Communication to the Editor

A Fluorinated Cobalt(III) Porphyrin **Complex for Hydroalkoxylation of** Alkynes

Richiro Ushimaru,^a Takuho Nishimura,^a Toshiki Iwatsuki,^a and Hiroshi Naka*,^{a,b}

^aDepartment of Chemistry, Graduate School of Science, Nagova University; Chikusa-ku, Nagova 464–8602, Japan: and ^bResearch Center for Materials Science, Nagoya University; Chikusa-ku, Nagova 464-8602, Japan. Received July 13, 2017; accepted August 28, 2017

A fluorinated cobalt(III) porphyrin complex [Co(TPFPP)-NTf₂·2C₂H₅OH, where TPFPP=5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, Tf=CF₃SO₂ promotes hydroalkoxylation of alkynes to give acetals in good to excellent yields. The acetals can be directly functionalized with nucleophiles in a one-pot procedure.

Key words hydroalkoxylation; acetal; alkyne; alcohol; cobalt; porphyrin

Acetals are synthetic equivalents of carbonyl compounds, reacting with various carbon and heteroatom nucleophiles, and are widely used as synthetic intermediates in medicinal chemistry and materials science.1) We here report that a fluorinated Co^{III} porphyrin complex, Co(TPFPP)NTf₂·2C₂H₅OH [1a, TPFPP=5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, Tf=CF₃SO₂]²⁾ catalyzes Markovnikov hydroalkoxylation of terminal alkynes to acetals³⁻⁵⁾ (Fig. 1). This method compares well with the earlier procedures catalyzed by Hg,^{6,7)} Pd,^{8–10)} Pt,^{9,11,12)} Au,^{13–22)} Ir^{23–26)} and Zn.²⁷⁾

The active pentafluorophenylated Co^{III} catalyst **1a** was developed by structural modification of 1b used previously for alkyne hydration²⁾ (Fig. 1). Reaction of tetrakis(pentafluorophenyl)porphyrin (H₂TPFPP) and cobalt(II) acetate²⁸⁾ followed by aerobic oxidation in the presence of HNTf₂ and recrystallization from a mixture of chloroform, ethanol, and hexane afforded 1a in 67% yield. X-Ray structural analysis of 1a indicated that (1) the cobalt center adopts octahedral geometry, with porphyrin ligand in the equatorial positions and ethanol in the apical positions (Fig. 2); (2) the counter anion, Tf_2N^- , is spatially separated from the cobalt center [Figure S2(b)]. The bound ethanol molecules were labile in CD₃OD

Fig. 1. Hydroalkoxylation of Alkynes Catalyzed by Porphyrin Cobalt(III) Complexes 1

and free ethanol molecules were observed in the ¹H-NMR spectrum [Figure S1(a)].

The catalyst 1a was found to be more reactive than 1b in the hydroalkoxylation of phenylacetylene (2a) with methanol (Table 1, entries 1 vs. 7). When a mixture of 2a (2.0 mmol), 1a (0.05 mol%), and HNTf₂ (0.18 mol%) in methanol (0.9 mL, 11 equiv) was heated at 70°C for 4h under aerobic conditions, acetal 3a was obtained in 97% yield (entry 1).²⁹⁾ The initial turnover frequency (TOF) was 4000 h^{-1} (t=12 min). This value is comparable to those of gold catalysts and higher than those of catalysts based on other metals (entry 2).³⁰⁾ Hydroalkoxylation of 2a in the absence of HNTf₂ required higher catalyst loading (entries 3 and 4). The reaction proceeded under N₂ atmosphere, but yielded 3a in a lower yield than that under air (entry 5 vs. entry 1). Double hydroalkoxylation of 2a at 27°C (room temperature) afforded acetal 3a in 97% yield (entry 6). Co^{III}TPPC1 [TPP=5,10,15,20-tetrakis(phenyl)porphyrin] was less reactive than 1a and 1b (entry 8 vs. entries 1 and 7). The reaction hardly proceeded with analogous metal complexes such as Fe^{III}TPPCl or Mn^{III}TPPCl under otherwise identical conditions (entries 9 and 10).

Fig. 2. ORTEP Drawing of 1a: (a) Top View and (b) Side View Thermal ellipsoids are drawn at 50% probability. Coordinated ethanol molecules in (a) as well as the counter anion and hydrogen atoms in (a) and (b) are omitted for clarity

Table	1.	Double	Hvdrome	thoxvlation	of Alkvnes	with	Methanol ^a
1 4010	••	Douole	11, 4101110	mony manon	01 1 1111 1100		

	H ₃ C H	Catalyst (0.05 mol%) HNTf ₂ (0.18 mol%) air, 27 or 70 °C, 0.2–12 h	H ₃ CO OCH ₃	
	2a , 2.0 mmol 11 eq	uiv	За За	
Entry	Catalyst	<i>T</i> (°C)	<i>t</i> (h)	Yield $(\%)^b$
1	1a	70	4	97
2	1a	70	0.2	40
3^c	1a	70	4	<2
4^c	1a (0.5 mol%)	70	4	>97
5^d	1a	70	4	84
6	1a (0.5 mol%)	27	12	97
7	1b	70	4	78
8	Co ^{III} TPPCl ^e	70	4	58
9	Fe ^{III} TPPCl ^e	70	4	<2
10	Mn ^{III} TPPCl ^e	70	4	<2

^{*a*}Conditions: **2a** (2.0 mmol), catalyst (0.05 mol%), HNTf₂ (0.18 mol%), CH₃OH (0.9 mL, 11 equiv) under aerobic conditions in a closed reaction vessel. ^{*b*}Determined by ¹H-NMR using mesitylene as an internal standard. ^{*c*}In the absence of HNTf₂. ^{*d*}Under N₂ atmosphere. ^{*e*}TPP=tetrakis(phenyl)porphyrin.

R		+	CH ₃ OH	1a (0.0 HNTf ₂	05–0.5 mol%) (0.18 mol%)	H ₃ C	O OCH₃
				air, 70 °C		R	
2 , 10 mmol 11 equiv					3		
Entry	2		Acetal (3)		1a (mol%)	<i>t</i> (h)	Yield $(\%)^b$
1	2a	H ₃ CC	O OCH₃	3a	0.05	12	94
2 ^{<i>c,d</i>}	2a	C ₂ H ₅ Q	V OC ₂ H ₅	3ab	0.13	16	67
3 ^{<i>c,d</i>}	2a		~ X	3ac	0.30	16	59
4	2b	\rightarrow	H ₃ CO OCH ₃	3b	0.05	12	82
5	2c	F₃C	H ₃ CO OCH ₃	3c	0.50	12	96
6 ^{<i>e</i>}	2d	H₃CO ↓ ₩7	осн₃ `>	3d	0.05	24	83
7	2e	H ₃ CO	× OCH ₃	3e	0.25	12	86
8 ^c	2f	H₃CO ✓	och₃ <	3f	0.25	24	76

Table 2. Double Hydromethoxylation of Alkynes Using Co (TPFPP) $\rm NTf_2{\cdot}2C_2H_5OH$ Complex $(1a)^a$

^aConditions: **2** (10 mmol), **1a** (0.05 mol%), CH₃OH (4.5 mL, 11 equiv), HNTf₂ (0.18 mol%) at 70°C under aerobic conditions in a closed reaction vessel. ^bIsolated yield. ^c In the absence of HNTf₂, 50°C. ^dEthanol (4.5 mL, 7.7 equiv, entry 2) or allyl alcohol (4.5 mL, 6.6 equiv, entry 3) was used instead of methanol. ^e20 mmol scale.

Other examples of this transformation are listed in Table 2. Reaction of 2a (10 mmol) with methanol in the presence of 1a (0.05 mol%) and HNTf₂ (0.18 mol%) at 70°C for 12h under aerobic conditions gave the corresponding acetal 3a in 94%

isolated yield after distillation (Table 2, entry 1). Double hydroalkoxylation of 2a using ethanol and allyl alcohol gave the corresponding acetals in acceptable yields (entries 2 and 3). Reactions using 2-propanol and *tert*-butyl alcohol were slug-

gish. *t*-Butyl-substituted phenyl acetylene **2b** was as reactive as **2a** (entry 4). Although trifluoromethyl analogue **2c** was less reactive, complete conversion was obtained at 12h with the use of 0.5 mol% of catalyst **1a** (entry 5). This method was also effective for aliphatic alkynes **2d**–**f** (entries 6–8). Double hydroalkoxylation of **2f** in the absence of HNTf₂ proceeded without destruction of the cyclopropyl moiety in **2f**. Unfortunately, the present method was not effective for internal alkynes (*e.g.* diphenylacetylene) or propargylic substrates (*e.g.* propargyl alcohol), as is also the case for alkyne hydration catalyzed by **1b**.²

Next, because acetals are reactive electrophiles,^{31–34)} one-pot conversion of *in-situ*-generated acetal **3a** with nucleophiles was examined (Chart 1). Double hydroalkoxylation of alkyne **2a** with methanol using **1a** (0.1 mol%) in the presence of HNTf₂ (0.18 mol%), followed by trapping of acetal **3a** with water, ethylene glycol, and aniline, gave the corresponding ketone **4a**, cyclic acetal **5a** and imine **6a**, respectively, in good yields. This stepwise protocol gave better results than the direct addition of these nucleophiles to **2a**. Insertion of arylisonitrile into the C–O linkage of **3a** gave α -methoxyimidate **7a**.³⁵ Analogously, Hosomi–Sakurai reaction of acetal **3a** with allyltrimethylsilane afforded ether **8a**.^{36,37)} Overall, the present method allowed direct conversion of alkyne to a variety of substituted Markovnikov-type products, using methanol and nucleophiles.

In summary, the cationic cobalt porphyrin complex **1a** was found to catalyze hydroalkoxylation of terminal alkynes to acetals under slightly acidic, aerobic conditions. The acetal intermediates can be directly functionalized with nucleophiles. Acknowledgments This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP23750109 (to H.N.) and JP15KT0141 (to H.N.)]. The authors would like to thank Professor Ryoji Noyori (Nagoya University) for his insightful comments, and extend their gratitude to Hiroyuki Okabe and Tomomi Banno (Nagoya University) for their technical assistance.

Conflict of Interest The authors declare no conflict of interest.

Supplementary Materials The online version of this article contains supplementary materials: experimental procedures and characterization of **1a**.

References and Notes

- von Angerer S., Warriner S. L., "Science of Synthesis," Vol. 29, ed. by Warriner S. L., Thieme, Stuttgart, 2007, pp. 303–406.
- For hydration of terminal alkynes with a water-soluble Co^{III} porphyrin complex, see: Tachinami T., Nishimura T., Ushimaru R., Noyori R., Naka H., J. Am. Chem. Soc., 135, 50–53 (2013).
- 3) Hintermann L., Labonne A., Synthesis, 1121-1150 (2007).
- Alonso F., Beletskaya I. P., Yus M., Chem. Rev., 104, 3079–3159 (2004).
- Goodwin J. A., Aponick A., Chem. Commun., 51, 8730–8741 (2015).
- Reichert J. S., Bailey J. H., Nieuwland J. A., J. Am. Chem. Soc., 45, 1552–1557 (1923).
- Nieuwland J. A., Vogt R. R., Foohey W. L., J. Am. Chem. Soc., 52, 1018–1024 (1930).
- 8) Utimoto K., Pure Appl. Chem., 55, 1845-1852 (1983).

- 9) Steinborn D., Nünthel R., Krause K., J. Organomet. Chem., 414, C54–C58 (1991).
- 10) Scheffknecht C., Peringer P., J. Organomet. Chem., 535, 77–79 (1997).
- 11) Kataoka Y., Matsumoto O., Tani K., *Organometallics*, **15**, 5246–5249 (1996).
- 12) Hartman J. W., Sperry L., Tetrahedron Lett., 45, 3787-3788 (2004).
- 13) Fukuda Y., Utimoto K., J. Org. Chem., 56, 3729-3731 (1991).
- 14) Teles J. H., Brode S., Chabanas M., Angew. Chem. Int. Ed., 37, 1415–1418 (1998).
- 15) Casado R., Contel M., Laguna M., Romero P., Sanz S., J. Am. Chem. Soc., 125, 11925–11935 (2003).
- 16) Santos L. L., Ruiz V. R., Sabater M. J., Corma A., *Tetrahedron*, 64, 7902–7909 (2008).
- 17) Leyva A., Corma A., J. Org. Chem., 74, 2067-2074 (2009).
- 18) Corma A., Ruiz V. R., Leyva-Perez A., Sabater M. J., Adv. Synth. Catal., 352, 1701–1710 (2010).
- 19) Kuram M. R., Bhanuchandra M., Sahoo A. K., J. Org. Chem., 75, 2247–2258 (2010).
- Bouhrara M., Jeanneau E., Veyre L., Copéret C., Thieuleux C., *Dalton Trans.*, 40, 2995–2999 (2011).
- Oonishi Y., Gomez-Suarez A., Martin A. R., Nolan S. P., Angew. Chem. Int. Ed., 52, 9767–9771 (2013).
- 22) Miura Y., Mochida T., Motodate S., Kato K., *Polyhedron*, **113**, 1–4 (2016).
- 23) Masui D., Ishii Y., Hidai M., Chem. Lett., 27, 717-718 (1998).

- 24) Hirabayashi T., Okimoto Y., Saito A., Morita M., Sakaguchi S., Ishii Y., *Tetrahedron*, 62, 2231–2234 (2006).
- 25) Konkol M., Schmidt H., Steinborn D., J. Mol. Catal. A, 269, 119– 124 (2007).
- 26) Konkol M., Schmidt H., Steinborn D., J. Mol. Catal. A, 261, 301– 305 (2007).
- 27) Breuer K., Teles J. H., Demuth D., Hibst H., Schafer A., Brode S., Domgorgen H., Angew. Chem. Int. Ed., 38, 1401–1405 (1999).
- 28) Kadish K. M., Araullo-McAdams C., Han B. C., Franzen M. M., J. Am. Chem. Soc., 112, 8364–8368 (1990).
- 29) HNTf₂ was selected because it accelerated the alkyne hydration.²⁾
- Turnover frequencies (TOFs; h⁻¹) of typical catalysts for hydroalk-oxylation of alkynes are: *ca.* 5400 (Au)¹⁴; *ca.* 294000 (Au)²⁰; *ca.* 39 (Au)²²; *ca.* 8 (Pt)¹²; *ca.* 7 (Ir).²⁵
- 31) Mukaiyama T., Murakami M., Synthesis, 1043-1054 (1987).
- 32) Alexakis A., Mangeney P., *Tetrahedron Asymmetry*, **1**, 477–511 (1990).
- 33) Murata S., Suzuki M., Noyori R., J. Am. Chem. Soc., 102, 3248– 3249 (1980).
- 34) Noyori R., Murata S., Suzuki M., Tetrahedron, 37, 3899–3910 (1981).
- 35) Tobisu M., Kitajima A., Yoshioka S., Hyodo I., Oshita M., Chatani N., J. Am. Chem. Soc., 129, 11431–11437 (2007).
- 36) Kampen D., List B., Synlett, 16, 2589-2592 (2006).
- Berbero M., Bazzi S., Cadamuro S., Dughera S., Piccinini C., Synthesis, 2, 315–319 (2010).