Journal of Organometallic Chemistry 547 (1997) 173-182 The reactions of hydrosilanes with the methoxycarbonyl complexes $Cp(L)(CO)MCO_2Me(M = Fe, Ru; L = CO, PPh_3)$ and $(L)(CO)_xMCO_2Me(M = Co, Mn; L = CO, PPh_3; x = 3, 4, with and without catalysis$ M. DiBiase Cavanaugh, Brian T. Gregg, R.J. Chiulli, Alan R. Cutler * Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180, USA Received 13 January 1997; revised 8 April 1997 #### Abstract The reactivity of selected organotransition metal methoxycarbonyl complexes towards hydrosilanes differs significantly from their acetyl analogs in that hydrosilation does not occur across the methoxycarbonyl ligand. Only hydrosilane/manganese carbonyl precatalyst systems that had proved to be more active towards the acetyl ligand on Cp(L)(CO)MC(O)CH₁ (M = Fe, Ru; L = CO, PPh₂, PPh₃) reacted with the methoxycarbonyl complexes Cp(CO)₂MCO₂CH₃ (1, M = Fe; 2, M = Ru). These reactic-s involving PhSiH₃/2-3% (PPh₃)(CO)₄MnC(O)CH₃ for 1 and 2, or PhMe₂SiH/2-3% (CO)₅MnCH₃ for 1 afforded their η^4 -cyclopentadiene compounds η^4 -C,H₆M(CO)₃ (M = Fe, Ru) plus methoxysilanes. Results with PhMe₃SiD/3% (CO)₂MnCH₃ support exo deuteride transfer to the Cp ligand; a mechanism is proposed. The low reactivity of methoxycarbonyl complexes under hydrosilation catalysis conditions also is consistent with the inactivity of PhSiH₃ or Ph₂SiH₂/Rh(PPh₃)₃Cl towards 1 or 2 and with the inertness of Cp(PPh₃)(CO)FeCO₂CH₃ and Cp⁻¹(CO)-FeCO₂CH₃, under all attempted hydrosilation conditions. This diminution of hydrosilane reactivity extends to cobalt and manganese carbonyl methoxycarbonyl complexes (L)(CO) $_x$ MCO $_2$ CH $_3$ (3, M = Mn, x = 4, L = CO; 4, M = Co, x = 3, L = PPh $_3$; 5, M = Co, x = 3, L = CO). Although their acetyl analogs (L)(CO) $_x$ MC(O)CH $_3$ are sensitive to hydrosilanes, both 3 and 4 are inert towards PhMe $_2$ SiH or Ph $_2$ SiH $_2$. Treatment of 5 with PhMe $_2$ SiH released methyl formate and left the silyl complex (CO) $_x$ CoSiMe $_2$ Ph, a result that resembles the hydrogenation chemistry of 5. © 1997 Elsevier Science S.A. ## 1. Introduction In recent studies, we have observed several reactions between hydrosilanes and organometallic acyl complexes (Scheme 1) [1]. In the first type of reaction, mono- or dihydrosilanes and obligatory catalysts, e.g. Rhf?Ph,}CH, transform the nonlabile iron acetyl complexes Cp(CO)(L)FeC(O)CH₃ [L - CO, PR₃] to Cp(CO)(L)FeCH(OSiR₃)CH₃ [1-4]. A number of these (a-siloxyethyl)iron compounds accordingly have been isolated. Two other types of hydrosilation reactions [5-8] have been documented for the labile acetyl complexes (CO)₃MnC(O)CH₃ [9,10] and (PR₃)(CO)₃CoC(O)CH₃ [11]. Both rapidly add hydrosilanes without benefit of added catalysts: the manganese acetyl affords its a-siloxyethyl derivatives, whereas the cobalt acetyl incorporates two equivalents of hydrosilanes and gives its cobalt silyl plus ethoxysilane. This latter reaction entails an intramolecular mechanism in which the second equivalent of silane adds to a coordinatively unsaturated intermediate L₃CoCH(OSiR₃)CH₃ and reductively eliminates CH₃CH₂OSiR₃. ^{*} Corresponding author. Tel.: +1-518-2768447, fax: +1-518-2764045. ¹ This mechanism also has been advanced for the hydrosilation of (CO)₂CoC(O)CHMe. [12], the Co₂(CO)₈-catalyzed siloxymethylation of aldehydes [13], and the hydrosilation/reduction of the acyl ligand on Cp(L)(CO)FeC(O)CH₂CH₂Ph [14]. The hydrosilation of (CO)₅MnC(O)CH₃ engenders an intermolecular or autocatalytic pathway [10]. These reaction mixtures afford transient quantities of the coordinatively unsaturated (CO)₄MnSiR₃, which serves as the active (albeit unstable) catalyst [15,16]. It binds the acetyl substrate and gives the key intermediate (CO)₅MnC(CH₃)(OSiR₃)Mn(CO)₄; H-SiR₃ addition and elimination of (CO)₅MnCH(OSiR₃)CH₃ regenerates (CO)₄MnSiR₃. Autocatalysis originates via (independently established) silane-induced degradation of the product. Furthermore, these manganese acyl-hydrosilane reaction mixtures are convenient sources of extremely active hydrosilation catalysts. Treatment of catalytic concentrations of (L)(CO)₄MnC(O)R [L - CO, PPh₃; R - CH₃, Ph] or (L)(CO)₄MnCH₃ with excess hydrosilate transforms these manganese complexes to active catalysts for the hydrosilation of Cp(CO)(L)FeC(O)R [17,18] as well as organic ketones [19] and even esters [20,21]. Scheme 1. Recently, these hydrosilation reaction mixtures using PhSiH₃ have been shown to further reduce the initial α -siloxyalkyl products. Treatment of organic esters with the same manganese acyl precatalysts and PhSiH₃ gave silyl acetals PhSiH₃₋[IOCH(R)OR']₁ (x=1,2) that subsequently afforded ethers RCH₂OR' as major products, Scheme 2 [20.21]. Similar hydrosilation-then-reduction reactions, especially those using Rh(PPh₃)₃Cl as the precatalyst, convert Cr(L)(CO)FeC(O)R [R = Me, Ph, 'Pr, 'Bu; L = CO, PPh₃, P(OMe)₃, and P(OPh)₃] to Cp(L)(CO)FeCH₂R (and Cp(L)(CO)FeCH=CH₂ byproducts where appropriate) [2,4]. In this study, we attempted to extend the Rh(PPh₃)₃Cl- and manganese carbonyl-catalyzed hydrosilation and subsequent reduction of acyl groups to a selection of known methoxycarbonyl complexes [22,23], Cp(CO)₂FeC(O)OCH₃ [FpCO₂CH₃] (1) [24,25], Cp(CO)(PPh₃)FeCO₂CH₃ [26], Cp(CO)₂RuCO₂CH₃ (2) [27], (CO)₃MnCO₂CH₃ (3) [28,29], (PPh₃)(CO)₃CoCO₂CH₃ (4), and (CO)₄CoCO₂CH₃ (5) [30-32]. A new methoxycarbonyl complex, Cp (CO)₂FeCO₂CH₃ [Fp CO₂CH₃], was characterized and subjected to our hydrosilation conditions. Our objective was to use these hydrosilane reactions to transform methoxycarbonyl complexes to silylacetal L₁MCH(OSiR₃)(OMe), methoxymethyl L₂MCH₂OMe [33], or fully reduced methyl L₂MCH₃ compounds [34]. Although alkoxycarbonyl complexes, in general, represent derivatives of ligated CO [22,23] and CO₂ [35-40], relatively few examples have been reported for further reducing an alkoxycarbonyl ligand [38,41,42]. ## 2. Experimental section Synthetic manipulations were performed in a nitrogen atmosphere using a condition of standard Schlenk line, glovebox, and vacuum line procedures [43]. Infrared spectra of benzene solutions were recorded on a Perkin-Elmer FT spectrophotometer, Model no. 1600, over the carbonyl ν (CO) frequency range, 2200–1600 cm⁻¹. NMR spectral data were obtained in C_6D_6 and were reported as δ values relative to residual C_6H_6 (¹H: 7.15 ppm) and C_6D_6 (¹³C: 128.00 ppm) using Varian Model XL-200 and Unity 500 spectrometers. Organic and inorganic reagents were obtained commercially and used as received; silanes and C₆D₆ were stored in a glovebox under nitrogen. Diethyl ether, hexane, and benzene were distilled from sodium benzophenone ketyl. Wilkinson's compound, Rh(PPh₃),Cl, was both purchased and prepared [44]; its purity (activity) was assayed by H NMR spectral monitoring of the catalyzed Ph₂SiH₂ hydrosilation of FpC(O)CH₃ [2]. Samples of Cp(CO)(PPh₃)FeCO₂CH₃ [26], Cp(CO)₂RuCO₂CH₃ (2) [27], (CO)₃MnCO₂CH₃ (3) [28,29], (PPh₃)(CO)₄CO₂CO₂CH₃ (4), (CO)₄COC(O)C(O)CC:1₃ [30–32], (CO)₃MnCH₃ [45–47], (PPh₃)(CO)₄MnC(O)CH₃ [48–50], FpK [51], and Cp*Fe(CO)₃*PF₆ [52,53] were prepared by literature procedures and judged pure by IR and H NMR spectroscopy. Authentic samples of the methoxysilanes CH₃OSiMe₂Ph, (CH₃O), SiH_{2-x}Ph₂, and (CH₃O)_xSiH_{3-x}Ph were generated by (CO)₃MnBr-catalyzed dehydrogenative silation of methanol [54]. ## 2.1. Preparation of Cp(CO), FeCO, CH, (1) The following procedure, a modification of that previously reported [24,25], provided $Cp(CO)_2FeCO_2CH_3$ (1) as a stable, crystalline material. A pale orange suspension of Fp^-K^+ (10.0 g. 46.3 mmol) in 150 mL dry diethylether was cooled to $-78^{\circ}C$ and treated with inethylchloroformate (3.2 mL, 46.9 mmol). The methylchloroformate was added dropwise by syringe, and after 0.5 h, the mixture was warmed slowly to room temperature (3 h). IR spectra of the resulting dark red-brown solution were consistent with the formation of $FpCO_2CH_3$ (1) [24,25], v(CO) = 2038 (vs), 1988 (vs) and 1657 (s) cm⁻¹, and Fp_3 (ca. 20%). The diethylether was evaporated (10⁻¹ mm); the resulting red-brown p-wder was extracted with 3×4 mL methylene chloride, which was filtered through a 2.5 × 2 cm pad of Celite with additional solvent. The combined filtrates were evaporated, and the red brown powder was dissolved in the minimum volume of hexane (40 mL). After cooling for 3 h at -78° C, the hexane solution deposited light yellow-brown crystals. The supermatant hexane was removed via cannula, and the crystals were washed with 2×10 mL of cold hexane. After vacuum drying, this first crop afforded 5.21 g of spectroscopically pure 1: ¹H NMR (C₄D₆) $\delta = 5.12$ (Cp) and 3.25 (CH₃); ¹³C NMR (C₆D₆) $\delta = 213.3$ (CO), 201.2 (C=O), 88.1 (Cp) and 58.1 (CH₃). The combined hexane supermatant and washings were combined, and the volume was reduced by one-half before cooling to -78° C (4h). This afforded slightly darker brown-yellow crystals (presumably due to <5% Fp₂), for a combined yield of 1 of 7.36 g (67%). ## 2.2. Preparation of Cp *(CO), FeCO, CH, To a white suspension of Na $_2$ CO $_3$ (126 mg, 1.19 mmol) in methanol (4 mL) was added a pale yellow suspension of Cp <code>^Fe(CO)_3^*PF_6^- (100 mg, 0.238 mmol) in 4 mL of methanol. After stirring for 15 min, the suspension was filtered through a 1 g bed of Celite. The pale yellow filtrate was combined with a 4 mL methanol washing of the Celite and evaporated. Pentane extracts (3 × 3 mL) of the residue were filtered through Celite, reduced in vacuo to 5 mL, and cooled at -78° C. The yellow solid that precipitated, was collected, washed with cold pentane (2 × 1 mL, -78° C), and dried in vacuo. The resulting 55 mg of a fluffy yellow solid was identified as Cp $^{\circ}$ (CO) $_2$ FeCO $_2$ CH $_3$, yield 75%, IR (pentane) 2018, 1968 and 1649 cm $^{-1}$; 1 H NMR (C $_6$ D $_6$) δ = 2.16.4 (C \equiv O), 204.4 (C=O), 97.0 (C $_3$ CH $_3$), 51.7 (CH $_3$) and 9.30 (C $_3$ CH $_3$). Analytically calculated for C $_{14}$ H $_{18}$ O $_4$ Fe: C, 54.93; H, 5.93. Observed: C, 54.46; H, 5.82.</code> ## 2.3. Hydrosilation of Cp(CO), FeCO, CH; (1) with PhMe, SiH: (CO), MnCH; catalysis To a 5-mL vial in the glove box was added Cp(CO)₂FeCO₂CH₃ (1) (500 mg, 2.12 nimol), (CO)₅MnCH₃ (9 mg, 0.044 mmol), and C₆D₆ (860 mg). This red-brown solution was treated with PhMe₂SiH (299 mg, 2.20 mmol) and transferred to a 5-mm NMR tube. ¹H and ¹³C NMR spectral monitoring of the reaction revealed that 2 was: replaced in 3 h by a 1:1 mixture of η^4 -(C₃H₆)Fe(CO₃ (6) [55.56] and CH₃OSiMe₂Ph [¹H NMR δ = 3.27 (SiOCH₃) and 0.29 (SiMe); ¹³C NMR δ = 50.3 (SiOCH₃) and -2.1 (SiMe)] [57]. Neither gas evolution nor color change was noted; only trace concentrations of [Cp(CO)₂Fe]₂ and PhMe₂SiOSiMe₂Ph [¹H NMR, δ = 0.31, SiMe] were observed. The reaction mixture was distilled trap-to-trap (20 mm/25°C), affording a golden yellow C_6D_6 solution as the distillate. H and ^{13}C NMR spectra of this solution established the presence of 6 along with 2–3% CH₃OSiMe₂Ph. A stream of N₂ was used to remove the C_6D_6 until a constant weight was obtained, 412 mg (92% yield of 6). Alternatively, the reaction was worked up by column chromatography on a 1 × 10 cm column of activity 3 alumina (neutral) with pentane. A yellow band was eluted cleanly with pentane; the solvent was evaporated with N₂ leaving a yellow oil that contained 6 (90% yield) and 5–7% CH₃OSiMe₂Ph. The IR and 1 H NMR spectra of 6 are in excellent agreement with the data reported by Whitesides and Shelly [56]. $η^4$ -(C₅H₆)Fe(CO)₃ (6) İR (CCl₄) ν(CH_{cxo}) = 2786 cm⁻¹, ν(CO) = 2045 and 1976 (br) cm⁻¹; (pentane) ν(CO) = 2048, 1981 and 1974 cm⁻¹, ¹H NMR (C₆D₆) δ(500 MHz) = 4.97 (t, I_{AM} = 2.2 Hz, H_A), 2.42 (m, H_M), 2.36 (dt, I_{endo-M} = 1.9, $I_{endo-exo}$ = 12.0 Hz, I_{endo} , 1.91 (dt, I_{exo-M} = 1.45, $I_{exo-endo}$ = 12.0 Hz, I_{exo} , triplet appearance of H_{endo} and I_{exo} absorptions was enhanced after the long-range coupling involving I_A was removed by spin decoupling at I_A . This decoupling left the I_M absorption as an apparent triplet with 1.8 and 1.6 Hz separations. Results of homonuclear 2D I_A -resolved NMR experiments confirmed the presence of the I_A - I_{exo} spin coupling, I_{exo-M} = 0.7 Hz, but insufficient resolution precluded other assignments. ¹³C NMR (C₆D₆) δ = 212.7 (CO), 85.5 (C_A), 54.3 (CH_M) and 45.2 (CH₂). assignments are consistent with the results of both DEPT and H,C-COSY NMR experiments [58,59]. # 2.4. PhMe₂SiD hydrosilation of Cp(CO)₂FeCO₂CH₃ (1): (CO)₅MnCH₃ catalysis The hydrosilation of 1 was repeated with 1.1 equivalents of PhMe₂SiD (302 mg, 2.20 mmol) and 2% (CO)₅MnCH₃ as the catalyst. Starting 1 was consumed within 3 h (¹H NMR spectral monitoring), and a yellow oil was isolated by trap-to trap distillation (20 mm/25°C). The oil was identified as spectroscopically pure exo-D (η^4 -C₅H₅D)Fc(CO)₃ (6-D), [56] 93% yield. For 6-D, IR (CCl₄) ν (CO) = 2044 and 1976 (br) cm⁻¹; (pentane) ν (CO) = 2048, 1981 and 1974 cm⁻¹. ¹H NMR (C₆D₆) δ (500 MHz) = 4.99 (t, J_{AM} = 2.2 Hz, H_A), 2.42 (m, H_M) and 2.34 (br s, H_{cudo}), the H_M multiplet, an apparent dt, appeared as a doublet (J_{endo-M} = 2.0 Hz) after spin decoupling at H_A . ¹³C NMR (C₆D₆) δ = 212.6 (CO), 85.5 (C_A), 54.2 (CH_M) and 44.85 (1:1:1 t, J_{CD} = 19.1 Hz, CDH). #### 2.5. PhMe_SiH and Ph_SiH_ hydrosilation of 1: NMR spectral observations C_6D_6 solutions (600 mg) of Cp(CO)₂FeCO₂CH₃ (1) (55 mg, 0.23 mmol), PhMe₂SiH (35 mg, 0.26 mmol), and either (CO)₅MnCH₃ (2 mg, 9.5 × 10^{-3} mmol), (PPh₃/CO)₄MnC(O)CH₃ (4 mg, 9.5 × 10^{-3} mmol), or Rh(PPh₃)₃Cl (6 mg, 6.5 × 10^{-3} mmol) were monitored by ¹H NMR spectroscopy. No reactions were observed after 5–6 h. Similar results were noted for reactions between 200 mg of 1 (0.85 mmol) and PhMe₂SiH (127 mg, 0.93 mmol) with 3% of (PPh₃)(CO)₄MnC(O)CH₃ (12 mg, 0.025 mmol) as the precatalyst. Treatment of C_6D_6 solutions (600 mg) containing 1 (50 mg, 0.21 mmol) and (PPh₃)(CO)₄MnC(O)CH₃ (3 mg, 6.0 × 10^{-3} mmol) with Ph₂SiH₂ (43 mg, 0.23 mmol) generated 6 (90% yield) over 3 h, whereas Rh(PPh₃)₃Cl (6 mg, 6.5 × 10^{-3} mmol) under comparable reaction conditions was inactive. ## 2.6. Phenylsilane hydrosilation of Cp(CO)₂ FeCO₂CH₃ (1) A red-brown C_6D_6 solution (600 mg) containing $Cp(CO)_2FeCO_2CH_3$ (1) (50 mg, 0.21 mmol), $(PPh_3)(CO)_4MnCO)CH_3$ (3 mg, 0.007 mmol), and the $Me_3SiOSiMe_3$ internal standard (13 mg, 0.080 mmol) was treated with PhSiH₃ (25 mg, 0.23 mmol). After 25 min 1 NMR spectral monitoring of the reaction was consistent with a 92% yield of η^4 -($C_5H_6)Fe(CO)_3$ (6) and a 2:1 to 3:1 mixture of $Ph(CH_3O)SiH_2$ [δ = 5.13 (SiH) and 3.27 (SiOCH₃)] and $Ph(CH_3O)_2SiH$ [δ = 5.11 (SiH) and 3.40 (SiOCH₃)], along with the requisite concentration of $PhSiH_3$. Only trace concentrations of $[Cp(CO)_2Fe]_2$ [1 H NMR, δ = 0.31] were observed. ## 2.7. Phenylsilane hydrosilation of Cp(CO)2 RuCO2CH3 (2) To a solution of Cp(CO)₂RuCO₂CH₃ (2) (50 mg, 0.18 mmol), (PPh₃)(CO)₄MnC(O)CH₃ (3 mg, 0.007 mmol), and Me₃SiOSiMe₃ (11 mg, 0.070 mmol) in C₀D₆ (600 mg) was added PhSiH₃ (27 mg, 0.20 mmol). The yellow-brown solution was monitored by ¹H NMR spectroscopy; within 35 min 2 was consumed. Although a large number of unassigned resonances were evident, $(\eta^4 - C_5 H_6)R\kappa(CO)_3$ (7) [60] was identified as the major component: ¹H NMR (C_6D_6) $\delta = 5.01$ (m, 2H, β -CH), 2.63 (m, 2H, α -CH) and 2.61 (m, 2H, CH₂); ¹³C NMR $\delta = 199.5$ (CO), 85.8 (β -CH), 48.4 (α -CH) and 48.0 (CH₂); IR (pentane) 2060, 1996 and 1985 cm⁻¹. Other intense IR ν (CO) absorptions appeared at 2024 and 1965 cm⁻¹; NMR spectral data also were consistent with the absence of either [Cp(CO)₂Ru]₂ or Cp(CO)₂RuH [61]. A 53% yield of 7 was determined by integration of the ¹H NMR δ = 2.63 and 2.61 multiplets vs. the internal standard. Attempts to purify 7, an unstable yellow oil, by chromatography on activity 3, neutral alumina-pentane inevitably produced a yellow eluate that contained 7 in addition to organic impurities. 2.8. Attempted hydrosilation of Cp(CO)(PPh₃)FeCO₂CH₃, Cp*(CO)₂FeCO₂CH₃, (CO)₅MnC(O)OCH₃ (3), and (PPh₃)(CO)₅CoC(O)OCH₃ (4) C₀D₀ solutions (500 mg) containing (CO)₅MnC(O)OCH₃ (3) (27 mg, 0.10 mmol) or (PPh₃)(CO)₃CoC(O)OCH₃ (4) (48 mg, 0.18 mmol) were treated with PhMe₂SiH (27 mg, 0.20 mmol) or Ph₃SiH₃ (36 mg, 0.20 mmol) and transferred to NMR tubes that were securely stoppered with rubber septa. IR and ^TH NMR spectral monitoring of these four mixtures recorded that no reactions occurred over 6 h. Similar results were noted for the reactions between (a) Cp(CO)₄Ph₃FeCO₂CH₃ (82 mg, 0.20 mmol) and PhSiH₃ (25 mg, 0.23 mmol), with 3.5% of (PPh₃)(CO)₄MnC(O)CH₃ (3 mg, 0.072 mmol) as the precatalysts, and (b) Cp⁺(CO)₂FeCO₂CH₃ (184 mg, 0.60 mmol) or (PPh₃)CO)₄MnC(O)CH₃ (12 mg, 0.025 mmol) as the precatalysts. 2.9. Dimethylphenylsilane hydrosilation of (CO), CoC(O)OCH, (5) Starting (CO)₄CoC(O)CCH₃ (5) was generated by the decarbonylation of the oxalyl complex (CO)₄CoC(O)C(O)CCH₃ [30–32] as it was distilled trap-to-trap at room temperature. The yellow oil (600 mg 5, 44% yield) then was dissolved in C_6D_6 and diluted as needed. Its concentration say quantified by 1 H NMR spectroscopy of samples containing Cp₂Fe internal standards. A yellow solution containing 30 mg of 5 (0.13 mmol) in 500 mg of C_6D_6 was treated with HSiMe₉Ph (18 mg, 0.13 mmol) and transferred to an NMR tube. Within 15 min 5 was consumed in the brown solution, and the resulting 1:1 mixture of (CO)₄CoSiMe₂Ph [62] and HC(O)OCH₃ was identified by 1 H and 13 C NMR spectroscopy. No other products were evident by IR or 1 H and 13 C NMR spectroscopy. No other products were evident by IR or 1 H and 13 C NMR spectroscopy. (CO)₄CoSiMe₂Ph: IR $\nu(CO)(C_6D_6) = 2090$, 2070 (w), 2044 (m, sh), 2027 and 1992 (s, br) cm⁻¹; 1 H NMR (C_6D_6) $\delta = 0.71$ (s, SiMe); 13 C NMR $\delta = 199.5$ (CO) and 5.86 (SiMe). The yield was 91% (1 H NMR spectral integration vs. the internal standard). #### 3. Results and discussion 3.1. Manganese carbonyl catalyzed reactions of PhSiH₃. Ph₂SiH₂. or PhMe₂SiH with methoxycarbonyl compounds Cp(L)(CO)MCO, Me (M = Fe, Ru; L = CO, PPh₃) Although the methoxycarbonyl complex $Cp(CO)_2$ FeC(O)OCH $_3$ (1) [24,25] in C_6D_6 solutions is inert towards PhSiH $_3$, addition of 2-3% $(PPh_3)(CO)_3$ MnC(O)CH $_3$ rapidly reduced 1 to the known [55,56] η^4 -cyclopentadiene complex (η^4 - C_3 H $_6$)Fe(CO) $_3$ (6) Eq. (1)). This was formed with over 90% yields, and the silane moiety was accounted for as mixtures of unreacted PhSiH $_3$ and the methoxysilanes $(CH_3O)PhSiH_2$ and $(CH_3O)_2PhSiH$. Similar reactions using Ph_2SiH_2 in place of $PhSiH_3$ produced 1:1 mixtures of 6 and $Ph_2SiH(OCH_3)$ (90% yields), although longer reaction times (3 h vs. 20 min) were required. With either hydrosilane, traces of Ph_2 also were evident, but NMR spectral resonances that could be attributed to $PpCH_3$ [63,64], $PpCH_2OMe$ [65,66], or silylacetal analogs, $PpCH_3$ (OSiR $_3$)(OCH $_3$), of $PpCH(OCH_3$), $PpCH_3$ [63,67–69] were not detected. The reactivity order of the hydrosilanes, RSiH₃ \gg R₂SiH₂ \gg R₃SiH, has been established for the Rh(PPh₃)₃Cl-catalyzed hydrosilation of ketones [5]. The monohydrosilane PhMe₂SiH proved to be a less powerful reductant 2 towards 1 with manganese carbonyl precatalysts. Thus, $(PPh_3)(CO)_4MnC(O)CH_3$ (2-3%) was ineffective as a precatalyst, irrespective of using dilute (0.23 mmol 1/475 mg C_6D_6) or more concentrated (0.85 mmol 1/450 mg C_6D_6) solutions of the substrate and 1.1 equivalents of PhMe₂SiH. By switching to $(CO)_5MnCH_3$ as the precatalyst (2-3%), however, we quantitatively reduced 1 to 6 (>90%) over 3 h, provided that more concentrated reaction mixtures (0.85-2.12 mmol 1/450-600 mg C_6D_6) were used. Further studies were carried out on the $(CO)_5$ MnCH₃-catalyzed PhMe₂SiH and PhMe₂SiD reduction of 1. The significant results are that (1) CH₃OSiMe₂Ph, which is produced in a 1:1 ratio with 6 (or 6-D), accounts for the silicon balance (Eq. (2)), and (2) the PhMe₂SiD-derived deuterium adds exo to the η^5 -Cp ring to yield the η^4 -cyclopentadiene ligand. Our NMR spectral assignments for 6-D are in agreement with those reported by Whitesides and Shelly [56] and confirm the exo configuration of the deuterium [58,59]. (In the Whitesides study, they substantiated the assigned structure by noting the stereoselective abstraction of (exo) deuteride with the trityl carbocation [56].) Our attempts to extend the catalytic hydrosilane reduction of 1 by manganese carbonyl complexes to the related in methoxycarbonyl complexes Cp(CO)(PPh₃)FeCO₂CH₃ [27] and Cp*(CO)₂FeC(O)OCH₃ [5-8] and to Cp(CO)₂RuC(O)OCH₃ (2) [28.29] were only partially successful. Both iron methoxycarbonyls were unreactive towards PhSiH₃ reduction even using (PPh₃)(CO)₄MnC(O)CH₃ as the precatalyst. Although the ruthenium analog 2 proved to be inert to PhMe₂SiH with either (CO)₄MnCH₃ or (PPh₃)(CO)₄MnC(O)CH₃ precatalysts. PhSiH₃ reduction of 2 using 2-3% (PPh₃)(CO)₄MnC(O)CH₃ as the precatalyst afforded moderate yields of the known (η^4 -C₃H₆)Ru(CO)₄ (7) (Eq. (1)) [60]. The catalytic PhSiH₃ reduction of 2 was quite messy, however. We determined 50% yields of 7 by 1 H NMR spectral integration (the β -H and CH₂ multiplets at δ = 2.6 were free of interfering absorptions), but we could not account for the remaining CpRu moiety. CpRu compounds conspicuously absent included Cp(CO)₂RuH, Cp(CO)₂RuCH₂OMe [70,71], and [Cp(CO)₂Ru]₂ [61]; also missing were IR and NMR spectral absorptions that could be consistent with the presence of ruthenium hydride, formyl, or siloxymethyl compounds [61,72,73]. The surprising outcome of this study was that the methoxycarbonyl ligand of $Cp(L)(CO)MCO_2Me$ (1, M = Fe, L = CO; L = PPh₃; 2, M = Ru, L = CO) and $Cp^*(CO)_2FeC(O)OCH_3$ resisted hydrosilation. Our catalysis conditions – the choice of manganese carbonyl precatalyst, hydrosilane, and substrate concentration in C_6D_6 – had been effective for the hydrosilation of the iron and ruthenium acetyl complexes $Cp(L)(CO)MC(O)CH_3$ [4,17,18] (Scheme 1) and for the hydrosilation-then-reduction of organic esters (Scheme 2) [20,21]. For example, we previously established that (CO)₃MnCH₃ is an efficient precatalyst with PhMe₂SiH for the hydrosilation of C_6D_6 , whereas C_6D_6 (PPh₃)(CO)₄MnC(O)CH₃ is preferred for C_6D_6 (17,18] and C_6D_6 (18) and C_6D_6 (17,18) and C_6D_6 (18) and C_6D_6 (17,18) and C_6D_6 (18) (Even the choice of Wilkinson's compound, Rh(PPh₃)₃Cl, in this work followed from its use as the optimal catalyst for the PhSiH₃ or Ph₃SiH₂ hydrosilation-then-reduction of the iron acyl complexes Cp(L/CO)FeC(O)R to Cp(L/CO)FeCH₂R (Scheme 2) [2-4]. It thus was quite surprising when under comparable reaction conditions 1 remained inert towards Rh(PPh₃)₄Cl in the presence of PhSiH₁, Ph₃SiH₂, or PhMe₂SiH. At the inception of this study, we assumed that manganese carbonyl-catalyzed hydrosilane chemistry of FpCCOOCH₃ (1) might resemble that of organic esters (Scheme 2) [20,21] and yield silyl acetal complexes, FpCH(OSiR₃)(OCH₃), or perhaps the further reduced FpCH₂OCH₃ [65,66] or FpCH₃ [63,64]. Organotransition metal acetals have been reported: Casey et al. [67], Theys and Hossain [68], and Cutler [42]d independently synthesized FpCH(OCH₃)₂. This acetal is noteworthy for its BH₃ reduction to FpCH₂OCH₃ [42]d and for its room temperature stability, which contrasts the extreme instability of its formyl derivative, FpC(O)H [35–40,74]. The ester hydrosilation chemistry entails two reactions (Scheme 3) [20,21]: (a) (PPh₃(CO)₄MnC(O)CH₃-catalyzed hydrosilation of RC(O)OR to its silylacetal 8, and (b) subsequent reduction of 8 to its ether, RCH₂OR (9). Both steps apparently engender the same coordinatively unsaturated (Li,CO)₃MnSiR₃ as the active catalyst [15,16]; its role in the ester hydrosilation step resembles the catalytic hydrosilation of ketones [19] or FpC(O)CH₃ [17,18]. During catalytic PhSiH₃ ester hydrosilation chemistry, the silyl acetals 8 were detected only as intermediates with PhSiH₃, although analogous reactions using the less reactive Ph₂SiH₂ and PhMe₂SiH afforded several isolated examples of 8. These independently reduced to their ethers 9 in the presence of PhSiH₄, and fresh manganese precatalyst [20,21]. In Scheme 4, we outline a plausible pathway for the manganese carbonyl hydrosilane reduction of FpC(O)OMe(1) to $(\eta^2 \cdot C_3H_6)Fe(CO)_3$ (6). The proposed active catalyst, $(L)(CO)_3MnSiR_3$, derives from the manganese methyl and acetyl precatalysts via documented reactions and provides the bis(silyl)manganese hydride intermediates $(L)(CO)_3MnH(SiR_3)_2$ [75–78] as the hydride donor. Exo addition of hydride from this intermediate to the Cp ligand [58,59] concurrent with releasing the methoxysilane then yields 6. Both steps are precedented. The bimolecular addition of reactants to the exo or top face of the Cp ligand has been thoroughly documented [58,59], and we recently reported the manganese carbonyl-catalyzed PhSiH₃ reduction of FpC(O)CH₃ to FpCH₃CH₃ [4]. For this latter reaction, however, Rh(PPh₃)₂Cl serves as a much more effective catalyst; a variety of iron acyl complexes Cp(L)(CO)FeC(O)R' accordingly were reduced via \(\alpha\)-siloxyalkyl intermediates Cp(L)(CO)FeC(H₂R'. We proposed that in these latter reactions (PPh₃)₂(Cl)RhII(SiR₃)₂ transfers hydride to Cp(L)(CO)FeC(H(OSiR₃)R' as the requisite disiloxane byproduct forms. 3.2. Reactions of PhSiH₃ or PhMe₂SiH with labile manganese and cobalt methoxycarbonyl complexes (L)(CO), MCO₂Me (L = CO, PPh₃) The labile methoxycarbonyl complexes (CO)₅MnC(O)CCH₃ (3), (PPh₃)(CO)₃CoC(O)CCH₃ (4), and (CO)₄CoC(O)CCH₃ (5) were selected for this study because their acetyl and related acyl analogs readily incorporate hydrosilanes without adding a catalyst [1]. Thus a wide variety of hydrosilanes efficiently transform (CO)₄MnC(O)CH₃ [9,10] and (PPh₃)(CO)₃CoC(O)CH₃ [11] to their respective products at room temperature (Scheme 1). Analogous reactions between (CO)₄CoC(O)CH(CH₃)₂ and Er₃SiH were reported by Kovács et al. [12] to give (CO)₄CoSiEr₃ and several organic products that are consistent with the subsequent degradation of (CO)₄(H(S)Er₄)₂CoCH(OSIEr₃CH(CH₃)₂. In contradistinction, both 3 and 4 proved to be inert towards PhMe₂SiH or Ph₂SiH₂ for at least 5 h at room temperature. We did not detect even trace concentrations of the requisite metal silyl complexes or organic byproducts HCO₂CH₃, CH₂(OCH₃(CSiR₃), or CH₃OSiR₃ that could derive from hydrosilane cleavage of the starting methoxycarbonyl compound or its silyl acetal derivative, L₂MCH(OCH₃(OSiR₃) [12–14]. It is worth noting that we have recently established that (PPh₃)(CO)₃MnC(O)CH₄ catalyzes the hydrosilation-then-reduction of HCO₂CH₃ to ³ Examples of (hydrido)(silyl)(alkyl)metal complexes have been reported or implicated as intermediates in hydrosilation catalysis [5-8]. CH₂(OCH₃)(OSiR₃) and then CH₃OSiR₃ [21]. Even in the presence of 4% (PPh₃)(CO)₄MnC(O)CH₃ or Rh(PPh₃)₃Cl precatalyst, however, 4 did not react with Ph₂SiH₂. The (tetracarbonyl)cobalt moiety proved to be reactive towards PhMe₂SiH. One equivalent of PhMe₂SiH rapidly cleaved (CO₄CoC(O)OCH₃ (5) and quantitatively yielded the known silyl complex (CO₄CoSiMe₂Ph [62] and methyl formate (Eq. (3)). IR and ¹H, ¹³C NMR spectral data for (CO)₄CoSiMe₂Ph matches that for samples that were independently prepared from the reaction of two equivalents of PhMe₂SiH with Co₂(CO)₈ [11,79–81]. The release of methyl formate from 5 previously had been observed for its uncatalyzed hydrogenation, a reaction for which 5 is more reactive than 4 [31]. This PhMe₂SiH cleavage of the cobalt-acyl (Eq. (3)) is the first example that we have observed for a hydrosilane cleaving a transition organometallic acyl complex to its organic acyl compound (cf. Scheme 1). Although Wegman [82] had reported that triethylsilane cleaves acetaldehyde from (CO)₃MnC(O)CH₃ and (PPh₃)(CO)₃CoC(O)CH₃ under somewhat different reaction conditions, this work was not reproducible in our hands. This discrepancy with the results of our ongoing studies has been addressed in Refs. [10,11]. ### 4. Conclusions The reactivity of selected organotransition metal methoxycarbonyl complexes towards hydrosilanes differs significantly from their acetyl analogs in that we found no examples of hydrosilation of the methoxycarbonyl ligand. Although the iron and ruthenium acetyl compounds $Cp(L)(CO)MC(O)CH_3$ (L = CO, PPh_3) readily hydrosilate across the acetyl ligand (Scheme 1) with a variety of hydrosilane/Rh(PPh_3)₃Cl or manganese carbonyl precatalyst systems, the corresponding methoxycarbonyls $Cp(L)(CO)MC(O)CCH_3$ were much less reactive. Only the more active hydrosilane/manganese carbonyl precatalyst systems even reacted with their methoxycarbonyl analogs $Cp(CO)_2MCO_2CH_3$ (1, M = Fe; 2, M = Ru). These reactions involving $PhSiH_3/3\%$ ($PPh_3/COl_4MnC(O)CH_3$ for 1 and 2 or $PhMe_2SiH/2-3\%$ (COl_5MnCH_3 for 1 afforded their η^4 -cyclopentadiene compounds ($\eta^4-Cl_5H_6$) $M(COl_3$ (6, M = Fe; 7, M = Ru). As further examples of the low reactivity of methoxycarbonyl complexes under hydrosilation catalysis conditions, $PhSiH_3$ or $Ph_2SiH_2/Rh(PPh_3)_3Cl$ were ineffective towards 1 or 2, and $Cp(PPh_3)(CO)FeCO_2CH_3$ and Cp^2 ($COl_3MnCOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_3MicOl_$ This diminution of hydrosilane reactivity extends to cobalt and manganese carbonyl methoxycarbonyl complexes (L)(CO), MCO, CH₃ (3, M = Mn, x = 4, L = CO; 4, M = Co, x = 3, L = PPh₅; 5, M = Co, x = 3, L = CO). Although their acetyl analogs (L)(CO), MC(O)CH₃ are sensitive to hydrosilanes, both 3 and 4 are inert towards PhMe₂SiH or Ph₂SiH₂. Treatment of 5 with PhMe₂SiH released methyl formate and left the silyl complex (CO), CoSiMe, Ph, a result that resembles the hydrogenation chemistry of 5. ## Acknowledgements Support from the National Science Foundation, Grant CHE-8305484 is gratefully acknowledged. #### References - [1] P.K. Hanna, B T. Gregg, D.L. Tarazano, J.R. Pinkes, A.R. Cutler, in: W.R. Moser, D.W. Slocum (Eds.), Homogeneous Transition Metal Catalyzed Reactions; Advances in Chemistry Series No. 230, American Chemical Society, Washington, DC, 1992, p. 491. - [2] E.J. Crawford, P.K. Hanna, A.R. Cutler, J. Am. Chem. Soc. 111 (1989) 6891. - [3] M. Akita, O. Mitani, Y. Moro-Oka, J. Chem. Soc., Chem. Commun. (1989) 527. - [4] Z. Mao, B.T. Gregg, A.R. Cutler, manuscript submitted. - [5] I. Ojima, in: S. Patai, Z. Rappoport (Eds.). The Chemistry of Organic Silicon Compounds, Wiley, New York, 1989, Part 2, Chapt. 25. - [6] T.D. Tilley, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of Organic Silicon Compounds, Wiley, New York, 1989, Part 2, Chapt. 24. - [7] T.D. Tilley, in: S. Patai, Z. Rappoport (Eds.), The Silicon-Heteroatom Bond, Wiley, New York, 1992, Chapt. 10. - [8] B. Marciniec, J. Guliñski, J. Organomet, Chem. 446 (1993) 15. - [9] B.T. Gregg, P.K. Hanna, E.J. Crawford, A.R. Cutler, J. Am. Chem. Soc. 113 (1991) 384. - [10] B.T. Gregg, A.R. Cutler, J. Am. Chem. Soc. 118 (1996) 10069. - [11] B.T. Gregg, A.R. Cutler, Organometallics 11 (1992) 4276. - [12] I. Kovács, A. Sisak, F. Ungváry, L. Markó, Organometallics 7 (1988) 1025. - [13] S. Murai, Y. Seki, J. Mol. Cat. 41 (1987) 197. - [14] M. Akita, T. Oku, M. Tanaka, Y. Moro-oka, Organometallics 10 (1991) 3080. - [15] B.T. Gregg, A.R. Cutler, Organometallics 12 (1993) 2006. - [16] Manganese alkyl and halide complexes (L)(CO), MnX [X = CH₁, Ph, CH(OSiR₁)CH₂, Br, L = CO, PPh₁, PEt₂] also serve as effective precatalysts for the hydrosilation of a variety of organic and organometallic acyl compounds. Under comparable reaction conditions, neither (CO), MnSik (R, Si = Me, Ph, SiHPh,) nor Mn (CO), are effective precatalysts, B.T. Greeg and A.R. Cutler, manuscript in preparation. - [17] P.K. Hanna, B.T. Gregg, A.R. Cutler, Organometallics 10 (1991) 31. - [18] J.R. Pinkes, Z. Mao, A.R. Cutler, manuscript in preparation. - [19] M. DiBiase Cavanaugh, B.T. Gregg, A.R. Cutler, Organometallics 15 (1996) 2764. - [20] Z. Mao, B.T. Gregg, A.R. Cutler, J. Am. Chem. Soc. 117 (1995) 10139. - [21] Z. Mao and A.R. Cutler, Hydrosilation-then-reduction of formate esters and silyl formates, manuscript in preparation. - [22] R.J. Angelici, Acc. Chem. Res. 5 (1972) 335. - [23] P.C. Ford, A. Rokicki, Adv. Organomet, Chem. 28 (1988) 139. - [24] R.B. King, M. Bisnette, A. Fronzaglia, J. Organomet. Chem. 5 (1966) 341. - [25] L. Busetto, R.J. Angelici, Inorg. Chim. Acta 2 (1968) 391. - [26] H. Brunner, E. Schmidt, J. Organomet. Chem. 50 (1973) 219. - [27] A.E. Kruse, R.J. Angelici, J. Organomet. Chem. 24 (1970) 231. - [28] T. Kruck, M. Noack, Chem. Ber. 97 (1964) 1693. - [29] I. Kovács, C.D. Hoff, F. Ungvárv, L. Markó, Organometallics 4 (1985) 1347. - [30] D. Milstein, J.L. Huckaby, J. Am. Chem. Soc. 4 (1985) 1523. - [31] F. Ungváry, L. Markó, Organometallics 2 (1983) 1608. - [32] M. Tasi, G. Pálvi, Organometallics 4 (1985) 1523. - [33] D. Steinform, Angew. Chem., Int. Ed. Engl. 31 (1992) 401. [34] A.R. Cutler, P.K. Hanna, J.C. Vites, Chem. Rev. 88 (1988) 1363. - [35] K.K. Pandey, Coord. Chem. Rev. 140 (1995) 37. - [36] P.G. Jessop, T. Ikariya, R. Noyori, Chem. Rev. 95 (1995) 259. - [37] r-Cl(dmpe), irCO,; R.L. Harlow, J.B. Kinney, T. Herskovitz, J. Chem. Soc., Chem. Commun. (1980) 813. - [38] (FpCO₂)₂Mg: T. Forschner, K. Menard, A. Cutler, J. Chem. Soc., Chem. Commun. (1984) 121. - [39] r-(CO)(bpy), RuCO₃: H. Ishida, K. Tanaka, T. Tanaka, Organometallics 6 (1987) 181. - [40] Cp(PPh,)(CO)FeCO; D.H. Gibson, T.-S. Ong, M. Ye, Organometallics 10 (1991) 1811. [41] D.H. Gibson, J.O. Franco, M.J. Harris, M.T. Ong, Organometallics 11 (1992) 1993. - [42] D.L. Thorn, Organometallics 1 (1982) 197. - [43] D.F. Shriver, M.A. Drezdon, The Manipulation of Air-Sensitive Compounds, 2nd ed., Wiley, NY, 1986. - [44] J.A. Osborn, G. Wilkinson, Inorg. Synth. 28 (1990) 77. - [45] R.D. Closson, J. Kozikowski, T.H. Coffield, J. Org. Chem. 22 (1957) 598. - [46] R.B. King, Organometallic Syntheses, Part I, Vol. 1, Academic Press, NY, 1965, p. 147. - [47] R.J. Mckinney, S.S. Crawford, Inorg. Synth. 26 (1989) 155. - [48] R.J. Mawby, F. Basolo, R.G. Pearson, J. Am. Chem. Soc. 86 (1964) 5043. - [49] C.S. Kraihanzel, P.K. Maples, Inorg. Chem. 7 (1968) 1806. - [50] K. Noack, M. Ruch, F. Calderazzo, Inorg. Chem. 7 (1968) 345. - [51] J.A. Gladysz, G.M. Williams, W. Tam, D.L. Johnson, D.W. Parker, J.C. Selover, Inorg. Chem. 18 (1979) 553. - [52] D. Catheline, D. Astruc, J. Organomet. Chem. 226 (1982) C52. - [53] D. Catheline, D. Astruc, Organometallics 3 (1984) 1094. - [54] B.T. Gregg, A.R. Cutler, Organometallics 13 (1994) 1039. - [55] R.K. Kochhar and R. Pettit, J. Organomet. Chem., 6 (1966) 272; - [56] T.H. Whitesides, J. Shelly, J. Organomet. Chem. 92 (1975) 215. - [57] W. Caseri, P.S. Pregosin, Organometallics 7 (1988) 1373. - [58] L.P. Szaiek, J.R. Shapley, Organometallics 10 (1991) 2512. - [59] S.G. Davies, S.D. Moon, S.J. Simpson, S.E. Thomas, J. Chem. Soc., Dalton Trans. (1983) 1805. - [60] A.P. Humphries, S.A.R. Knox, J. Chem. Soc., Dalton Trans. (1975) 1710. - [61] N.M. Doherty, S.A.R. Knox, Inorg. Synth. 25 (1989) 179. - [62] A.C. Street, Y. Mizobe, F. Gotah, I. Mega, H. Oshita and M. Hidai, Chem. Lett. (1991) 383. - [63] T.S. Piper, G. Wilkinson, J. Inorg. Nucl. Chem. 3 (1956) 104. - [64] R.B. King, Organometaltic Syntheses, Academic Press, New York, 1965, Vol. 1, p. 151. - [65] P.W. Jolly, R. Pettit, J. Am. Chem. Soc. 88 (1966) 5044. - [66] M.L.H. Green, M. Ishaq, R.N. Whiteley, J. Chem. Soc. A (1967) 1508. - [67] C.P. Casev, H. Tukada, W.H. Miles, Organometallics 1 (1982) 1083. - [68] R.D. Theys, M. Hossain, Tetrahedron Lett. 33 (1992) 3447. - [69] (CO)₅MnCH(OPh)₂: C. Loewe, G. Huttner, L. Zsolnai, H. Berkew, Z. Naturforsch. B: Chem. Sci. 43B (1988) 25. - [70] S. Pelling, C. Botha, J.R. Moss, J. Chem. Soc., Dalton Trans. (1983) 1495. - [71] J.R. Moss, S. Pelling, J. Organomet. Chem. 236 (1982) 221. - [72] Y.C. Lin, D. Milstein, S.S. Wreford, Organometallics 2 (1983) 1461. - [73] G.O. Nelson, C.E. Summer, Organometallics 5 (1986) 1983. - [74] D.A. Brown, W.K. Glass, M. Turkiubeid, Inorg. Chim. Acta 89 (1984) L47. - [75] C.L. Randolph, M.S. Wrighton, J. Am. Chem. Soc. 108 (1986) 3366. - [76] H. Brunner, K. Fisch, Ang. Chem., Int. Ed. Engl. 29 (1990) 1131; J. Organomet. Chem. 412 (1991) C11. - [77] M. Akita, T. Oku, M. Tanaka, Y. Moro-oka, Organometallics 10 (1991) 3080. - [78] B.K. Campion, R.H. Heyn, T.D. Tilley, A.L. Rheingold, J. Am. Chem. Soc. 115 (1993) 5527, and references therein. - [79] A.J. Chalk, J.F. Harrod, J. Am. Chem. Soc. 89 (1967) 1640. - [80] J.F. Harrod, A.J. Chalk, in: Organic Syntheses via Metal Carbonyls, Wiley, New York, 1977, Vol. 2, pp. 687-690, and references therein. - [81] A. Sisak, F. Ungváry, L. Markó, Organometallics 5 (1986) 1019. - [82] R.W. Wegman, Organometallics 5 (1986) 707.