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Abstract: Thiol-ene coupling (TEC) reactions emerged as one
of the most useful processes for coupling different molecular
units under reaction mild conditions. However, TEC reactions
involving weak C�H bonds (allylic and benzylic fragments)
are difficult to run and often low yielding. Mechanistic studies
demonstrate that hydrogen-atom transfer processes at allylic
and benzylic positions are responsible for the lack of efficiency
of the radical-chain process. These competing reactions cannot
be prevented, but reported herein is a method to repair the
chain process by running the reaction in the presence of
triethylborane and catechol. Under these reaction conditions,
a unique repair mechanism leads to an efficient chain reaction,
which is demonstrated with a broad range of anomeric O-allyl
sugar derivatives including mono-, di-, and tetrasaccharides
bearing various functionalities and protecting groups.

Discovered more than a century ago,[1] the radical addition
of thiols to alkenes [also called the thiol-ene coupling (TEC)
reaction] became very popular during the last two decades
with applications in polymer science, biology, and bioorganic
chemistry[2] with particular emphasis on glycochemistry.[2,3]

The mild reaction conditions, atom economy, and regioselec-
tivity of the process satisfy essential requirements of the click
concept.[3d] This prompted us to evaluate TEC procedures[4]

for functionalizing the allyl moiety of fully protected frag-
ments of glycosaminoglycans (GAGs)[4a,5] with N-Cbz-pro-
tected 3-aminoethanethiol. Treatment of the allyl azidodisac-
charide 1a with 6 equivalents of the thiol 2 in the presence of
2,2’-azobis(2-methylpropionitrile) (AIBN) afforded the addi-

tion product 3a in only 17% yield. To test whether such
failure was due to the presence of an azide,[6] the reaction was
repeated with the glucopyranoside 1b,[7] thus leading to
a poor 25% yield of 3b (Scheme 1). A closer look at the
literature revealed that TEC reactions involving O-allyl
derivatives or O-benzyl-protected saccharides in organic
solvents require the use of a large excess of thiols (typically
15 equivalents),[4c,8] and moderate to low yields were reported
for simple model systems.[9,10] Therefore, a detailed study of
this reaction was undertaken to develop a more efficient and
reliable procedure. We report herein that the use of Et3B as an
initiator and catechol as a co-reagent allows highly efficient
coupling reactions by an unprecedented chain-reaction repair
process.

The TEC reaction between dodecanethiol and two simple
model allyl ethers were investigated first. Under thermal
conditions, trans-4 afforded only 62% of the expected anti-
Markovnikov adduct 5 (Scheme 2a).[11] A significant amount
of the regioisomer 6 was observed, and more surprisingly,
epimerization on the cyclohexyl ring took place to a great
extent in both 5 and 6.[12] Traces of the O,S-acetal 7 were also
isolated and the enolether 8 was observed as a transient
species during the reaction. The allyl benzyl ether 9 was
examined next (Scheme 2b). The addition of dodecanethiol
to 9 proceeded slowly and required large amounts of an
initiator to eventually furnish the adduct 10 in a moderate
55% yield along with 7% of the corresponding regioisomer
11. Benzaldehyde, 1-phenyl-1,1- (didodecylsulfanyl)methane,
and 3-dodecylsulfanylpropan-1-ol were also detected.

The results obtained with trans-4 and 9 demonstrate that
the well-established hydrogen atom abstraction from weak
C�H bonds by thiyl radicals[13] represents the major issue in
TEC reactions involving allylic ene partners or benzyl-

Scheme 1. Thermally initiated TEC reaction with allyl glycosides.
Cbz= benzyloxycarbonyl, THF = tetrahydrofuran.
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protected substrates. The stable allylic and benzylic radicals
thus generated accumulate and eventually terminate the
chain through recombination or disproportionation reac-
tions.[14] We anticipated that reduction of the undesired
stabilized radicals by an external reagent could regenerate
the starting substrate and repair the radical chain process.
However, this external reagent has to meet very strict
requirements: 1) it should have a weakly bound hydrogen
atom to permit hydrogen-atom transfer to stabilized allylic
and benzylic radicals; 2) the resulting radical should not react
with the alkene but should be readily converted into the
intermediate thiyl radical to regenerate the chain process;
3) if possible, it should possess a low toxicity and be
commercially available and cheap. Based on these require-
ments, we decided to investigate the use of catechols in the
presence of triethylborane.[15]

The TEC reaction between dodecanethiol and trans-4 was
investigated first (Scheme 3a). For this study, 4-tert-butylca-
techol (TBC) was preferred to catechol because of its better
solubility in organic solvents.[15] To our great satisfaction, the
reaction proceeded in almost quantitative yields with good
selectivity for the anti-Markovnikov adduct when the reaction
was run in the presence of TBC (1.2 equiv) and Et3B
(1.3 equiv). Under these reaction conditions (room temper-
ature), the trans/cis isomerization process was almost com-
pletely suppressed (trans/cis> 200:1). A similar result was
observed with the model substrate 9. By running the reaction
under the optimized Et3B/catechol conditions, a yield of 83%
for the formation of 10 was obtained and only 2% of the
regioisomer 11 were detected (Scheme 3b). The reaction was
also tested with 2-methylallyl benzyl ether (12), which was
converted into 13 in 93% yield as a single product (Scheme
3c). The radical nature of the reaction was unambiguously
demonstrated by running the reaction with the radical probe
14 (Scheme 3 d). The reaction afforded the furan 15, resulting
from a 5-exo-trig cyclization process, in 80% together with

small amount of the bis(addition) products 16 (11%) and 17
(3%).[16]

The optimized reaction conditions were tested with a wide
range of allyl glycosides including mono-, di-, and tetrasac-
charides (Scheme 4).[17] Within 4 hours, full conversion and
excellent yields of the isolated products were obtained[18] by
using only two equivalents of the thiol on a reaction scale
ranging from 40–80 mg of the allyl glycosides to 1.16 g of
disaccharide 1 f. This procedure proved to be superior to the
thermal reactions (compare to results in Scheme 1: 1a : 91%
versus 17 %; 1b : 83% versus 25%).[19, 20]

Alkylthiyl radicals add to nonactivated terminal olefins at
rates close to kadd = 106

m
�1 s�1 (ca. 300 K).[21] The reverse

fragmentation process is much slower (kfrag = 105 s�1; ca.
300 K).[22] Thiols are excellent hydrogen-atom donors
toward alkyl radicals (kH = 107

m
�1 s�1, ca. 300 K).[23] Thus,

assuming a moderately high concentration of the thiol
(�0.1m), the reduction of the 2-(alkylthio)alkyl radical will
be faster than its fragmentation. Moreover, the high rate
constants for the two elementary steps of the transformation
predict a long-chain mechanism leading to fast, selective, and
efficient reactions.[24] However, hydrogen atom abstraction by
thiyl radicals from allylic[25] and benzylic positions[26] may
cause the unexpected failures of TEC reactions. Hydrogen-
atom transfer from C�H bonds adjacent to a heteroatom is
particularly efficient (rate constants 103–107

m
�1 s�1).[27] The

S�H bond dissociation energies (BDE) of alkanethiols are
around 87–88 kcalmol�1. Thus, the hydrogen abstraction by
an alkanethiyl radical from allylic and benzylic C�H bonds
(BDE 79–87 kcalmol�1)[28] is exothermic and the equilibrium

Scheme 2. Thermally initiated TEC reaction with allyl ethers trans-4 and
9. DTBHN= di-tert-butylhyponitrite.

Scheme 3. The catechol/BEt3 TEC reaction with allyl ethers trans-4, 9,
12, and 14. Reaction conditions: C12H25SH (1.5 equiv), Et3B
(1.2 equiv), TBC (1.2 equiv), CH2Cl2, RT, 4 h.
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lies on the side of the C-centered radical. The main
termination reactions involve coupling and disproportiona-
tion of stabilized allylic and benzylic radicals (Scheme 5,
chain disruption process).[29] The long-chain mechanism
operating under the optimized Et3B/catechol conditions is
particularly striking since only traces of oxygen in a degased

solution are sufficient to drive all reactions to completion.
Our data suggest that an efficient repair process is occurring
in which the undesired allylic radical and the thiol are
converted back into the starting allyl ether and the thiyl
radical (Scheme 5, repair process). The repair process de-
scribed in Scheme 5 for allylic radicals is expected to be valid
for any kind of radicals resulting from undesired hydrogen-
atom transfer such as benzyl radical and a-heteroatom-
substituted alkyl radicals.

Addition of triethylborane to a solution of alkene,
dodecanethiol, and 4-tert-butylcatechol starts an important
ethane evolution, even in carefully degased solutions.[30]

When a RSH/TBC/Et3B 1:1:1 ratio is used, a new borinic
ester attributed to the structure 18 is the sole compound
observed by 11B NMR spectroscopy (d = 56.3 ppm). Under
our reaction conditions, all the catechol is converted into 18
according to Equations (1) and (2) (Scheme 6). The mono-

borinate 18 acts as a hydrogen donor with allylic (or benzylic)
radicals [Eq. (3)]. This step is close to thermoneutral or
slightly exothermic (BDE of O�H bonds in catechols lie close
to 80 kcalmol�1).[31] After the hydrogen-atom transfer step,
the resulting aryloxyl radical undergoes a rapid 5-exo
cyclization which produces an ethyl radical [Eq. (4)], which
reinitiates the chain upon reaction with the thiol [Eq. (5)].[15]

At the end of the reaction with trans-4, the 11B NMR
spectrum reveals that around 15 % of 18 has been converted
into the B-ethylcatecholborane 19 (d = 35.8 ppm).[32]

The repair mechanism proposed here works best with 1-
alkoxyallyl radicals if the reduction regioselectively provides
the allylether over the enolether (Scheme 7, top). The
reduction of the allyl radical is expected to be faster at the
most-electron-rich carbon atom, thus favoring the regener-
ation of the allylether over the isomerization to the eno-
lether.[33] Interestingly, according to the Curtin–Hammett
principle, a nonregioselective hydrogen-transfer could also
explain the repair mechanism (Scheme 7, bottom).

In conclusion, the high reactivity of thiyl radicals induces
unwanted degradations by hydrogen abstraction, thus result-
ing in disruption of the chain reaction. To overcome this

Scheme 4. The catechol/BEt3 TEC reaction with allyl glycosides.
PMB= para-methoxybenzyl.

Scheme 5. Disruption and repair processes.

Scheme 6. Repair mechanism operating in the catechol/BEt3 TEC
reaction.
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problem, we developed a new TEC procedure which allows
restoration of the chain process. Although the concept of the
repair process is well known in biological systems, the
procedure described here represents a unique example
where a repair process is used to increase the efficiency of
a synthetic method involving a radical chain reaction.
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