol), EDB (564 mg, 260  $\mu$ L, 3.0 mmol), PEG-400 (1.0 mL) and water (1.0 mL) were added and the reaction mixtures were heated to 60 °C under air for 8 h. After cooling to ambient temperature, the reaction product was dissolved in dichloromethane (10 mL) and washed successively with water (2×10 mL) and then brine (10 mL). The aqueous phase was further extracted with dichloromethane (10 mL) and washed as previously. The organic phase was combined, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated. Purification by silica gel column chromatography gave the product sulfonamides.

# WILEY-VCH

# COMMUNICATION

### Acknowledgments

The authors are grateful for financial support from the National Natural Science Foundation of China (No. 21762040, 21262030).

**Keywords:** Ethylene dibromide • Nal • Oxidative coupling • Sodium sulfinates • Sulfonamide

- [1] J. Drews, Science 2000, 287, 1960-1964.
- a) M. Harmata, P. Zheng, C. Huang, M. G. Gomes, W. Ying, K.-O. Ranyanil, G. Balan, N. L. Calkins, *J. Org. Chem.* 2006, 72, 683-685; b)
   R. Sridhar, B. Srinivas, V. P. Kumar, M. Narender, K. R. Rao, *Adv. Synth. Catal.* 2007, 349, 1873-1876; c) J. Ji, Z. Liu, P. Liu, P. Sun, *Org. Biomol. Chem.* 2016, *14*, 7018-7023.
- a) V. Percec, T. K. Bera, B. B. De, Y. Sanai, J. Smith, M. N. Holerca,
   B. Barboiu, B. B. B. Grubbs, J. M. J. Fréchet, *J. Org. Chem.* 2001, *66*,
   2104-2117; b) R. J. Watson, D. Batty, A. D. Baxter, D. R. Hannah, D.
   A. Owen and J. G. Montana, *Tetrahedron Lett.* 2002, *43*, 683-685.
- a) S. O. Alapafuja, S. P. Nikas, V. G. Shukla, I. Papanastasiou, A. Makriyannis, *Tetrahedron Lett.* 2009, *50*, 7028-7085; b) K. Bahrami, M. M. Khodaei, M. Soheilizad, *J. Org. Chem.* 2009, *74*, 9287-9291.
- [5] a) R. Pandya, T. Murashima, L. Tedeschi, A. G. M. Barret, J. Org. Chem. 2003, 68, 8274-8276; b) H. Woolven, C. González-Rodrígues, I. Marco, A. L. Thompson, M. C. Willis, Org. Lett. 2011, 13, 4876-4878; c) L. G. Monovich, R. A. Tommasi, R. A. Fujimoto, V. Blancuzzi, K. Clark, W. D. Cornell, R. Doti, J. Doughty, J. Fang, D. Farley, J. Fitt, V. Ganu, R. Goldberg, R. Goldstein, S. Lavoie, R. Kulathila, W. Macchia, D. T. Parker, R. Melton, E. O'Byrne, G. Pastor, T. Pellas, E. Quadros, N. Reel, D. M. Roland, Y. Sakane, H. Singh, J. Skiles, J. Somers, K. Toscano, A. Wigg, S. Zhou, L. Zhu, W. Shieh, S. Xue, L. W. McQuire, J. Med. Chem. 2009, 52, 3523-3538.
- [6] a) X. Tang, L. Huang, C. Qi, X. Wu, W. Wu, H. Jiang, *Chem. Commun.* 2013, 49, 6102-6104; b) J. Aziz, S. Messaoudi, M. Alami, A. Hamze, *Org. Biomol. Chem.* 2014, *12*, 9743-9759; c) Y. Fu, Q.-S. Xu, Q.-Z. Li, Z. Du, K.-H. Wang, D. Huang, Y. Hu, *Org. Biomol. Chem.* 2017, *15*, 2841-2845.
- [7] X. Tang, L. Huang, C. Qi, X. Wu, W. Wu, H. Jiang, Chem. Commun. 2013, 49, 6102-6104.
- [8] a) H. Zhu, Y. Shen, Q. Deng, T. Tu, *Chem. Commun.* 2015, *51*, 16573-16576; b) H. Zhu, Y. Shen, Q. Deng, C. Huang, T. Tu, *Chem. Asian J.* 2017, *12*, 706-712; c) L. Fu, X. Bao, S. Li, Li. Wang, Z. Liu, W. Chen, Q. Xia, G. Liang, *Tetrahedron* 2017, *73*, 2504-2511; d) S.-X. Wu, Y.-K. Zhang, H.-W. Shi, J. Yan, *Chin. Chem. Lett.* 2016, *27*, 1519-1522; e) X. Bao, X. Rong, Z. Liu, Y. Gu, Q. Xia, *Tetrahedron Lett.* 2018, *59*, 2853-2858.
- [9] Y.-J. Guo, S. Lu, L.-L. Tian, E.-L. Huang, X.-Q. Hao, X. Zhu, T. Shao, M.-P. Song, *J. Org. Chem.* **2018**, *83*, 338-349.
- [10] Y. Sun, A. Abdukader, D. Lu, H. Zhang, C. Liu, Green Chem. 2017, 19, 1255-1258.
- [11] J. Gao, J. Lai, G. Yuan, RSC Adv. 2015, 5, 66723-66726.
- [12] X.-J. Pan, J. Gao, G.-Q. Yuan, Tetrahedron 2015, 71, 5525-5530.

- [13] V. K. Yadav, V. P. Srivastava, L. D. S. Yadav, *Tetrahedron Lett.* 2016, 57, 2236-2238.
- [14] S.-X. Wu, Y.-K. Zhang, H.-W. Shi, J. Yan, Chin. Chem. Lett. 2016, 27, 1519-1522.
- [15] R. J. Reddy, A. Shankar, M. Waheed, J. B. Nanubolu, *Tetrahedron Lett.* 2018, 59, 2014-2017.
- a) C. Buathongjan, D. Beukeaw, S. Yotphan, *Eur. J. Org. Chem.* 2015, 2015, 1575-1582; b) J. Zhao, J. Xu, J. Chen, X. Wang, M. He, *RSC Adv.* 2014, 4, 64698-64701.
- [17] a) K. Yang, M. Ke, Y. Lin, Q. Song, *Green Chem.* 2015, *17*, 1395-1399;
  b) X. Pan, J. Gao, J. Liu, J. Lai, H. Jiang, G. Yuan, *Green Chem.* 2015, *17*, 1400-1403; c) W. Wei, C. Liu, D. Yang, J. Wen, J. You, H. Wang, *Adv. Syn. Catal.* 2015, *357*, 987-992.
- [18] a) J. Lai, L. Chang, G. Yuan, *Org. Lett.* **2016**, *18*, 3194-3197; b) R. J. Griffiths, W. C. Kong, S. A. Richards, G. A. Burley, M. C. Willis, E. P. A. Talbot, *Chem. Sci.*, **2018**, *9*, 2295-2300.
- [19] a) C. Zhang, Y. Chen, G. Yuan, *Chin. J. Chem.* 2016, *34*, 1277-1282; b)
   Y. Jiang, Q.-Q. Wang, S. Liang, L.-M. Hu, R. D. Little, C.-C. Zeng, *J. Org. Chem.* 2016, *81*, 4713-4719; c) A. O. Terent'ev, O. M. Mulina, D. A. Pirgach, M. A. Syroeshkin, A. P. Glinushkin, G. I. Nikishin, *Mendeleev Commun.* 2016, *26*, 538-539.
- [20] a) Y. Fu, Y. Su, Q. Xu, Z. Du, Y. Hu, K.-H. Wang, D. Huang, *RSC Adv.* 2017, 7, 6018-6022; b) Y. Fu, W. Zhu, X. Zhao, H. Hügel, Z. Wu, Y. Su, Z. Du, D. Huang, Y. Hu, *Org. Biomol. Chem.* 2014, *12*, 4295-4299; c) Y. Fu, X. Zhao, B. Hou, *Chin. J. Org. Chem.* 2016, *36*, 1184-1196; d) Y. Fu, Q.-S. Xu, C.-Z. Shi, C.-Q. Xiao, Z. Du, *Adv. Synth. Catal.* 2018, *360*, 3502-3506.
- [21] a) C. Liu, Q. Lu, Z. Huang, J. Zhang, F. Liao, P. Peng, A. Lei, *Org. Lett.* **2015**, *17*, 6034-6037; b) X. Zhao, A. Wei, B. Yang, T. Li, Q. Li, D. Qiu, K. Lu, J. Org. Chem. **2017**, *82*, 9175-9181.
- [22] The existence of molecular iodine was verified by the positive result of iodine-starch test.
- [23] a) C. A. Giza, R. L. Hinmam, J. Og .Chem. 1964, 29, 1453-1461; b) P.
   L. Southwick, D. R. Christman, J. Am. Chem. Soc. 1952, 74, 1886-1891; c) L. C. R. M. da Frota, R. C. P. Canavez, S. L. da Silva Gomes, Paulo R. R. Costa, A.J. M. da Silva, J. Braz. Chem. Soc. 2009, 2<sup>-</sup> 1916-1920.
- [24] 1,2-Dihaloethanes are prone to proceed halogen exchange reactions see: L. Friederich, J. R. Duncan, G. L. Heard, D. W. Setser, B. L. Holmes, J. Phys. Chem. A 2010, 114, 4138-4147.
- [25] a) P. Katrun, C. Mueanglaew, M. Pohmakotr, V. Reutrakul, T. Jaipetc',
   D. Soorakram, C. Kuhakarn, J. Org. Chem. 2014, 79, 1778-1785; b)
   W. E. Truce, G. C. Wolf, J. Org. Chem. 1971, 36, 1727-1732.
- [26] R. Konaka, K. Kuruma, S. Terabe, J. Am. Chem. Soc., 1968, 90, 1801-1806.
- [27] a) P. L. Southwick, D. R. Christman, J. Am .Chem. Soc. 1952, 74 1886-1891; b) L. C. R. M. da Frota, R. C. P. Canavez, S. L. da Silva Gomes, P. R. R. Costa, A. J. M. da Silva, J. Braz. Chem. Soc., 2009, 20, 1916-1920.
- [28] T. Hou, C. Zhang, Y. Wang, Z. Liu, Z. Zhang, F. Wang, Cat. Commun. 2017, 94, 56-59.
- [29] a) T. S. Calderwood, D. T. Sawyer, J. Am. Chem. Soc. 1984, 106, 7185-7186; b) C. J. Christiansen, J. S. Francisco, J. Phys. Chem. A 2009, 113, 7189-7204.

## WILEY-VCH

### Entry for the Table of Contents (Please choose one layout)

## COMMUNICATION

A novel Nal-catalyzed oxidative amination of sodium sulfinates, employing both ethylene dibromide (EDB) and air as the oxidants, is described.





Air and EDS co-oxidation
 Wide spectrum of functional groups tolerance
 56 Examples

EDB/Air Co-OXIDATION

Ying Fu\*, Quan-Zhou Li, Qin-Shan Xu, Helmut Hügel, Ming-Peng Li and Zhengyin Du

#### Page No. – Page No.

Nal-Catalyzed Oxidative Amination of Aromatic Sodium Sulfinates: Synergetic Effect of Ethylene