CHEMISTRY A European Journal

Accepted Article Title: 2-(Pyridinium-1-yl)-1,1-bis((perfluoroalkyl)sulfonyl)ethan-1ide: a practical reagent for synthesis of strongly acidic 1,1bis((perfluoroalkyl)sulfonyl)alkanes Authors: Hikaru Yanai, Ryuta Takahashi, Yoichi Takahashi, Akira Kotani, Hideki Hakamata, and Takashi Matsumoto This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article. To be cited as: Chem. Eur. J. 10.1002/chem.201700515 Link to VoR: http://dx.doi.org/10.1002/chem.201700515

Supported by ACES

2-(Pyridinium-1-yl)-1,1-bis((perfluoroalkyl)sulfonyl)ethan-1-ide: a practical reagent for synthesis of strongly acidic 1,1bis((perfluoroalkyl)sulfonyl)alkanes

Hikaru Yanai,*^[a] Ryuta Takahashi,^[a] Yoichi Takahashi,^[a] Akira Kotani,^[a] Hideki Hakamata,^[a] and Takashi Matsumoto*^[a]

Dedicated to Professor Takeo Taguchi on the occasion of his 70th birthday.

Abstract: By mixing $(R_f SO_2)_2 CH_2$ $(R_f =$ perfluoroalkyl), paraformaldehyde, and substituted pyridines, a three-component reaction proceeded smoothly to give unusual zwitterions bearing both pyridinium and stabilized carbanion moieties in good to excellent yields. Of these, 2-fluoropyridinium derivatives rapidly dissociated in acetonitrile to give equilibrium mixtures of the zwitterions and (R_fSO₂)₂C=CH₂/2-fluoropyridine, as confirmed by detailed temperature-variable NMR studies. The dynamic behavior of such 2fluoropyridiniums prompted us to examine their utility as shelf-stable, easy-to-handle $(R_fSO_2)_2C=CH_2$ sources. With these reagents, we successfully synthesized strongly acidic carbon acids (R_fSO₂)₂CHR, which served as a new type of acid catalysts. Moreover, the C-C bond forming reactions using a ketene silyl acetal proceeded efficiently by the *in-situ* generated $Tf_2C=CH_2$.

Introduction

The organic superacidic compounds,¹ such as TfOH (Tf = CF₃SO₂) and Tf₂NH, have been attracting considerable interest from various fields of chemistry. For example, the acids are utilized as catalysts in organic synthesis,² and their conjugate bases, as stable organic anions, represent an important structure for ionic liquids³ and electrolytes for lithium ion secondary batteries.⁴ The structurally related carbon acids depicted as Tf₂C*H*R are also attractive because the acidities are comparable to that of sulfuric acid (Figure 1).^{5,6}

 [a] Dr. H. Yanai, R. Takahashi, Y. Takahashi, Dr. A. Kotrani, Prof. Dr. H. Hakamata, Prof. Dr. T. Matsumoto School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan E-mail: yanai@toyaku.ac.jp (HY), tmatsumo@toyaku.ac.jp (TM)
 Supporting information for this article is given via a link at the end of

supporting information for this article is given via a link at the end of the document.

In this carbon acid structure, the third substituent "R" makes the acidity tunable and endows additional, unique properties. This structural feature is an advantage for the development of novel strong acids. For instance, in several synthetic reactions including the Mukaiyama aldol and related reactions, higher catalytic performance of Tf₂CHR over conventional TfOH and Tf₂NH has been reported by us^{7,8}, Yamamoto and Ishihara,⁹ and List.¹⁰ However, flexible molecular design for the carbon acid catalysts were still difficult owning to a lack of general and effective synthetic methods.¹¹ For example, *α*-alkylation reactions of commercially available bis(triflyl)methane 1a (Tf₂CH₂) with alkyl halides gave unsatisfactory results owning to the remarkably low nucleophilicity of the bis(triflyl)methanide ion.^{11a} To overcome the situation, we previously reported an addition reaction of neutral nucleophile "H-Nu" with in-situ generated Tf₂C=CH₂ 2a to give the acid "Tf₂CHCH₂Nu". Since highly electrophilic 2a was easily hydrolyzed into Tf₂CH₂ 1a and formaldehyde, two methods for the in-situ generation of 2a were developed as follows: 1) selfpromoting condensation of 1a and formaldehyde¹² and 2) the retro-Michael reaction of easily available Tf₂CHCH₂CHTf₂ 3¹³ (Eqns. 1 and 2). The latter method was successfully applied to the reactions with neutral nucleophiles such as electron-rich arenes^{13a} and 1,3-dicarbonyls^{13b} to give the corresponding carbon acids, which worked as effective acid catalysts.7,13a

However, applicable nucleophiles were still limited. One of the most serious drawbacks was that strongly basic nucleophiles including organometallic reagents were rapidly rendered inactive by acids **1a** and **3** existing in the reaction mixture. Application of acid-sensitive neutral nucleophiles was also problematic. Furthermore, in spite of a fundamental interest in the acidities of carbon acids bearing longer perfluoroalkyl (R_f) groups,¹⁴ their syntheses failed because of the fluorous properties of (R_fSO₂)₂CH₂ and (R_fSO₂)₂CHCH₂CH(SO₂R_f)₂.

We recently developed a convenient synthetic method for 2-(pyridinium-1-yl)-1,1-bis(triflyl)ethanides 4 through the three component reaction of Tf_2CH_2 1a, paraformaldehyde, and

FULL PAPER

pyridine derivatives.¹⁵ Moreover, their unusual zwitterionic structures were confirmed on the basis of X-ray crystallography and computational analysis.^{15a} Herein we report that such pyridinium-type zwitterions provide a practical solution to the problems with the carbon acid synthesis stated above (Eqn. 3): The 2-fluoropyridinium congener of **4** specifically dissociated in the solution phase,¹⁶ realizing the *in-situ* generation of Tf₂C=CH₂ **2a** without formation of any acidic compounds. Likewise, by using new zwitterions **5** and **6** bearing different R_f groups (R_f = *n*-C₄F₉ and -(CF₂)₃-), the corresponding carbon acids and related compounds were synthesized. This achievement presents a general and practical way to generate highly electrophilic (R_fSO₂)₂C=CH₂ **2**, which can be used as not only effective species for installing several carbon acid functionalities but also building blocks for fluorinated chemicals, and novel catalysts.

Results and Discussion

Synthesis of Pyridinium-type Zwitterions

Upon starting the development of the desired new reagents for *insitu* generation of $(R_fSO_2)_2C=CH_2$ **2**, we focused our attention on 2-(pyridinium-1-yl)-1,1-bis(triflyl)ethanide **4a**, which was originally reported by Koshar and co-workers in 1976 (Eqn. 4).^{12b} They synthesized this compound by self-promoting condensation of Tf_2CH_2 **1a** with formaldehyde and the subsequent treatment with a large amount of pyridine. However, owning to competitive formation of Tf_2CHCH_3 (a hydrogenated product of $Tf_2C=CH_2$ **2a**) in the condensation step, the overall yield was not satisfactory. In

addition, its chemical structure was proposed only on the basis of elemental analysis. At first, we reinvestigated the reaction conditions and the structure of the product. As a result, we found that by mixing **1a**, paraformaldehyde, and pyridine in 1,2-dichloroethane (DCE) at 60 °C, Koshar's salt **4a** was obtained in quantitative yield (Eqn. 5). An X-ray crystallographic analysis of **4a** was in agreement with the originally proposed structure (Figure 2), in which the planar geometry around C7 (\angle C6–C7–S1 = 118.9°, \angle S1–C7–S2 = 122.1°, and \angle S2–C7–C6 = 118.6°) and reasonable atom length between C6 and N1 (150.4(3) pm) were key pieces of evidence.¹⁷

FULL PAPER

Figure 2. ORTEP Drawing of Koshar's Salt 4a. The thermal ellipsoids are shown at 50% probability.

Our conditions for the three-component reaction were successfully applied to the synthesis of a variety of zwitterions (Figure 3). For example, pyridiniums **4b-4e** bearing electrondonating groups on the pyridinium ring were obtained in excellent yields. 2-Halo- or 3-halopyridines also worked as nice reaction components to produce pyridiniums **4f-4i**. Although 2,6dimethylpyridine, 2,3- and 2,4-difluoropyridines did not yield the corresponding zwitterions, some nitrogen-containing heterocycles such as quinoline, *N*-methylbenzimidazole, oxazole, and *N*-substituted imidazoles did give the zwitterions **4j-4o**, respectively, in good to excellent yields. Under similar conditions, bis(nonaflyl)methane **1b** (Nf₂CH₂, Nf = n-C₄F₉SO₂) and sixmembered cyclic derivative **1c**¹⁸ were converted to the corresponding zwitterions **5** and **6**. Their zwitterion structures were confirmed by X-ray crystallographic analysis of **4b-4o**, **5a**, and **6a** (see, Supporting Information).

Synthesis of Strongly Acidic Carbon Acid Derivatives

Among zwitterions derived from Tf_2CH_2 **1a**, 2-fluoropyridinium **4f** showed an interesting aspect in the temperature-variable ¹H NMR study (performed using a 0.010 M solution in CD₃CN, 400 MHz). Increasing temperature caused a significant down-field shift of the signals of the methylene hydrogens H1 (Figure 4a).¹⁹ At the same time, all signals of hydrogens H2-H5 on the 2-fluoropyridinium ring were shifted up-field. Similar temperature-dependent shifts were observed for 2-chloropyridinium **4h**, whereas significantly smaller shifts were observed in the cases of non-halogenated pyridinium **4a** and 3-fluoropyridinium **4g** (Figure 4b). The phenomenon strongly suggested very rapid, probably on the order of milliseconds, interconversion between zwitterion **4f** and Tf₂C=CH₂ **2a**/2-fluoropyridine **7** (Figure 4c) (*vide infra*).

FULL PAPER

Table 1. Carbon Acid Synthesis with Pyridinium-type Zwitterions.							
Tf ₂ C	N N R	1) OH (2.0 ed CH ₃ CN, rt, 10 min 2) bulb-to-bulb dist.	H ₃ C CHTf ₂				
Entry	4	R	Yield ^[a] (%)				
1	4f	2-F	98 (92)				
2	4h	2-Cl	84 (81)				
3	4g	3-F	0				
4	4a	н	0				
5	4b	2-Me	<5				
6 ^[b]	Tf ₂ CH	CH ₂ CHTf ₂ 3	90				
7	Tf ₂ CH;	2 1a + (CH ₂ O) _n	7				

[a] Yield on the basis of $^{19}{\rm F}$ NMR of crude mixture. Isolated yield is shown in parenthesis. [b] For 3 h at room temperature. Ref. 13a

To evaluate the performance of 2-fluoropyridinium 4f as a reagent for the carbon acid synthesis, we examined the reaction with p-cresol (Table 1). The reaction of 4f with 2.0 equiv of pcresol in acetonitrile went to completion within only 10 min at room temperature. ¹H NMR analysis of the crude material showed clean formation of the desired carbon acid 8a and 2-fluoropyridine 7. This result evidences that 4f smoothly produces $Tf_2C=CH_2$ 2a. The carbon acid 8a was isolated in 92% yield by bulb-to-bulb distillation (180-200 °C at 3 mmHg) (entry 1). Although 2chloropyridinium 4h brought about an acceptable result under the same conditions (entry 2), no formation of 8a was observed in the case with 3-fluoropyridinium 4g in place of 2-fluoro derivative 4f (entry 3). Likewise, non-halogenated and 2-methylated pyridiniums did not show suitable reactivity (entries 4 and 5). The use of Tf2CHCH2CHTf2 3 as a precursor of Tf2C=CH2 2a was possible in this case, although a longer time (3 h) was required (entry 6).^{13a} The three-component reaction of Tf_2CH_2 **1a**, paraformaldehyde, and p-cresol resulted in a poor conversion because of slow formation of 2a through the self-promoting condensation (entry 7).

Figure 5. Synthesis of Carbon Acid Derivatives.

With 2-fluoropyridiniums on hand, we successfully synthesized carbon acid derivatives bearing different R_f groups (Figure 5). For example, by using 4f, 5f, and 6f, a series of carbon acids **8b**, 9, and 10 were obtained in good to excellent yields by the reaction with naphthalen-2-ol. Likewise, anilinium-type zwitterion 11 was formed in 92% yield from *N*,*N*-dipentylaniline. It should be noted that the 1:2 reaction of *p*-cresol with 4f gave disubstituted product 12 in 83% yield. Enolizable acetone and enol silyl ether, derived from acetophenone, also worked as suitable nucleophiles to give carbon acids 13a and 13b in 93% and 79% yields, respectively.

As shown in Scheme 1, the reactions with organometallic reagents were successful. 2-Fluoropyridiniums 4f, 5f, and 6f smoothly reacted with both Grignard reagents and i-Bu₂AlH (DIBAL-H) to give substituted carbon acids 14-16 in good to excellent yields. To estimate the structure-acidity relationship in this type of carbon acid, we determined the pKa values of 14c-16c bearing different perfluoroalkyl (or alkylene) groups in acetonitrile by a voltammetric method.^{20,21} The acidity of Nf₂CHCH₃ **15c** (pK_a = 11.9) was about 100 times stronger than those of 14c (14.0) and 16c (14.1).²² Similarly, Nf₂CH₂ 1b (9.0) was a stronger acid than Tf_2CH_2 **1a** (10.4) and cyclic derivative **1c** (11.3). By methylation of Tf_2CH_2 1a, the pKa value decreased by about 3 units. In contrast, phenylation of 1a elevated the acidity by about 3 pK_a units (Tf₂CHPh, 7.85).²³ These data would serve as clues for the design of stronger carbon acids directed toward superacid catalysts.

10.1002/chem.201700515

FULL PAPER

As a good example to understand the specific reactivity of the 2-fluoropyridinium 4f, we found the unique ammonium-exchange reaction (Figure 6). When 1.05 equiv of pyridine itself was added to a solution of 2-fluoropyridinium 4f in acetonitrile at room temperature, pyridinium 4a was formed quantitatively. Under similar conditions, 4f was successfully converted to 3fluoropyridinium 4g in 93% yield. Although a 1:1 reaction of 4f and 2-chloropyridine yielded a mixture of 2-fluoropyridinium 4f and 2chloropyridinium 4h in a ratio of 1:7.0, the use of 2.0 equiv of 2chloropyridine was enough to realize one-sided formation of 4h (96% yield). These data demonstrated that the thermodynamic stability of 2-fluoropyridinium was specifically lower than other analogues. With strongly basic 4-(dimethylamino)pyridine and aliphatic amines such as diethylamine, quinuclidine, and 1,4diazabicyclo[2.2.2]octane, this reaction well proceeded and the corresponding zwitterions 4p-4s were isolated in excellent yields. Note that these amines never gave the zwitterions under the three-component conditions using Tf₂CH₂ 1a and paraformaldehyde, but caused neutralization of 1a giving rise to the intermolecular salts.

Figure 6. Ammonium-exchange Reaction from 2-Fluoropyridinium 4f to Other Ammoniums.

These results indisputably demonstrated that a series of 2-fluoropyridiniums served as the desired new reagents for *in-situ* generation of $(R_fSO_2)_2C=CH_2$ **2.** Though 2-fluoropyridine accompanies as a side product, this highly volatile compound can be easily removed by evaporation. The low basicity also works as an advantage to isolate the desired, strongly acidic products.²⁴ As shown in Figure 7, **4f** and other 2-fluoropyridiniums **5f** and **6f** are non-hygroscopic, crystalline compounds and they are shelf-stable for at least several months.

Figure 7. A Picture of 2-Fluoropyridinium 4f under Air Atmosphere.

Application of 2-Fluoropyridiniums as Building Block for Fluorinated Chemicals

To show synthetic applications of the 2-fluoropyridiniums as building blocks for fluorinated chemicals, we next tried trapping (R_fSO₂)₂C=CH₂ 2 with 1,3-dienes via (4+2) cycloaddition. Previously, we reported that three-component reaction of Tf₂CH₂ 1a, paraformaldehyde, and isoprene proceeded at room temperature to give gem-bis(triflyl)cyclohexene 17a, which was a valuable synthetic intermediate for poly-substituted triflyl arenes.12a In that case, a long reaction time (2.5 h) was required (Table 2, entry 8). Although the use of Tf₂CHCH₂CHTf₂ 3 was possible, the yield of 17a decreased with competitive oligomerization of isoprene (entry 9).^{12a} Note that reagent 3 itself and Tf₂CH₂ 1a accompanying the *in-situ* generation of Tf₂C=CH₂ 2a are strongly acidic. On the other hand, 2-fluoropyridinium 4f immediately gave 17a in 89% yield (within 10 min) without the formation of any oligomers (entry 1). 2-Chloropyridiniums 4h also gave comparable results (entry 2), whereas the reaction using 3fluoropyridinium 4g was unsatisfactory (entry 3). Moreover, the use of non-halogenated pyridiniums 4a and 4b did not lead to suitable production of 17a (entries 4 and 5). Likewise, 2fluoropyridiniums 5f and 6f derived from (R_fSO₂)₂CH₂ 1b and 1c, respectively, could be subjected to similar reaction to give cyclohexenes 18 and 19, respectively (entries 6 and 7).

Table 2. Trapping of In-situ Generated (R ₁ SO ₂) ₂ C=CH ₂ 2 by isoprene.							
$(R_{f}O_{2}S)_{2}C^{-}N^{+}_{S}$		R CH ₃ CN	Me (2.0 equiv) CH ₃ CN, rt, 10 min		Me R _f O ₂ S R _f O ₂ S 17-19		
Entry	4-6	R _f	Х	17-19	Yield ^[a] (%)		
1	4f	CF ₃	2-F	17a	89		
2	4h	CF ₃	2-Cl	17a	78		
3	4g	CF ₃	3-F	17a	2		
4	4a	CF ₃	н	17a	0		
5	4b	CF ₃	2-Me	17a	0		
6	5f	<i>n</i> -C ₄ F ₉	2-F	18	91		
7	6f	-(CF ₂) ₃ -	2-F	19	90		
8 ^[b]	Tf ₂ CH ₂ 1a + (CH ₂ O) _n			17a	76		
9 ^[b]	Tf ₂ CHCH ₂ CHTf ₂ 3			17a	61		

[a] Isolated yield. [b] For 2.5 h at room temperature. Ref. 12a.

As shown in Scheme 2, some 1,3-dienes including less reactive ethyl sorbate smoothly reacted with **4f** under mild conditions to give the cycloadduct **17**. Here it should be noted that the reaction with 2-(silyloxy)buta-1,3-diene, which is susceptible to hydrolysis even under slightly acidic conditions, was realized by using **4f** and cyclohexene **17d** was isolated in 76% yield. One-pot formation of the corresponding cyclohexanone **20** was also achieved by a subsequent H_3O^+ workup (77% yield from **4f**).

WILEY-VCH

Formal Catalysis by 2-Fluoropyridinium

By using 2-fluoropyridinium 4f, we achieved the carbon acid synthesis with acid-sensitive nucleophiles and (4+2) cycloaddition chemistry with buta-1,3-dienes including acid-sensitive 2-(silyloxy)buta-1,3-diene. These results inspired us to attempt formal catalysis by 2-fluoropyridinium 4f. As described above, notably high performance of Tf2CH-based carbon acids as acid catalysts in C-C bond forming reactions with silicon enolate equivalents has been reported. Recently, List and co-workers also reported an effective asymmetric carbon acid catalyst, in which a disulfonylated, acidic C-H moiety was embedded in a binaphthyl scaffold.²⁵ In such carbon acid-induced Mukaiyama aldol type reactions, it was proposed that protonation of ketene silyl acetals by the carbon acids initially occurred to give ion pair A (or silvl alkanide A'),²⁶ which worked as Lewis acidic "R₃Si⁺" equivalents (Figure 8).27 If silyl carboxonium species B (or the corresponding silvl alkanide B') generated by the Michael reaction of the Tf₂C=CH₂ 2a with ketene silvl acetals, electrophilic activation of carbonyl substrates would also be possible by silvl transfer reaction from this species. Owning to the absence of any Brønsted acids in such a reaction system, we expected a chemoselective transformation of the carbonyl group over other acid-sensitive functionalities in the reaction substrate.

By protonation of silylated nucleophiles

Figure 8. Generation of Catalytically Active "R₃Si⁺" Equivalents.

With this idea in mind, we conducted the Mukaiyama aldol reaction of 2-methylcyclohexanone **21** with a ketene silyl acetal derived from ethyl acetate as a test case (Table 3). In our previous work, Tf₂CHCH₂CHTf₂ **3** was found to be one of the most effective acids (entry 1).²⁸ β -Branched acid **23** also worked as a formal catalyst (entry 2).²⁹ On the other hand, despite the absence of any acidic moieties, 2-fluoropyridinium **4f** efficiently promoted the reaction (entries 3 and 4), whereas non-halogenated pyridinium **4a** proved less fruitful (entry 5). These results explicitly showed

[a] Isolated yield. [b] Reaction was carried out at 0 °C.

that the thermodynamic stability of the zwitterions played a crucial role for the formal precatalysis. As mentioned above, initial reaction of $Tf_2C=CH_2$ **2a**, generated from zwitterion **4f**, with ketene silyl acetal would be a trigger for the Mukaiyama aldol reaction. To obtain further evidence for this point, we examined the same reaction in the presence of easily isolable 1,1-bis(triflyl)alkadiene **24**^{29a} instead of **4f** (entry 6). Although a relatively high loading was required, the desired reaction proceeded to give **22** in 90% yield.

As shown in Scheme 3, 2-fluoropyridinium 4f did not affect acid-sensitive acetal moieties. For example, the reaction of δ , δ -dimethoxyketone 25 proceeded in a ketone-selective manner to give the adduct 26 in 84% yield after acidic workup. Furthermore, the addition reaction of ketene silyl acetal to less reactive lactones 27a and 27b also gave the adducts 28a and 28b in 91% and 94% yields, respectively. Here, any side products arising from a ring-opening reaction were not detected.

Scheme 3. Carbonyl-selective Addition Reactions.

Dynamic Structure of Pyridinium Zwitterions in Solution Phase

Finally, to quantify the dynamic behavior of 2-fluoropyridinium **4f** and related zwitterions, we obtained dynamic parameters from the temperature-variable ¹H NMR data (Figure 4). As mentioned above, the NMR study demonstrated very rapid, probably on the order of milliseconds, interconversion between zwitterion **4f** and a mixture of Tf₂C=CH₂ **2a**/2-fluoropyridine **7**. Here the observed chemical shift δ_{obs} of the methylene hydrogens at each temperature is the weighted mean of Tf₂C=CH₂ **2a** ($\delta_A = 8.15$ ppm) and zwitterion **4f** ($\delta_B = 5.48$ ppm) as illustrated in Eqn 6 (where K = [**2a**]/[**4f**]).³⁰ The equilibrium constant K_{eq} can be obtained by using the molar ratio K (Eqn. 7, where [**4f**]+[**2a**] = 0.010 mol L⁻¹ and [**2a**] = [**7**]). We determined thermodynamic parameters $\Delta_r H$ and $\Delta_r S$ by a van't Hoff plot (where R = 8.314 J K⁻¹ mol⁻¹; Eqn 8) and calculated the $\Delta_r G$ value (Eqn 9).

$$S_{\rm obs} = \frac{K \, \delta_{\rm A} + \delta_{\rm B}}{1 + K} \tag{6}$$

$$K_{eq} = \frac{[\mathbf{2a}][\mathbf{7}]}{[\mathbf{4f}]} = K \left(\frac{0.010 \cdot K}{1+K}\right)$$
(7)

$$R\ln K_{\rm eq} = -\frac{\Delta r H}{T} + \Delta r S \tag{8}$$

$$\Delta \mathbf{r}G = \Delta \mathbf{r}H - T\Delta \mathbf{r}S \tag{9}$$

As shown in Figure 9, a linear relation between $R\ln K_{eq}$ and 1/7 was obtained in the van't Hoff plot of all four zwitterions. The values of $\Delta_r H$, $\Delta_r S$ and $\Delta_r G_{298}$ for 2-fluoropyridinium **4f** were 89.6 kJ mol⁻¹, 238 J K⁻¹ mol⁻¹, and 18.6 kJ mol⁻¹, respectively. Recently, Alcaide and Almendros have reported the $\Delta_r G_{298}$ of this reaction as 18.8 kJ mol⁻¹ by DFT computation.^{16a} Their calculation agrees well with our experimental data. A similar analysis was applied to **4h**, **4a**, and **4g**. Although the $\Delta_r G_{298}$ value of 2-chloropyridinium **4h** was moderate (22.6 kJ mol⁻¹), those of

pyridinium **4a** and 3-fluoropyridinium **4g** were larger (33.4 kJ mol⁻¹ and 33.0 kJ mol⁻¹, respectively).

Figure 9. Van't Hoff Plots of Zwitterions 4f, 4h, 4a, and 4g.

Conclusions

We have developed a concise synthetic method of pyridiniumtype zwitterions bearing highly stabilized carbanion moieties. Among the thus obtained zwitterions, 2-halopyridiniums, in particular 2-fluoropyridiniums, showed very interesting dynamic behavior in the solution phase. That is, a very rapid equilibrium between the 2-fluoropyridinium 4f and Tf₂C=CH₂ 2a/2fluoropyridine 7 was fully confirmed by a temperature-variable NMR study. From a synthetic point of view, such 2fluoropyridiniums have several advantages as precursors of (R_fSO₂)₂C=CH₂ 2 compared to the known methods. Firstly, 2fluoropyridine, which is formed simultaneously with the release of 2, is a volatile and virtually non-basic compound. In the synthesis of strongly acidic carbon acids and their derivatives, the fact that 2-fluoropyridine 7 can be easily removed by evaporation played an important role. Secondly, no acidic species were present in this equilibrium mixture. This led to effective reactions of $(R_fSO_2)_2C=CH_2$ with acid-sensitive reagents such as organometallic reagents and 2-silyloxydiene. Thirdly, 2fluoropyridiniums were successfully obtained from several (R_fSO₂)₂CH₂ 1, and such pyridiniums could be used as effective reagents for generating (R_fSO₂)₂C=CH₂. This realized easy access to new types of strongly acidic carbon acid derivatives. Finally, a very fast reaction rate in the dissociation reaction of (R_fSO₂)₂C=CH₂ (on the order of milliseconds) was one of the most characteristic points. On the basis of this physicochemical feature, we found that non-acidic zwitterion 4f could be used as a formal catalyst for Mukaiyama aldol-type reactions.

Experimental Section

2-(2-Fluoropyridin-1-ium-1-yl)-1,1-bis((trifluoromethyl)sulfonyl)ethan-1-ide (4f): To a solution of Tf₂CH₂ 1a (281 mg, 1.00 mmol) in 1,2-dichloroethane (6.0 mL), paraformaldehyde (90% purity, 69.8 mg, 2.07 mmol) and 2fluoropyridine (172 µL, 2.00 mmol) were added at room temperature. After being stirred for 8 h at 60 °C, the reaction mixture was concentrated under reduced pressure. The resulting residue was washed with CHCl₃ (1.0 mL x 3) to give zwitterion 4f in 91% yield (356 mg, 0.915 mmol). The structure was also confirmed by an X-ray crystallographic analysis. Due to its low stability in several organic solvents, we could not detect suitable peaks in mass spectrometry. Colorless crystals (CH₃CN/hexane); Mp. 151-153 °C; IR (ATR) v 1351, 1183, 1106, 861, 776, 579 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) *δ* 5.73 (2H, brs), 7.73-7.78 (1H, dd, *J*_{HH} = 8.4 Hz, *J*_{HF} = 4.0 Hz), 7.93 (1H, t, J = 6.8 Hz), 8.57-8.65 (1H, m), 8.92-9.01 (1H, m); ¹³C NMR (100 MHz, CD₃CN) δ 60.2, 64.5, 115.1 (d, J_{CF} = 21.7 Hz), 121.5 (q, J_{CF} = 326 Hz), 125.3 (d, J_{CF} = 3.7 Hz), 142.9 (d, J_{CF} = 6.1 Hz), 147.4 (d, J_{CF} = 11.5 Hz), 159.6 (q, J_{CF} = 279 Hz); ¹⁹F NMR (376 Hz, CD₃CN) δ -17.1 (6F, s), -16.0 (1F, brs). Anal. Calcd for C₉H₆F₇NO₄S₂: C, 27.77; H, 1.55; N, 3.60. Found: C, 27.49; H, 1.49; N, 3.69.

1,1-Bis((trifluoromethyl)sulfonyl)propane (14a): To a solution of 2fluoropyridinium 4f (97.1 mg, 0.249 mmol) in Et₂O (1.2 mL), MeMgBr (a 3.0 M solution in Et₂O, 0.12 mL, 0.36 mmol) was added at 0 °C. After being stirred for 10 min at the same temperature, the reaction mixture was quenched with 4 M hydrochloric acid (15 mL). The resulting mixture was extracted with Et₂O (20 mL x 3) and the combined organic layer was evaporated. Then the residue was purified by bulb-to-bulb distillation using a Kugelrohr oven (60 °C, 5 mmHg) to give the corresponding carbon acid 14a in 91% yield (70.0 mg, 0.227 mmol). Colorless oil; IR (neat) ν 1462, 1393, 1383, 1219, 1115 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.38 (3H, t, J = 7.4 Hz), 2.51-2.60 (2H, m), 4.75 (1H, t, J = 5.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 11.9, 19.7, 78.5, 119.2 (q, J_{CF} = 328 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –10.4 (6F, s); MS (ESI-TOF) *m*/z 331 [M+Na]⁺; HRMS calcd for C₅H₆F₆NaO₄S₂; C, 19.49; H, 1.96. Found: C, 19.25; H, 1.85.

Ethyl 3-((tert-butyldimethylsilyl)oxy)-7-oxo-3,7-diphenylheptanoate (26): To a solution of 5,5-dimethoxy-1,5-diphenylpentan-1-one 25 (149 mg, 0.499 mmol) and tert-butyl((1-ethoxyvinyl)oxy)dimethylsilane (122 mg, 0.601 mmol) in CH₂Cl₂ (1.0 mL), 2-fluoropyridinium 4f (1.9 mg, 4.9 µmol) was added at 0 °C. After being stirred for 30 min at the same temperature, the reaction was quenched with Et₃N (0.5 mL). After evaporation of the resulting mixture, the residue was dissolved in acetone-water (1:1 v/v, 2.0 mL). This solution was treated with acetic acid (1.0 mL) for 1 h at room temperature. The reaction was quenched with a saturated NaHCO3 aqueous solution (25 mL), extracted with EtOAc (25 mL x 3), and dried over anhydrous MgSO₄. After removal of organic solvents under reduced pressure, the resulting residue was purified by column chromatography on silica gel (hexane/EtOAc = 10 : 1) to give the product 26 in 84% yield (191 mg, 0.420 mmol). Colorless oil; IR (neat) v 2952, 2852, 1716, 1690, 1444, 1314, 1260, 1078, 820, 778, 700 cm^-1; $\,^1{\rm H}$ NMR (400 MHz, CDCl3) $\delta\,0.05$ (3H, m), 0.09 (3H, s), 0.94 (9H, s), 1.04 (3H, t, J = 7.1 Hz), 1.56-1.65 (1H, m), 1.71-1.82 (1H, m), 2.07 (1H, ddd, J = 13.7, 11.9, 4.5 Hz), 2.25 (1H, ddd, J = 13.7, 12.1, 4.7 Hz), 2.86 (1H, d, J = 14.3 Hz), 2.91 (2H, d, J = 7.3 Hz), 2.97 (1H, d, J = 14.3 Hz), 3.93 (2H, q, J = 7.1 Hz), 7.19-7.32 (1H, m), 7.28-7.32 (2H, m), 7.41-7.45 (4H, m), 7.52-7.56 (1H, m), 7.89-7.91 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ-2.3, -2.2, 13.9, 18.7, 19.0, 26.1, 38.7, 41.2, 47.8, 60.1, 78.3, 125.8, 127.8, 128.0, 128.5, 132.9, 136.9, 145.1, 169.9, 199.9; MS (ESI-TOF) m/z 477 [M+Na]+; HRMS calcd for C27H38NaO4Si [M+Na]+, 477.2437; found, 477.2440. Anal. Calcd for C₂₇H₃₈O₄Si: C, 71.32; H, 8.42. Found: C, 71.22; H, 8.50.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas "Advanced Molecular Transformations by Organocatalysts" from the MEXT, Mitsubishi Gas Chemical Co. Ltd., the Kurata Memorial Hitachi Science and Technology Foundation, and the Hoansha Foundation. We thank Mr. Haruhiko Fukaya (Tokyo University of Pharmacy and Life Sciences, TUPLS) for the X-ray crystallographic studies, and Mr. Yuki Yamamoto (TUPLS) for his experimental assistance. Prof. Benito Alcaide (Universidad Complutense de Madrid) and Prof. Pedro Almendros (Instituto de Química Orgánica General, CSIC) are also acknowledged for helpful discussions.

Keywords: zwitterions • Brønsted acids • acidity • homogeneous catalyst • Lewis acids

- a) Superacid Chemistry, 2nd ed. (Eds.: G. A. Olah, G. K. S. Prakash, J. Sommer, A. Molnar), Wiley-VCH, Hoboken, 2009; b) R. N. Haszeldine, J. M. Kidd, J. Chem. Soc. 1954, 4228; c) J. Foropoulos, Jr., D. D. DesMarteau, Inorg. Chem. 1984, 23, 3720.
- a) T. Akiyama, K. Mori, *Chem. Rev.* 2015, *115*, 9277; b) H. Yamamoto,
 D. Nakashima, in *Acid Catalysis in Modern Organic Synthesis*, Vol. 1 (Eds.: H. Yamamoto, K. Ishihara), Wiley-VCH, Weinheim, 2008, pp. 35–62; c) K. Takasu *Synlett* 2009, 1905.
- a) *Ionic Liquids in Synthesis* (Eds.: P. Wasserscheid, T. Welton), Wiley-VCH: Weinheim, **2008**; b) N. V. Plechkova, K. R. Seddon, *Chem. Soc. Rev.* **2008**, *37*, 123.
- [4] a) K. Xu, Chem. Rev. 2014, 114, 11503; b) Xu, K. Chem. Rev. 2004, 104, 4303; c) S. S. Zhang, J. Power Sources 2006, 162, 1379.
- [5] The gas phase acidities GA (kcal mol⁻¹) of Tf-substituted acids and sulfuric acid are as follows: TfOH (299.5), Tf₂NH (286.5), Tf₂CH₂ (300.6), H₂SO₄ (302.2). See: a) I. A. Koppel, R. W. Taft, F. Anvia, S.-Z. Zhu, L.-Q. Hu, K.-S. Sung, D. D. DesMarteau, L. M. Yagupolskii, Y. L. Yagupolskii, N. V. Ignat'ev, N. V. Kondratenko, A. Y. Volkonskii, V. M. Vlasov, R. Notario, P.-C. Maria, *J. Am. Chem. Soc.* **1994**, *116*, 3047; b) I. Leito, E. Raamat, A. Kütt, J. Saame, K. Kipper, I. A. Koppel, I. Koppel, M. Zhang, M. Mishima, L. M. Yagupolskii, R. Yu. Garlyauskayte, A. A. Filatov, *J. Phys. Chem. A* **2009**, *113*, 8421.
- [6] The pK_s value of Tf₂CH₂ 1a in DMSO was reported as 2.1. It is a stronger Brønsted acid in solution compared with CF₃CO₂H (3.45). See, F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456.
- [7] For reviews, see: a) H. Yanai, T. Taguchi, J. Fluorine Chem. 2015, 174, 108; b) H. Yanai, Chem. Pharm. Bull. 2015, 63, 649.
- [8] a) A. Takahashi, H. Yanai, T. Taguchi, *Chem. Commun.* 2008, 2385; b)
 H. Yanai, A. Takahashi, T. Taguchi, *Chem. Commun.* 2010, *46*, 8728; c)
 H. Yanai, T. Taguchi, *Chem. Commun.* 2012, *48*, 8967; d) H. Yanai, O.
 Kobayashi, K. Takada, T. Isono, T. Satoh, T. Matsumoto, *Chem. Commun.* 2016, *52*, 3280.
- [9] a) K. Ishihara, A. Hasegawa, H. Yamamoto, *Angew. Chem.* 2001, *113*, 4201; *Angew. Chem. Int. Ed.* 2001, *40*, 4077; b) K. Ishihara, A. Hasegawa, H. Yamamoto, *Synlett* 2002, 1296; c) K. Ishihara, A. Hasegawa, H. Yamamoto, *Synlett* 2002, 1299; d) A. Hasegawa, Y. Naganawa, M. Fushimi, K. Ishihara, H. Yamamoto, *Org. Lett.* 2006, *8*, 3175.
- [10] D. Höfler, M. van Gemmeren, P. Wedemann, K. Kaupmees, I. Leito, M. Leutzsch, J. Lingnau, B. List, Angew. Chem. Early View (DOI: 10.1002/ange.201609923); Angew. Chem. Int. Ed. Early View (DOI: 10.1002/anie.201609923).
- [11] For selected examples, see: a) R. J. Koshar, R. A. Mitsch, *J. Org. Chem.* **1973**, 38, 3358; b) A. Hasegawa, T. Ishikawa, K. Ishihara, H. Yamamoto, *Bull. Chem. Soc. Jpn.* **2005**, *78*, 1401; c) K. Miyamoto, S. Iwasaki, R. Doi,

WILEY-VCH

T. Ota, Y. Kawano, J. Yamashita, Y. Sakai, N. Tada, M. Ochiai, S. Hayashi, W. Nakanishi, M. Uchiyama, J. Org. Chem. **2016**, *81*, 3188.

- [12] a) H. Yanai, M. Fujita, T. Taguchi, *Chem. Commun.* 2011, *47*, 7245; b)
 R. J. Koshar, L. L. Barber, Jr., *U.S. Patent* 4 053 519, 1977.
- [13] a) H. Yanai, H. Ogura, H. Fukaya, A. Kotani, F. Kusu, T. Taguchi, *Chem.– Eur. J.* 2011, *17*, 11747; b) H. Yanai, M. Fujita, A. Takahashi, M. Zhang, M. Mishima, A. Kotani, T. Matsumoto, T. Taguchi, *Molecules* 2013, *18*, 15531; c) H. Yanai, T. Yoshino, M. Fujita, H. Fukaya, A. Kotani, F. Kusu, T. Taguchi, *Angew. Chem.* 2013, *125*, 1600; *Angew. Chem. Int. Ed.* 2013, *52*, 1560.
- [14] Only GA of Nf_2CH_2 **1b** was reported as 288.7 kcal mol⁻¹. See, ref. 5a.
- [15] a) H. Yanai, Y. Takahashi, H. Fukaya, Y. Dobashi, T. Matsumoto, *Chem. Commun.* **2013**, *49*, 10091; b) L. L. Barber, Jr., R. J. Koshar, *U.S. Patent* 3 962 346 (1976).
- [16] On the basis of our report (Ref. 15a), Alcaide and Almendros successfully applied 2-fluoropyridinium 4f to the (2+2) and (3+2) cycloaddition chemistry. See: a) B. Alcaide, P. Almendros, I. Fernández, C. Lázaro, *Chem. Commun.* 2015, *51*, 3395; b) B. Alcaide, P. Almendros, C. Lázaro-Milla, *Chem. Commun.* 2015, *51*, 6992; c) B. Alcaide, P. Almendros, C. Lázaro-Milla, *Chem. Commun.* 2015, *51*, 6998.
- [17] a) G. Boche, M. Marsch, K. Harms, G. K. Sheldrick, *Angew. Chem. Int. Ed. Engl.* **1985**, *24*, 573; b) H.-J. Gais, G. Hellmann, H. Gunther, F. Lopez H. J. Lindner, S. Braun, *Angew. Chem. Int. Ed. Engl.* **1989**, *28*, 1025.
- [18] S.-Z. Zhu, W. T. Pennington, D. D. DesMarteau, *Inorg. Chem.* 1995, 34, 192.
- [19] In this NMR study, the methylene hydrogens were found as a broading signal, especially at low temperature. This broading was attributed to slow rotation of anionic C–S bonds. The rotational barrier in 4f was determined as 53.3±0.5 kJ mol⁻¹ at coalescence temperature (– 5.0±1.0 °C). Also see, Supporting Information.
- [20] K. Takamura, T. Fuse, K. Arai, F. Kusu, J. Electroanal. Chem. 1999, 468, 53.
- [21] The pK_a values of usual strong acids in acetonitrile (predicted from directly measured relative acidity in DCE) were reported as follows; HCI (10.6), HNO₃ (9.4), H₂SO₄ (8.7), TfOH (0.7), Tf₂NH (0.3). See: A. Kütt, T. Rodima, J. Saame, E. Raamat, V. Mäemets, I. Kaljurand, I. A. Koppel, R. Yu. Garlyauskayte, Y. L. Yagupolskii, L. M. Yagupolskii, E. Bernhardt, H. Willner, I. Leito, *J. Org. Chem.* **2011**, *76*, 391.
- [22] Although we also obtained pK_a vales of 13b, 14b, and 15b in DMSO, the pK_a range was between 2.0 and 2.2. Leito and Rueping recently pointed out that, in DMSO, pK_a values of 2 or less cannot be reliably determined. See: K. Kaupmees, N. Tolstoluzhsky, S. Raja, M. Rueping, I. Leito, Angew. Chem. 2013, 125, 11783; Angew. Chem. Int. Ed. 2013, 52, 11569.
- [23] A. Kütt, I. Leito, I. Kaljurand, L. Sooväli, V. M. Vlasov, L. M. Yagupolskii, I. A. Koppel, *J. Org, Chem.* **2006**, *71*, 2829.
- [24] pK_{aH} of 2-fluoropyridine (in H₂O, 25 °C) was measured as -0.44. This value means that 2-fluoropyridine itself is virtually a non-basic amine. See: H. C. Brown, D. H. McDaniel, *J. Am. Chem. Soc.* **1955**, 77, 3752.
- [25] T. Gatzenmeier, M. van Gemmeren, Y. Xie, D. Höfler, M. Leutzsch, B. List, Science 2016, 351, 949.
- [26] For generation of silyl methide "Tf₂C(SiMe₃)C₆F₅" by the reaction of Tf₂CHC₆F₅ with allyltrimethylsilane, see: A. Hasegawa, K. Ishihara, H. Yamamoto, *Angew. Chem.* **2003**, *115*, 5909; *Angew. Chem. Int. Ed.* **2003**, *42*, 5731.
- [27] a) M. Sai, M. Akakura, H. Yamamoto, *Chem. Commun.* 2014, *50*, 15206;
 b) Y. Hiraiwa, K. Ishihara, H. Yamamoto, *Eur. J. Org. Chem.* 2006, 1837;
 c) H. Yanai, Y. Sasaki, Y. Yamamoto, T. Matsumoto, *Synlett* 2015, *26*, 2457.
- [28] H. Yanai, Y. Yoshino, A. Takahashi, T. Taguchi, J. Org. Chem. 2010, 75, 5375.
- [29] a) H. Yanai, S. Egawa, T. Taguchi, *Tetrahedron Lett.* 2013, *54*, 2160; b)
 H. Yanai, S. Egawa, K. Yamada, J. Ono, M. Aoki, T. Matsumoto, T. Taguchi, *Asian J. Org. Chem.* 2014, *3*, 556.

FULL PAPER

[30] The δ_{A} value was determined by a solution of Tf₂CHCH₂CHTf₂ **3** in CD₃CN (see, ref. 13b) and the δ_{B} value was obtained from NMR measurement of this solution at -40 °C.

FULL PAPER

Entry for the Table of Contents (Please choose one layout)

Layout 2:

FULL PAPER

2-Fluoropyridiniums, which were prepared from $(R_fSO_2)_2CH_2$, paraformaldehyde, and 2-fluoropyridine, were found as shelf-stable, easy-to-handle $(R_fSO_2)_2C=CH_2$ sources: by using the reaction of several nucleophiles with such reagents, superacidic carbon acids $(R_fSO_2)_2CHR$ were successfully synthesized.

Hikaru Yanai,* Ryuta Takahashi, Yoichi Takahashi, Akira Kotani, Hideki Hakamata, and Takashi Matsumoto*

Page No. – Page No.

2-(Pyridinium-1-yl)-1,1bis((perfluoroalkyl)sulfonyl)ethan-1ide: a practical reagent for synthesis of strongly acidic 1,1bis((perfluoroalkyl)sulfonyl)alkanes