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Enantiomerically pure allylic amines are valuable building
blocks, as they possess two highly versatile functional groups.
Two widely used methods for their preparation are the
transition-metal-catalyzed allylic substitution[1] and the aza-
Claisen rearrangement of trihaloacetimidates (Overman
rearrangement).[2] A longstanding problem is the catalytic
enantioselective formation of quaternary stereocenters by
either of these methodologies. Since quaternary carbon atoms
bearing a nitrogen substituent are a widespread structural
motif for bioactive natural and non-natural compounds,[3] the
asymmetric construction of those stereocenters by means of
asymmetric catalysis is an important challenge. Enantiopure
allylic amines possessing a quaternary N-substituted stereo-
center are particularly attractive for the synthesis of quater-
nary amino acids,[4] which are important targets owing to their
ability to induce helical peptide structures[5] and owing to the
fact that peptides incorporating quaternary amino acid
residues possess enhanced stability toward proteases.[6]

Recently, we have developed a
planar-chiral ferrocenyl imidazoline
palladacycle catalyst 1-X (FIP-X),
which displays unprecedented levels
of activity for the highly enantioselec-
tive aza-Claisen rearrangement of E-
configured allylic PMP-trifluoroaceti-
midates (PMP=p-methoxyphenyl).[2h]

Compound 1-X is in fact about 50–100
times more active for the rearrange-
ment of this class of substrates than
the best previously reported catalysts.

The exceptionally high catalytic activity is attributed to the
pentaphenylcyclopentadienyl (CpF) ligand and can be
explained at least in part by the electron-withdrawing

nature of the five phenyl substituents, which enhance the
Lewis acidity of the Pd center in 1-X.

This excellent catalytic activity has prompted us to
investigate the formation of quaternary stereocenters by the
rearrangement of 3,3-disubstituted allylic trifluoroacetimi-
dates 4, which were prepared from the corresponding allylic
alcohols 2 [Eq. (1)].[7]

The isomerically almost pure 3,3-disubstituted allylic
alcohols 2 were formed by CuI-mediated 1,4-additions to
methyl- or ethyl-2-ynoates 6 and subsequent reduction with
DIBAL [Eq. (2)].

Functionalized derivatives were prepared starting from
geranyl acetate (7) by regioselective epoxidation and subse-
quent treatment with periodic acid, leading to the corre-
sponding aldehyde, which was reduced to alcohol 8
(Scheme 1).[8] The alcohol was then used to synthesize a
silylether, carbonate, and BOC-protected amine derivative
(2d–f). Alternatively, ester 2g (R=Me, R’= (CH2)2CO2Et)
was prepared by Johnson–Claisen rearrangement (see the
Supporting Information). The allylic alcohols were then
condensed with iminochloride 3 [Eq. (1)].

2.0 mol% of the catalyst precursor FIP-Cl (1-Cl, X=Cl),
activated in situ with 3.75 equivalents AgTFA (relative to 1-
Cl, TFA= trifluoroacetate),[2h] was generally sufficient to give
high conversion after 2.5 days at 50 8C using substrates in
which one of the substituents R or R’ is a methyl group. The
allylic trifluoroacetamides were formed with high to excellent
ee values and in good yield (Table 1, entries 1–10). As
expected, the rearrangement of 3,3-disubstituted substrates
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4 is significantly slower than for substrates with R=H, for
which only 0.05 mol% leads to full conversion after 1–3 days
at 40 8C in most cases.[2h] The lower turnover frequency is
attributed to the additional substituent at the C�C double
bond, which hampers the attack of the imidate nitrogen atom
on the olefin. Decreasing the precatalyst amount to 0.5 mol%
required a reaction time of 10 days, yet provided the
rearrangement product in good yield and with excellent
enantioselectivity (Table 1, entry 2).

Whereas Z-configured 3-monosubstituted imidates had
given significantly lower reaction rates than E-configured
substrates in previous experiments with 1-X, this difference
vanishes if both R and R’ are larger than H.[2h] For example,
both the E- and Z-configured substrates 4d and 4h bearing a
bulky (CH2)3OTIPSmoiety as substituent gave practically the
same yield and conversion. In both cases the product was

formed under identical conditions with very high ee values (96
and 98%, respectively; Table 1, entries 5 and 9), but with the
opposite configuration.[9] Whenever the smaller of the two
substituents R and R’ was larger than a methyl group,
4.0 mol% of 1-Cl was employed to obtain synthetically useful
yields. Excellent enantioselectivities were even obtained in
those cases in which R and R’ have a similar size (Table 1,
entries 12–14, for example). Gratifyingly, the rearrangement
is compatible with important functional groups such as olefin,
ester, carbonate, silylether, benzylether, or Boc-protected
amino moieties.

Acid-catalyzed elimination of PMP trifluoroacetamide 10
is a significant side reaction for the 3,3-disubstituted sub-
strates 4, since the additional electron-donating substituent
(Me in Scheme 2) leads to an additional stabilization of the

allylic cation 9.[10] However, by the use of proton sponge (PS,
1,8-bis(dimethylamino)naphthalene) as a Brønsted acid scav-
enger this competitive reaction pathway can be suppressed to
a large degree, thus allowing the preparation of allylic amides
5 in good yield.

Since the enantioselectivity of the rearrangement is
apparently largely independent of the steric differentiation
of the two residues R and R’ at the imidate 3-position, it
appeared that the enantioselectivity-determining step is the
enantioface-selective coordination of the olefin moiety to the
PdII center (Figure 1).[11] Assuming
that the olefin will coordinate (in
analogy to PPh3)

[2h] trans to the imida-
zoline N atom owing to the trans
effect,[12] the imidate N atom will
attack the olefin at the face remote
to the Pd atom. In the preferential
orientation of the olefin part parallel
to the ferrocene axis, the sterically
undemanding C1 methylene moiety
should point towards the bulky CpF

spectator ligand to minimize unfavor-
able steric interactions. Coordination
of the enantiotopic olefin face should
be less favorable, again owing to steric
crowding. Even substrates in which R and R’ have an identical
size should consequently provide high enantioselectivities.

To verify this hypothesis, the use of a geometrically pure
allylic imidate in which R and R’ have practically the same

Scheme 1. Synthesis of the isomerically pure 3,3-disubstituted allylic
alcohols.

Table 1: Highly enantioselective rearrangement of 3,3-disubstituted allylic
imidates 4.[a]

Entry 4 R’ R Cat.
[mol%]

Yield
[%][b]

ee [%][c]

1 a (CH2)2Ph Me 2 94[d] 99.6 (R)
2 a (CH2)2Ph Me 0.5 79[e,f ] 97 (R)
3 b nBu Me 2 63 93 (R)
4 c (CH2)2CH=CMe2 Me 2 74 98 (R)
5 d (CH2)3OSi(iPr)3 Me 2 73 96 (R)
6 e (CH2)3O(CO)OBn Me 2 84 98 (R)
7 f (CH2)3NBnBoc Me 2 64 93 (R)
8 g (CH2)2CO2Et Me 2 50 96 (R)
9 h Me (CH2)3OSi(iPr)3 2 74 98 (S)

10 i Me CH2OBn 2 84 99 (R)
11 j Et CH2OBn 4 68 91 (R)[g]

12 k nPr CH2OBn 4 63[h] >99.5 (R)
13 l nBu CH2OBn 4 61[h] 98 (R)
14 m (CH2)3OSi(iPr)3 CH2OBn 4 51[h] 97 (R)

[a] The reactions were performed on a 0.03–0.08-mmol scale (reaction time
2.5 days) unless otherwise noted. [b] Yield of the isolated product. [c] ee
value determined by chiral column HPLC (Daicel OD-H). [d] 0.3-mmol
scale. [e] Reaction time: 10 days. [f ] 1.0-mmol scale. [g] E/Z ratio of 4 j=
4:96. [h] Reaction time: 3.5 days.

Scheme 2. Elimination as side reaction.

Figure 1. Explanation
of the enantioselectiv-
ity by enantioface-
selective olefin coordi-
nation.
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size, namely CH3 and CD3 (Scheme 3), was investigated. Also
in this case the product is formed with an ee value of 96%,
thus confirming the mechanistic hypothesis.[13]

To showcase the utility of the rearrangement products,
allylic amide 5a was employed to synthesize Fmoc-protected
a,a-disubstituted a-amino acid 12 and b,b-disubstituted b-
amino acid 13 (Scheme 4) by oxidative cleavage of the vinyl

system and hydroboration, respectively. The absolute config-
uration of a-amino acid 12 was determined after removal of
the Fmoc protecting group by comparison of the specific
optical rotation with reported data[14] (see the Supporting
Information).[15]

In summary, we have developed a highly enantioselective
and functional-group-compatible catalytic method to form
allylic amines with quaternary N-substituted stereocenters.
We have shown that the enantioselectivity-determining step is
the enantioface-selective olefin coordination to the PdII

center, allowing high enantioselectivities also for 3,3-disub-
stituted substrates in which the two substituents at the 3-
position can even have an identical size.

Experimental Section
See the Supporting Information.
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