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Two new syntheses of benzyl C-glycosides have been developed. The first one involves an unprecedented
oxa-Michael cyclisation and the second one relies on an efficient gold-catalysed ring-closure.
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The synthesis of C-glycosides has become an area of intense
study over the last three decades.! Replacement of the anomeric
oxygen atom with a methylene group allows C-glycosides to have
higher chemical and enzymatic stability. There are few routes to
benzyl C-glycosides reported in the literature. The most common
involve hydroboration of olefinated carbohydrate derivatives and
Suzuki coupling with aryl bromides,? additions of benzyllithium
to gluconolactones and reduction,® additions of benzylzinc
reagents to glycals,* additions of benzylmagnesium reagents to
glucosyl halides,” ring-closing metathesis to form an endo-
glycal followed by hydroboration,® iodocyclization” and Ram-
berg-Bdcklund rearrangement followed by hydrogenation of the
resulting exo-glycal.®

We report herein two new methods for the synthesis of
C-glycosides where the aryl partner can be easily accessed from
a phenol. The first route is based on an unprecedented intramolec-
ular oxa-Michael cyclisation of an electron-deficient styryl deriva-
tive 2 to form the protected C-glycosides 1 directly (Scheme 1).
Only two examples of related intramolecular oxa-Michael reac-
tions are described in the literature.® The substrates required for
the cyclisation reaction can be prepared by cross-metathesis
(CM) between electron-poor styrenes and the known olefin 3,'°
easily obtained by the Wittig reaction between commercially avail-
able 2,3,4,6-tetra-O-benzyl-p-glucopyranose and methylenetri-
phenylphosphorane (93% yield).
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Olefin 3 was first submitted to cross-metathesis'' with
p-nitrostyrene,'> using Grubbs second-generation catalyst'>
(Table 1). The yields were low because of incomplete conversion
of olefin 3, 67% of which was recovered with 10 mol % of the cata-
lyst (entry 1) and 38% with 15 mol % of the catalyst (entry 2). The
best yield for the reaction (62%) was obtained with the Hoveyda-
Grubbs second-generation catalyst (HG2) in refluxing toluene
(entry 3).'* Only the E-isomer of 2a was formed. Performing the
reaction under microwave conditions did not improve the yield.!®
The reaction was plagued by isomerisation of the alkene in 3 and
the A% E-isomer of 3 was formed in up to 24% yield.

Various styrenes (EWG =SO,Ph, CHO, COMe, COOMe) were
then submitted to CM with olefin 3 under the previously optimised
conditions and the yields ranged between 50% and 62% (E isomers
only) (Table 2). In all cases, the A% isomer was formed, but it was
easily separated from the desired metathesis products.

We then decided to test the Michael cyclisation on substrate 2a,
which possesses the strongest electron-withdrawing group
(EWG = NO,, Table 3). When this olefin was treated with strong
bases such as t-BuOK®® or KHMDS, no cyclisation occurred. Instead,
we observed elimination of a benzyloxy group, even at —78 °C, to
furnish the conjugated diene 4a. With a weaker base such as trieth-
ylamine, no reaction occurred after 12 h and with sodium hydride,
the starting material was recovered at 20 °C and only degradation
products were obtained at 50 °C. With DBU at ambient tempera-
ture and low concentration, the starting material was recovered
(entry 6). The use of 3 equiv of DBU at 0.05 M led to 1a in 66% yield
after 12 h (entry 7). Selectivity was in favour of the o-isomer
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Scheme 1. Approach towards benzyl C-glycosides.

Table 1
CM between olefin 3 and p-nitrostyrene

2a OBn Eonly

Entry Conditions Yield (%)
1 Grubbs 2 (10 mol %), toluene, reflux 20
2 Grubbs 2 (15 mol %), toluene, reflux 44
3 Hoveyda-Grubbs 2 (10 mol %), toluene, reflux 62
Table 2
CM between olefin 3 and various styrenes
EWG

=
/\@\ oBn
EWG

10 mol% HG 2
toluene, reflux, 24 h

BnO""

2a-e © E only

Entry EWG Product Yield (%)
1 NO, 2a 62
2 SO,Ph 2b 60
3 CHO 2¢c 50
4 COMe 2d 51
5 COOMe 2e 55

(o/B=75:25). The two diastereomers could be separated by
column chromatography, yielding 50% of the o-isomer and 16%
of the B-isomer. Finally, optimum conditions required a substoi-
chiometric amount of DBU (0.8 equiv) at a higher concentration
(0.2 M) and compound 1a was obtained in 78% yield after 24 h
(entry 8). Another weak base K,COs also furnished C-glycoside 1a
in good yield with the same diastereomeric ratio (entry 9). The

Table 3
Oxa-Michael cyclisation of 2a

NO,

OBn
Conditions
—_—
BnO"" “‘OBn
2a OBn
Entry Conditions Yield
1 t-BuOK (1.5 equiv), THF, —78 °C, 30 min 4a
2 KHMDS (1 equiv), THF, —78°C, 1h 4a
3 Et3N (10 equiv), CH,Cl,, 20°C, 12 h No reaction
4 NaH (2 equiv), THF, 20°C, 12 h No reaction
5 NaH (2 equiv), THF, 50°C, 1 h Degradation
6 DBU (0.2 equiv), CH,Cl, (0.05 M), 20°C, 10 h No reaction
7 DBU (3 equiv), CHxCl, (0.05 M), 20 °C, 12 h 66%
8 DBU (0.8 equiv), CH,Cl, (0.2 M), 20 °C, 24 h 78%"
9 K>CO; (1 equiv), MeOH (0.1 M), 20 °C, 48 h 64%
2 ofp=75:25.
Table 4
Oxa-Michael cyclisations of 2a-e
EWG EWG
OBn
Conditions
_— h
“/OBn
1a-e
Entry EWG Product Yield
1 NO, 1a 78%*
2 SO,Ph 1b 74%°
3 CHO 1c No reaction®
4 COMe 1d Traces of 1d©
5 COOMe 1le No reaction®
6 COOMe 1e 20%%¢
2 DBU (0.8 equiv), CH,Cl, (0.2 M), 20 °C, 24 h, «/f = 75:25.
b DBU (0.8 equiv), CHxCl, (0.2 M), 20 °C, 24 h, o/ = 70:30.
€ DBU (3 equiv), CHyCl, (0.2 M), 20 °C, 5 d.
4 Sn(OTf), or Zn(OTf), (3 equiv), DBU (2 equiv), THF (0.2 M), 50 °C, 12 h.
e

Slightly impure product.

stereochemistry of the minor diastereomer was determined by
examining the coupling constants of the proton at the newly
formed stereogenic centre (J, 3 = 9.2 Hz, trans relationship).'® Sub-
mitting a mixture of diasteromers of 1a enriched in the B-isomer
(af/p =25:75) to 28 equiv of DBU for 24 h (0.2 M concentration)
did not change the isomeric ratio, implying that the conjugate
addition was under kinetic control.

Various substrates (EWG = SO,Ph, CHO, COMe, COOMe) were
submitted to the optimised oxa-Michael cyclisation conditions (Ta-
ble 4).17 A similar result was found with EWG = SO,Ph (74% yield,
a/B =70:30, entry 2). With weaker electron-withdrawing groups
such as CHO, COMe or COOMe, no reaction occurred, even in
refluxing dichloromethane (entries 3-5). Lewis acids were added
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Scheme 2. Retrosynthetic approach involving alkyne substrates.

to the reaction with the ester substrate 2e to some effect, but the
yield never exceeded 20% (entry 6). This conjugate addition seems
to be limited to substrates with strong electron-withdrawing sub-
stituents such as a nitro or a sulfonyl group, but a large range of
functional groups on the phenyl ring should be easily accessible
from the nitro group.

Another approach was then envisaged, that could produce
benzyl C-glycosides with no electron-withdrawing substituents
on the phenyl ring (Scheme 2). These glycosides would be formed
by cyclisation of hydroxy alkynes 6, followed by reduction of the
resulting alkenes 5. Alkynes 6 would be prepared by Sonogashira
coupling of terminal alkyne 7 with the appropriate aryl triflates
or aryl iodides.

The formation of alkyne 7 proved to be more difficult than ex-
pected. Corey-Fuchs'® or Bestmann-Ohira'® reactions did not con-
vert the lactol at ambient temperature, or gave degradation
products in refluxing THF. Fortunately, Wittig reaction with (chlo-
romethyl)triphenylphosphonium iodide afforded the correspond-
ing chloro-alkene in 80% yield as a 55:45 E/Z mixture (Scheme
3),2° and subsequent elimination of HCl led to alkyne 7.2' Sono-
gashira coupling between 7 and iodobenzene furnished alkyne 6f
in 87% yield.

We investigated the cyclisation under different conditions:
acidic (PPTS), basic (MeONa, KH) or with PdCl,(CN),, unsuccess-
fully. We then considered gold catalysis, which has proved to be
efficient for several heterocyclisation reactions.?? Contrary to what
was observed by Pale and co-workers for similar substrates,?® the
reaction proceeded smoothly under Au(Ill) catalysis to furnish
compound 5% in 82% yield as the Z-isomer, exclusively (Scheme
4)2% When the gold catalyst was not filtered from the reaction

OBn 1) BuLi, THF, HMPA OBn
OH SH|
CICH,PPh3l
BnO"' “OBn 2) BuLi, THF BRO™ “/0Bn
OBn 45% (2 steps) OBn

7

87% , PdCly(PPhs),
Phl, Cul, EtzN
DMF, 5 h, 50 °C

OBn

BnO' “OBn
OBn

6f

Scheme 3. Preparation of alkyne 7 and Sonogashira coupling.
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@ Work-up A: filtration on silica gel, then concentration under vacuum
b Work-up B: concentration under vacuum, then filtration on silica gel

Scheme 4. Cyclisations/reductions of 6f.

mixture before evaporation of the solvent, hemiketal 8f was ob-
tained as the major product.?®> Olefin 5f was then hydrogenated
following the procedure reported by Belica and Franck®® to furnish
benzyl C-glycoside 1f in 89% yield. Reduction of hemiketal 8f with
Et3SiH/BF;-OEt, was also efficient, giving 1f in 90% yield.?®

In conclusion, we have developed two short syntheses of benzyl
C-glycosides featuring an unprecedented oxa-Michael cyclisation
and an efficient gold-catalysed ring-closure. The second approach
also constitutes a new synthesis of benzyl exo-glycals, which could
be a good alternative to the Ramberg-Bicklund rearrangement.5%?
Depending on the route, we can obtain either o~ or B-C-glycosides.
The preparation of more complex benzyl C-glycosides using these
approaches is underway.
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