Subscriber access provided by KUNGL TEKNISKA HOGSKOLAN

Selective C–H-Activation of Methoxy Groups in a Three-Component Photoreaction

Günther Lahm, and Till Opatz

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.5b02373 • Publication Date (Web): 17 Nov 2015 Downloaded from http://pubs.acs.org on November 24, 2015

Just Accepted

Note

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Selective C–H-Activation of Methoxy Groups in a Three-Component Photoreaction

Günther Lahm and Till Opatz*

Address: Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, D-55128

Mainz, Germany

Email: opatz@uni-mainz.de

Table of Contents/ Abstract Graphic

Abstract

Surprisingly, the photocatalytic activation of ethers by H-abstraction and addition of the generated radicals to iminium ions formed *in situ* from aldehydes and anilines predominantly yielded the products of methoxy activation for dimethoxymethane and 1,2-dimethoxyethane. Various anilines and aromatic as well as aliphatic aldehydes are suitable reaction partners for this

three-component photoreaction (Porta-type process) which also provides a simple access to 1,2aminoalcohols.

Regioselectivity is an important goal in organic synthesis. In particular, manipulations of unactivated C–H bonds are highly attractive elements for step economic syntheses and currently represent one of the most active research fields in organic chemistry.¹⁻⁷ The growing demand for waste and resources minimization calls for new and efficient processes utilizing abundantly available building blocks. Multicomponent reactions.⁸⁻¹⁵ or modular one-pot syntheses which comprise a regioselective activation of an unactivated C–H bond may fulfil these criteria. Here, we report a simple one-pot procedure for the light-induced coupling reaction of dimethoxymethane (DMM) or 1,2-dimethoxyethane (DME) with anilines and aldehydes. The products resulting from DMM can be easily transformed into 1,2-aminoalcohols which are key elements of a wide variety of bioactive compounds.¹⁶

In the course of our work on protoberberine alkaloids¹⁷ we were in need of a facile synthesis of α -aminoaldehydes. The photochemical version of the Porta-type reaction¹⁸⁻²¹ of anilines, benzaldehydes and 1,3-dioxolane reported by Shi²² appeared attractive as it provides *N*-[1,3-dioxolan-2-yl(aryl)methyl]anilines, protected α -aminoaldehydes, in a single operation. When the 1,3-dioxolane was replaced by DMM in the expectation to obtain the dimethyl acetal of an α -aminoaldehyde, the product of methoxy activation was surprisingly obtained as the major regioisomer. The same unexpected observation was made for 1,2-dimethoxyethane. In most cases, the isomeric ratio determined by ¹H NMR spectroscopy of the crude reaction mixtures was higher than anticipated statistically (3:1 for DMM, 3:2 for DME). Remarkably, previous reports

on the radical addition of DMM to N-sulfonylimines (Scheme 1) or of DME to electron deficient nitrogen heterocycles all describe selectivity for the methylene position.²²⁻²⁴

Scheme 1. Radical addition of dimethoxymethane to imines.

The course of the reaction presumably involves H-abstraction from the methoxy group of the ether by the TiO_2 photocatalyst or sulfate radicals generated by persulfate cleavage. The resulting alkoxymethylene radicals are nucleophilic due to overlap of the SOMO with the lone pairs at oxygen and preferably add to the electron deficient C=N bond of iminium ions formed in situ from the aldehyde and the amine component (Scheme 2).²⁵

Scheme 2. Proposed reaction mechanism.

While both TiO_2 and UV irradiation turned out to be necessary, the persulfate additive could be omitted at the expense of the reaction rate.²² To explore the scope of the photochemical three-component reaction, various amines and aldehydes were reacted with an aqueous solution of DMM (1:1) containing TiO_2 and $(NH_4)_2S_2O_8$ under UV irradiation (350 nm) in a sealed tube (argon) at room temperature (Table 1).

Table 1. Addition of DMM to imines formed in situ.

ACS Paragon Plus Environment

57

[a] Yields are those of products isolated by chromatography; [b] Minor regioisomeres could not be separated; [c] Product could not be detected *via* NMR or ESI-MS; [d] Regioisomeric ratio of methoxy- vs. methylene activation determined by ¹H NMR spectroscopy of the crude reaction mixture; [e] Complex mixture.

The products of the methoxy activation could be obtained in moderate to high yields of 52–87%. For compounds 7–9, the minor regionsomer resulting from methylene activation could not be removed by chromatography. 2-Aminophenol (1g) or 4-(dimethylamino)benzaldehyde (2d) were no suitable substrates for the three component reaction under identical conditions. In the case of 1g (entry 8), no imine formation was detected under the reaction conditions (¹H NMR) and decomposition occurred presumably due to the tendency of the amine component to undergo oneelectron oxidation. For aldehyde 2c, steric hindrance might have led to a significant reduction of the reaction rate. Compounds **1b** and **2d** formed the required imine but no radical addition took place, possibly due an unfavourably high electron density (entry 10). While moderate to high yields were obtained for the reaction of anilines, aliphatic amines failed to give the expected products of radical addition. The lacking stabilization of the aminium radical cation **B** (Scheme 2) resulting from C-C bond formation could account for this behavior. In extension of the scope reported by Shi et al.²² aliphatic aldehydes can also be employed although the use of unbranched representatives like pentanal resulted in complex mixtures (Table 1, entry **2f**). The photochemical three component Porta-type reaction with DME is also efficient and provided the products of methoxy activation in moderate to good yields of 38-64% under identical conditions. The results are summarized in table 2.

[a] Yields are those of products isolated by chromatography; [b] Regioisomeric ratio of methoxy- vs. methylene activation determined by ¹H NMR spectroscopy of the crude reaction mixture taking into account all stereoisomers; [c] Regioisomeric ratio could not be determined due to signal overlap in ¹H NMR.

The reaction works for the same starting materials as used in combination with DMM. Compared to the products of table 1, the regioisomeric ratios in table 2 are lower. This might be due to the statistical effect combined with a smaller difference in accessibility in the H-abstraction and stability as well as reactivity for the two radical species formed from DME.

In case of the reaction with DMM, the methoxy activation provides a simple access to 1,2aminoalcohols which are e.g. an important compound class in medicinal chemistry.²⁶⁻²⁸ In comparison to many other methods for their synthesis,²⁹⁻³⁸ nucleophilic radical hydroxymethylations of imines can be a simple and cheap alternative.^{18,39-42} In our case, the MOM-group can be removed from the addition products with aqueous HCl in THF at 60 °C. The corresponding aminoalcohols **20a** and **20b** were obtained over two steps in yields of 48% and 42%, respectively (Scheme 3).

Scheme 3. Preparation of 1,2-aminoalcohols.

In summary, the photochemical Porta-type addition of open chain ethers such as DME and DMM to in situ formed imines was found to show a surprising selectivity for the C–H activation at the methoxy group. The use of MTBE or anisole as alternative methoxy-functionalized ether substrates only led to very low conversion under identical as judged by HPLC/MS instead. Currently, we have no experimental evidence as to whether the observed regioselectivity for DMM and DME is due to a preference of the photogenerated H-abstracting species (vide supra) for the sterically less hindered methoxy H-atoms or to the reported instability of the dimethoxymethyl radical generated from DMM.⁴³ However, no products resulting from methyl radicals generated in the fragmentation of the dimethoxymethyl radical to methyl formate were found. As the latter radical is more nucleophilic than its (methoxymethoxy)methyl isomer, the rate of its reaction with electron deficient iminium ions should be higher. Preliminary calculations at the UB3LYP/6-311G(2d,p) level of theory (data not shown) indicated the dimethoxymethyl radical to be more stable by about 4.7 kcal/mol. An interconversion of the less stable, less nucleophilic to the more stable, more nucleophilic radical by H-abstraction from another

molecule of DMM might explain why more electrophilic iminium species such as those derived from **1c** or **1d** show higher selectivity for the products of methoxy activation. In the case of less reactive iminium salts, longer radical lifetimes would favor this interconversion. This however would require an as yet unseen preference for initial H-abstraction at the methoxy group but could explain the complementary behavior compared to known radical functionalizations of the same radical precursor.²³ The reported three-component reaction is robust and uses only cheap and readily available starting materials and reagents. Being one of the very rare cases of a C–H functionalization at methoxy groups,^{44,45} it permits the synthesis of β -aminoethers in a single operation with 100% atom economy and can be used to produce β -aminoalcohols in an additional step.

Experimental Section

All reagents and solvents were obtained from commercial suppliers without further purification. Anhydrous DME was distilled from potassium / benzophenone under argon. Melting points were determined in open capillary tubes. NMR spectra were recorded with a 300 MHz spectrometer (300 MHz ¹H and 75.5 MHz ¹³C), a 400 MHz (400 MHz ¹H and 100.6 MHz ¹³C) or with a 600 MHz spectrometer (600 MHz ¹H and 151 MHz ¹³C) with digital architecture and equipped with 5 mm probes. The δ values are reported in parts per million (ppm) downfield from TMS and were referenced to the residual solvent signal (CHCl₃, 7.26 ppm). Coupling constants *J* are given in Hertz (Hz). IR spectra were recorded using a diamond ATR unit and are reported in terms of frequency of absorption (v, cm⁻¹). ESI-HRMS spectra were recorded on a Q-TOF instrument with a dual source and a suitable external calibrant. Preparative thin-layer chromatography was carried out on 2-mm silica gel plates with fluorescence indicator. Substance bands were detected by illumination with UV light (254 and 360 nm).

General experimental procedure for the addition reactions:

TiO₂ (20 mg, 0.25 mmol, 1.3 eq) and $(NH_4)_2S_2O_8$ (6.0 mg, 0.026 mmol, 0.13 eq) were dispersed in a mixture of water (2.5 mL) and the respective ether (2.5 mL). After the addition of aldehyde (0.30 mmol, 1.5 eq) and amine (0.20 mmol), the reaction mixture was degassed by argon bubbling for 1 min and stirred for 20 h under UV-A irradiation (400 W) at room temperature. The mixture was filtered and the filter cake was washed with DCM (40 mL) and ethyl acetate (40 mL). The combined filtrates were concentrated *in vacuo* and the resulting crude product was purified by chromatography unless otherwise noted.

N-[2-(Methoxymethoxy)-1-phenylethyl]aniline (3)

According to the general procedure, benzaldehyde (**2a**, 31.8 mg, 0.30 mmol 1.5 eq) was reacted with aniline (**1a**, 18.6 mg, 0.20 mmol) and DMM (2.5 mL). After 20 h, purification by thin-layer chromatography (cyclohexane/AcOEt/NEt₃ = 7.0/2.5/0.5) afforded the title compound (33.4 mg, 65%) as a colorless oil.

R_f = 0.60 (cyclohexane/AcOEt/Et₃N = 7.5/2.0/0.5). IR (ATR): 3397 (m, br), 2948 (s, sh), 2887 (m), 1733 (m), 1603 (s), 1505 (s), 1109 (s), 1036 (s), 751 (s), 701 (s). ¹H NMR, COSY (300 MHz, CDCl₃): δ = 7.45–7.39 (m, 2H, H-2", H-6"), 7.37–7.29 (m, 2H, H-3", H-5"), 7.28–7.24 (m, 1H, H-4"), 7.13–7.05 (m, 2H, H-3, H-5), 6.66 (tt, *J* = 7.4, 1.3 Hz, 1H, H-4), 6.57–6.51 (m, 2H, H-2, H-6), 4.68 (d, *J* = 6.6 Hz, 1H, OCH₂O), 4.63 (d, *J* = 6.6 Hz, 1H, OCH₂O), 4.53 (dd, *J* = 8.0, 4.1 Hz, 1H, H-1'), 3.86 (dd, *J* = 10.4, 4.1 Hz, 1H, H_a-2'), 3.66 (dd, *J* = 10.4, 8.0 Hz, 1H, H_b-2'), 3.32 (s, 3H, OCH₃). ¹³C NMR, HMBC, HSQC (75 MHz, CDCl₃): δ = 147.7 (C1), 140.7 (C1"), 129.2 (C3, C5), 128.8 (C3", C5"), 127.6, (C4"), 126.9 (C2", C6"), 117.8 (C4), 113.9 (C2, C6), 96.8

(OCH₂O), 72.5 (C2'), 58.4 (C1'), 55.6 (OCH₃). ESI-MS: m/z (%) = 258.1 (100) [M+H]⁺. ESI-HRMS: calcd for $[C_{16}H_{20}NO_2]^+$: m/z = 258.1494, found: 258.1499.

N-[2-(Methoxymethoxy)-1-phenylethyl]-4-methylaniline (4)

According to the general procedure, benzaldehyde (**2a**, 31.8 mg, 0.30 mmol 1.5 eq) was reacted with *p*-toluidine (**1b**, 21.4 mg, 0.20 mmol) and DMM (2.5 mL). After 20 h, purification by thin-layer chromatography (cyclohexane/AcOEt = 7/3) afforded the title compound (38.1 mg, 70%) as a pale yellow oil.

R_{*J*}= 0.51 (cyclohexane/AcOEt = 7/3). IR (ATR): 3395 (w, br), 2884 (m, sh), 2825 (m), 1733 (w), 1618 (m), 1520 (s), 1151 (m), 1108 (s), 1037 (s), 701 (m). ¹H NMR, COSY (400 MHz, CDCl₃): δ = 7.44–7.38 (m, 2H, H-2", H-6"), 7.35–7.29 (m, 2H, H-3", H-5"), 7.26–7.22 (m, 1H, H-4"), 6.92– 6.87 (XX'-part of a AA'XX'-system, 2H, H-3, H-5), 6.48–6.43 (AA'-part of a AA'XX'-system, 2H, H-2, H-6), 4.67 (d, *J* = 6.6 Hz, 1H, OC*H*₂O), 4.62 (d, *J* = 6.6 Hz, 1H, OC*H*₂O), 4.51 (s, 1H, NH), 4.50 (dd, *J* = 8.1, 4.1 Hz, 1H, H-1'), 3.84 (dd, *J* = 10.4, 4.1 Hz, 1H, H_a-2'), 3.64 (dd, *J* = 10.4, 8.1 Hz, 1H, H_b-2'), 3.31 (s, 3H, OC*H*₃), 2.18 (s, 3H, C*H*₃). ¹³C NMR, HMBC, HSQC (75 MHz, CDCl₃): δ = 145.3 (C1), 140.8 (C1"), 129.7 (2C, C3, C5), 128.7 (2C, C3", C5"), 127.5 (C4"), 127.0 (C4), 126.9 (2C, C2", C6"), 114.1 (2C, C2, C6), 96.7 (OCH₂O), 72.6 (C2'), 58.6 (C1'), 55.6 (OCH₃), 20.5 (*C*H₃). ESI-MS: *m/z* (%) = 272.2 (100) [M+H]⁺. ESI-HRMS: calcd for [C₁₇H₂₂NO₂]⁺: *m/z* = 272.1651, found: 272.1656.

4-Bromo-*N*-[2-(methoxymethoxy)-1-phenylethyl]aniline (5)

According to the general procedure, benzaldehyde (**2a**, 31.8 mg, 0.30 mmol 1.5 eq) was reacted with 4-bromoaniline (**1c**, 34.4 mg, 0.20 mmol) and DMM (2.5 mL). After 20 h, purification by thin-layer chromatography (cyclohexane/AcOEt/NEt₃ = 90/7/3) afforded the title compound (38.9 mg, 58%) as a colorless amorphous solid.

R_f = 0.40 (cyclohexane/AcOEt/Et₃N = 7.5/2.0/0.5). IR (ATR): 3395 (w, br), 2930 (m, sh), 2886 (m), 1732 (w), 1594 (m), 1496 (s), 1107 (m), 1108 (s) 1036 (s) 702 (m). ¹H NMR, COSY (300 MHz, CDCl₃): δ = 7.41–7.26 (m, 5H, 5 × Ar-H), 7.18–7.12 (XX'-part of a AA'XX'-system, 2H, H-3, H-5), 6.43–6.37 (AA'-part of a AA'XX'-system, 2H, H-2, H-6), 4.68 (s, 1H, NH), 4.67 (d, *J* = 6.6 Hz, 1H, OCH₂O), 4.62 (d, *J* = 6.6 Hz, 1H, OCH₂O), 4.48 (dd, *J* = 8.1, 4.0 Hz, 1H, H-1'), 3.86 (dd, *J* = 10.4, 4.0 Hz, 1H, H_a-2'), 3.64 (dd, *J* = 10.4, 8.1 Hz, 1H, H_b-2'), 3.31 (s, 3H, OCH₃). ¹³C NMR, HMBC, HSQC (101 MHz, CDCl₃): δ = 146.5 (C1), 139.9 (C1"), 131.7 (2C, C3, C5), 128.7 (2C, C3", C5"), 127.6 (C4"), 126.7 (2C, C2", C6"), 115.4 (2C, C2, C3), 109.4 (C4), 96.7 (OCH₂O), 72.4 (C2') 58.3 (C1') 55.7 (OCH₃). ESI-MS: *m/z* (%) = 336.1 (100) [M+H]⁺. ESI-HRMS: calcd for [C₁₆H₁₈⁸¹BrNO₂Na]⁺: *m/z* = 358.0419, found: 358.0421.

4-{[2-(Methoxymethoxy)-1-phenylethyl]amino}benzoic acid (6)

According to the general procedure, benzaldehyde (**2a**, 31.8 mg, 0.30 mmol 1.5 eq) was reacted with 4-aminobenzoic acid (**1d**, 27.4 mg, 0.20 mmol) and DMM (2.5 mL). After 20 h the reaction mixture was filtered and washed with DCM (40 mL) and methanol (40 mL). The filtrate was concentrated *in vacuo* and the resulting crude product filtered through a short plug of silica to afford the title compound (52.4 mg, 87%) as a colorless amorphous solid.

 R_f = 0.57 (AcOEt). IR (ATR): 3363 (w, br), 2940 (w, sh), 2886 (w), 1671 (m), 1604 (s), 1284 (m), 1175 (m), 1034 (m), 702 (w). ¹H NMR, COSY (400 MHz, CDCl₃): δ = 7.86–7.80 (AA'-part of a AA'XX'-system, 2H, H-2, H-6), 7.40–7.31 (m, 4H, Ar-H), 7.30–7.25 (m, 1H, H-4"), 6.55–6.47 (XX'-part of a AA'XX'-system, 2H, H-3, H-5), 5.18 (s, 1H, NH), 4.68 (d, *J* = 6.6 Hz, 1H, OC*H*₂O), 4.63 (d, *J* = 6.6 Hz, 1H, OC*H*₂O), 4.62 (m, 1H, H-1') 3.90 (dd, *J* = 10.5, 4.0 Hz, 1H, H_a-2'), 3.71 (dd, *J* = 10.5, 7.6 Hz, 1H, H_b-2'), 3.31 (s, 3H, OC*H*₃). ¹³C NMR, HMBC, HSQC (101 MHz, CDCl₃): δ = 171.6 (COOH), 151.9 (C4), 139.6 (C1"), 132.2 (2C, C2, C6), 128.9 (2C, C3",

C5"), 127.9 (C4"), 126.8 (2C, C2", C6"), 117.9 (C1), 112.7 (2C, C3, C5), 96.9 (OCH₂O), 72.4 (C2'), 57.8 (C1'), 55.7 (OCH₃). ESI-MS: m/z (%) = 302.1 (100) [M+H]⁺. ESI-HRMS: calcd for $[C_{17}H_{19}NO_4Na]^+$: m/z = 324. 1212, found: 324.1222.

4-Methoxy-*N*-[2-(methoxymethoxy)-1-phenylethyl]aniline (7)

According to the general procedure, benzaldehyde (**2a**, 31.8 mg, 0.30 mmol 1.5 eq) was reacted with 4-methoxyaniline (**1e**, 24.6 mg, 0.20 mmol) and DMM (2.5 mL). After 20 h, purification by thin-layer chromatography (cyclohexane/AcOEt/NEt₃ = 90/7/3) afforded the title compound (42.8 mg, 75%) as a yellow oil. The minor regioisomer *N*-(2,2-dimethoxy-1-phenylethyl)-4-methoxyaniline could not be separated (isomeric ratio 4.3:1)

R_f = 0.37(cyclohexane/AcOEt/Et₃N = 7.5/2.0/0.5). ¹H NMR, COSY (400 MHz, CDCl₃): δ = 7.45–7.39 (m, 2H, H-2", H-6"), 7.36–7.29 (m, 2H, H-3", H-5"), 7.28–7.24 (m, 1H, H-4"), 6.77–6.66 (BB'-part of a AA'BB'-system, 2H, H-3, H-5), 6.52–6.47 (AA'-part of a AA'BB'-system, 2H, H-2, H-6), 4.68 (d, J = 6.6 Hz, 1H, OCH₂O), 4.63 (d, J = 6.6 Hz, 1H, OCH₂O), 4.46 (dd, J = 8.3, 4.0 Hz, 1H, H-1'), 3.83 (dd, J = 10.3, 4.0 Hz, 1H, H_a-2'), 3.69 (s, 3H, OCH₃), 3.63 (dd, J = 10.3, 8.3 Hz, 1H, H_b-2'), 3.32 (s, 3H, CH₂OCH₃). ¹³C NMR, HMBC, HSQC (75 MHz, CDCl₃): δ = 152.3 (C4), 141.8 (C1), 140.8 (C1"), 128.8 (2C, C3", C5"), 127.9 (C4"), 127.0 (2C, C2", C6"), 115.2 (2C, C2, C6), 114.8 (2C, C3, C5), 96.8 (OCH₂O), 72.6 (C2'), 59.2 (C1'), 55.8 (OCH₃), 55.6 (CH₂OCH₃). ESI-MS: *m/z* (%) = 288.1 (100) [M+H]⁺. ESI-HRMS: calcd for [C₁₇H₂₁NO₃Na]⁺: *m/z* = 310.1419, found: 310.1415.

N-[2-(Methoxymethoxy)-1-phenylethyl]-2,4,6-trimethylaniline (8)

According to the general procedure, benzaldehyde (**2a**, 31.8 mg, 0.30 mmol 1.5 eq) was reacted with 2,4,6-trimethylaniline (**1f**, 27.0 mg, 0.20 mmol) and DMM (2.5 mL). After 20 h, purification

by thin-layer chromatography (cyclohexane/AcOEt/NEt₃ = 90/7/3) afforded the title compound (46.0 mg, 77%) as a yellow oil. The minor regioisomer *N*-(2,2-dimethoxy-1-phenylethyl)-2,4,6-trimethylaniline could not be separated (isomeric ratio 4.6:1).

R_f = 0.44 (cyclohexane/AcOEt/NEt₃ = 90/7/3). ¹H NMR, COSY (300 MHz, CDCl₃): δ = 7.40– 7.23 (m, 5H, Ar-H), 6.77 (s, 2H, H-3, H-5), 4.59 (s, 2H, OCH₂O), 4.30 (pseudo-t, *J* = 4.9 Hz, 1H, H-1'), 3.9–3.81 (m, 2H, H_a-2', H_b-2'), 3.20 (s, 3H, OCH₃), 2.20 (s, 3H, C4-CH₃), 2.15 (s, 6H, C2-CH₃, C6-CH₃). ¹³C NMR, HMBC, HSQC (75 MHz, CDCl₃): δ = 142.4 (C1), 142.2 (C2"), 129.6 (2C, C3, C5), 128.4 (2C, C3", C5"), 127.2 (C4"), 127.2 (2C, C2", C6"), 96.8 (OCH₂O), 70.8 (C2'), 61.4 (C1'), 55.5 (OCH₃), 20.7 (C4-CH3), 18.9 (2C, C2-CH₃, C6-CH₃). Three quaternary carbons could not be dedicated out of the mixture. ESI-MS: *m/z* (%) = 300.1 (100) [M+H]⁺. ESI-HRMS: calcd for [C₁₉H₂₅NONa]⁺: *m/z* = 322.1783, found: 322.1787.

N-[1-(2,4-Dimethoxyphenyl)-2-(methoxymethoxy)ethyl]-4-methylaniline (9)

According to the general procedure, 2,4-dimethoxybenzaldehyde (**2b**, 49.9 mg, 0.30 mmol 1.5 eq) was reacted with *p*-toluidine (**1b**, 21.4 mg, 0.20 mmol) and DMM (2.5 mL). After 20 h, purification by thin-layer chromatography (cyclohexane/AcOEt/NEt₃ = 80/15/5) afforded the title compound (47.0 mg, 71%) as a yellow oil. The minor regioisomer *N*-[1-(2,4-dimethoxyphenyl)-2,2-dimethoxyethyl]-4-methylaniline could not be separated (isomeric ratio 3.5:1).

CDCl₃): $\delta = 160.1$ (CH₃OC_q), 157.9 (CH₃OC_q), 145.4 (C1), 129.6 (2C, C3, C5), 128.5 (C6"), 126.6 (C4) 120.5 (C1"), 113.9 (2C, C2, C6), 104.3 (C5"), 98.7 (C3"), 96.7 (OCH₂O), 70.9 (C2'), 55.5 (CH₂OCH₃), 55.5 (OCH₃), 55.4 (OCH₃), 52.4 (C1'), 20.5 (C4-CH₃). Three carbons at 145.4, 126.6, 120.6 were dedicated out of the HMBC spectrum. ESI-MS: m/z (%) = 332.0 (100) [M+H]⁺. ESI-HRMS: calcd for [C₁₉H₂₅NO₄Na]⁺: m/z = 354.1681, found: 354.1690.

N-[1-Cyclohexyl-2-(methoxymethoxy)ethyl]-4-methylaniline (13)

According to the general procedure, cyclohexanecarbaldehyde (2e, 33.7 mg, 0.30 mmol 1.5 eq) was reacted with *p*-toluidine (1b, 21.4 mg, 0.20 mmol) and DMM (2.5 mL). After 20 h reaction time, the crude product was isolated as described and purified by HPLC (ACE 5 C18-PFP, 150 x 30 mm, isocratic: water/acetonitrile for 2 min (90/10), 30 mL/min, then gradient 15 min \rightarrow 100% acetonitrile 30 mL/min, 17.8 min) to afforded the title compound (28.85 mg, 52%) as a colorless oil.

 R_f = 0.50 (cyclohexane/AcOEt/Et₃N = 7.5/2.0/0.5). IR (ATR): 3400 (w, br), 2923 (s), 2852 (m), 1681 (m), 1520 (s), 1146 (m), 1112 (m), 1045 (s), 807 (m). ¹H NMR, COSY (400 MHz, CDCl₃): δ = 6.99–6.92 (XX'-part of a AA'XX'-system, 2H, H-3, H-5), 6.56–6.50 (AA'-part of a AA'XX'system, 2H, H-2, H-6), 4.61 (d, *J* = 6.5 Hz, 1H, OC*H*₂O), 4.59 (d, J = 6.5 Hz, 1H, OC*H*₂O), 3.65– 3.56 (m, 2H, H_a-2', H_b-2'), 3.34 (s, 3H, OC*H*₃), 3.31–3.25 (m, 1H, H-1'), 2.22 (s, 3H, C4-CH₃), 1.95–1.87 (m, 1H, C*H*₂), 1.81–1.70 (m, 3H, C*H*₂), 1.70–1.59 (m, 2H, C*H*₂), 1.31–0.97 (m, 5H, C*H*₂). ¹³C NMR, HMBC, HSQC (75 MHz, CDCl₃): δ = 146.0 (C1), 129.9 (2C, C3, C5) 126.2 (C4), 113.5 (2C, C2, C6), 96.9 (OCH₂O), 67.5 (C2'), 58.1 (C1'), 55.5 (OCH₃), 39.9 (C1"), 30.0, 29.5, 26.7, 26.6, 26.6 (5 × CH₂), 20.5 (C4-CH₃). ESI-MS: *m/z* (%) = 278.2 (100) [M+H]⁺. ESI-HRMS: calcd for [C₁₇H₂₇NO₂Na]⁺: *m/z* = 300.1939, found: 300.1947.

N-[2-(2-Methoxy)-1-phenylethyl]aniline (15)

According to the general procedure, benzaldehyde (**2a**, 31.8 mg, 0.30 mmol 1.5 eq) was reacted with aniline (**1a**, 18.6 mg, 0.20 mmol) and DME (2.5 mL). After 20 h, the reaction mixture was filtered and washed with DCM (40 mL) and ethyl acetate (40 mL). After 20 h, purification by flash-chromatography (cyclohexane/AcOEt/NEt₃ = 90/7/3) afforded the title compound (33.1 mg, 61%) as a colorless oil.

R_f = 0.30 (cyclohexane/AcOEt/Et₃N = 7.0/2.5/0.5). IR (ATR): 3390 (w, br), 3025 (w), 2924 (m, sh), 1733 (w), 1601 (s), 1504 (s), 1104 (s, sh), 751 (s), 701 (s, sh). ¹H NMR, COSY (300 MHz, CDCl₃): δ = 7.44–7.39 (m, 2H, H-2", H-6"), 7.36–7.29 (m, 2H, H-3", H-5"), 7.28–7.24 (m, 1H, H-4"), 7.11–7.03 (m, 2H, H-3, H-5), 6.66 (tt, *J* = 7.3, 1.1 Hz, 1H, H-4), 6.55–6.59 (m, 2H, H-2, H-6), 4.53 (dd, *J* = 9.0, 4.0 Hz, 1H, H-1'), 3.75 (dd, *J* = 10.3, 4.0 Hz, 1H, H_a-2'), 3.68 (pseudo-t, *J* = 4.5 Hz, 1H, H_a-1"'), 3.65–3.61 (m, 1H, H_b-1"'), 3.60–3.52 (m, 3H, CH₂), 3.39 (s, 3H, OCH₃). ¹³C NMR, HMBC, HSQC (75 MHz, CDCl₃): δ = 147.9 (C1), 140.8 (C1"), 129.1 (2C, C3, C5), 128.8 (2C, C3", C5"), 127.5 (C4"), 126.9 (2C, C2", C6"), 117.7 (C4), 114.1 (2C, C2, C6), 75.9 (C2'), 72.0 (C2"'), 70.3 (C1"'), 59.2 (OCH₃), 58.2 (C1'). ESI-MS: *m/z* (%) = 272.1 (100) [M+H]⁺. ESI-HRMS: calcd for [C₁₇H₂₁NO₂Na]⁺: *m/z* = 294.1470 found: 294.1470.

N-[2-(2-Methoxy)-1-phenylethyl]-4-methylaniline (16)

According to the general procedure, benzaldehyde (**2a**, 31.8 mg, 0.30 mmol 1.5 eq) was reacted with *p*-toluidine (**1b**, 21.4 mg, 0.20 mmol) and DME (2.5 mL). After 20 h, purification by chromatography (cyclohexane/AcOEt/NEt₃ = 90/7/3) afforded the title compound (36.5 mg, 64%) as a pale yellow oil.

 $R_f = 0.30$ (cyclohexane/AcOEt/Et₃N = 7.5/2.0/0.5). IR (ATR): 3383 (w, br), 2919 (m, sh), 1618 (m), 1520 (s), 1453 (m), 1106 (s, sh), 809 (m), 702 (m). ¹H NMR, COSY (400 MHz, CDCl₃): $\delta =$

7.44–7.39 (m, 2H, H-2", H-6"), 7.35–7.29 (m, 2H, H-3", H-5"), 7.27–7.22 (m, 1H, H-4"), 6.91– 6.85 (XX'-part of a AA'XX'-system, 2H, H-3, H-5), 6.47–6.41 (AA'-part of a AA'XX'-system, 2H, H-2, H-6), 4.50 (dd, J = 9.1, 4.0 Hz, 1H, H-1'), 3.73 (dd, J = 10.3, 4.0 Hz, 1H, H_a-2'), 3.71– 3.66 (m, 1H, H_a-1"), 3.64–3.59 (m, 1H, H_b-1"), 3.59–3.57 (m, 1H, H_b-2'), 3.56–3.52 (m, 2H, H_a-2"'', H_b-2"'), 3.39 (s, 3H, OCH₃), 2.18 (s, 3H, C4-CH₃). ¹³C NMR, HMBC, HSQC (101 MHz, CDCl₃): $\delta = 145.5$ (C1), 140.8 (C1"), 129.4 (2C, C3, C5), 128.6 (2C, C3", C5"), 127.3 (C4"), 126.8 (2C, C2", C6"), 126.7 (C4), 114.1 (2C, C2, C6), 75.8 (C2'), 71.8 (C2"'), 70.1 (C1"'), 59.1 (OCH₃), 58.3 (C1'), 20.4 (C4-CH₃). ESI-MS: m/z (%) = 286.1 (100) [M+H]⁺. ESI-HRMS: calcd for [C₁₈H₂₃NO₂Na]⁺: m/z = 308.1626, found: 308.1637.

N-[2-(2-Methoxy)-1-phenylethyl]-2,4,6-trimethylaniline (17)

According to the general procedure, benzaldehyde (**2a**, 31.8 mg, 0.30 mmol 1.5 eq) was reacted with 2,4,6-trimethylaniline (**1f**, 27.0 mg, 0.20 mmol) and DME (2.5 mL). After 20 h, purification by chromatography (cyclohexane/AcOEt/NEt₃ = 90/7/3) afforded the title compound (26.9 mg, 43%) as a yellow oil.

R_f = 0.40 (cyclohexane/AcOEt/Et₃N = 7.5/2.0/0.5). IR (ATR): 3383 (w, br), 2922 (s, sh), 2873 (s), 1734 (m), 1485 (s), 1453 (s), 1109 (s, sh), 734 (m) 700 (s). ¹H NMR, COSY (300 MHz, CDCl₃): δ = 7.39–7.33 (m, 2H, H-2", H-6"), 7.33–7.27 (m, 2H, H-3", H-5"), 7.27–7.21 (m, 1H, H-4"), 6.75 (s, 2H, H-3, H-5), 4.27 (t, *J* = 5.0 Hz, 1H, H-1'), 3.79 (d, *J* = 5.0 Hz, 2H, H-2'), 3.60–³⁵3.55 (m, 2H, H-1"), 3.52–3.46 (m, 2H, H-2"'), 3.32 (s, 3H, OCH₃), 2.19 (s, 3H, C4-CH₃), 2.14 (s, 6H, C2-CH₃, C6-CH₃). ¹³C NMR, HMBC, HSQC (75 MHz, CDCl₃): δ = 142.3 (2C, C1, C1'), 130.8 (C4), 129.6 (2C, C3, C5), 129.5 (2C, C2, C6), 128.3 (2C, C3", C5"), 127.3 (2C, C2", C6"), 127.2 (C4"), 74.7 (C2'), 72.0 (C2"'), 70.7 (C1"'), 61.5 (C1'), 59.1 (OCH₃), 20.7 (C4-CH₃), 18.9

 $(2C, C2-CH_3, C6-CH_3)$ ESI-MS: m/z (%) = 314.2 (100) $[M+H]^+$. ESI-HRMS: calcd for $[C_{20}H_{28}NO_2]^+$: m/z =314.2120, found: 314.2119.

4-{[2-(2-Methoxy)-1-phenylethyl]amino}benzoic acid (18)

According to the general procedure, benzaldehyde (**2a**, 31.8 mg, 0.30 mmol 1.5 eq) was reacted with 4-aminobenzoic acid (**1d**, 27.4 mg, 0.20 mmol) and DME (2.5 mL). After 20 h, the reaction mixture was filtered and the filter cake was washed with DCM (40 mL) and methanol (40 mL). The combined filtrates were concentrated *in vacuo* and the resulting crude product purified by HPLC (ACE 5 C18-PFP, 150 x 30 mm, isocratic: water/acetonitrile (60/40), 30 mL/min, 9.3 min) to afforded the title compound (32.8 mg, 52%) as a colorless amorphous solid.

R_f = 0.52 (AcOEt). IR (ATR): 3344 (w, br), 2891 (w, br), 1671 (m), 1604 (s), 1528 (m), 1420 (m), 1283 (m), 1102 (m, sh). ¹H NMR, COSY (600 MHz, CDCl₃): δ = ¹H NMR 7.80 (d, *J* = 8.4 Hz, 2H, H-2, H-6), 7.38–7.35 (m, 2H, H-2", H-6"), 7.35–7.31 (m, 2H, H-3", H-5"), 7.29–7.25 (m, 1H, H-4"), 6.48 (d, *J* = 8.4 Hz, 2H, H-3, H-5), 5.31 (br s, 1H, NH), 4.61 (dd, *J* = 8.1, 3.4 Hz, 1H, H-1'), 3.80 (dd, *J* = 10.4, 3.4 Hz, 1H, H_a-2'), 3.72–3.67 (m, 1H, H_a-1") 3.65–3.59 (m, 2H, H_b-2', H_b-1""), 3.59–3.53 (m, 2H, H_a-2"", H_b-2"), 3.40 (s, 3H, OC*H*₃). ¹³C NMR, HMBC, HSQC (151 MHz, CDCl₃): δ = 171.5 (COOH), 152.2 (C4), 139.7 (C1"), 132.2 (2C, C2, C6), 129.0 (2C, C3", C5"), 127.9 (C4"), 126.7 (2C, C2", C6"), 118.0 (C1), 112.9 (2C, C3, C5), 75.5 (C2'), 72.0 (C2""), 70.5 (C1""), 59.2 (OCH₃), 57.7(C1'). Two carbons at 171.5, 118.0 were dedicated out of the HMBC spectrum. ESI-MS: *m/z* (%) = 316.1 (100) [M+H]⁺. ESI-HRMS: calcd for [C₁₈H₂₁NO₄Na]⁺: *m/z* = 338.1368, found: 338.1376.

N-[1-Cyclohexyl-2-(2-methoxyethoxy)ethyl]-4-methylaniline (19)

The Journal of Organic Chemistry

According to the general procedure, cyclohexanecarbaldehyde (2e, 33.7 mg, 0.30 mmol 1.5 eq) was reacted with *p*-toluidine (1b, 21.4 mg, 0.20 mmol) and DME (2.5 mL). After 20 h, purification by thin-layer chromatography (cyclohexane/AcOEt/NEt₃ = 7.5/2.0/0.5) afforded the title compound (22.1 mg, 38%) as a colorless oil.

 R_f = 0.45 (cyclohexane/AcOEt/Et₃N = 7.5/2.0/0.5). IR (ATR): 3385 (w, br), 2923 (s), 2853 (m), 1618 (m), 1520 (s), 1449 (m) 1251 (m), 1119 (m, sh), 807 (m). ¹H NMR, COSY (300 MHz, CDCl₃): δ = 6.98–6.91 (XX'-part of a AA'XX'-system, 2H, H-3, H-5,), 6.56–6.50 (AA'-part of a AA'XX'-system, 2H, H-2, H-6), 3.60–3.53 (m, 3H, CH₂), 3.53–3.47 (m, 3H, CH₂), 3.37 (s, 3H, OCH₃), 3.27 (pseudo-q, *J* = 4.9 Hz, 1H, H-1'), 2.22 (s, 3H, C4-CH₃), 1.92–1.82 (m, 1H, CH₂), 1.81–1.69 (m, 3H, CH₂), 1.69–1.58 (m, 2H, CH₂), 1.32–0.93 (m, 5H, CH₂). ¹³C NMR, HMBC, HSQC (101 MHz, CDCl₃): δ = 146.2 (C1), 129.9 (2C, C3, C5), 126.1 (C4), 113.5 (2C, C2, C6), 72.1 (C2"), 70.9 (C2'), 70.7 (C1"), 59.2 (OCH₃), 58.1 (C1'), 39.8 (C1""), 29.9, 29.4, 26.7, 26.6, 26.6 (5 x CH₂), 20.5 (C4-CH₃). ESI-MS: *m/z* (%) = 292.2 (100) [M+H]⁺. ESI-HRMS: calcd for [C₁₈H₂₉NO₂Na]⁺: *m/z* = 314.2096, found: 314.2100.

2-[(4-Methylphenyl)amino]-2-phenylethanol (20a)

TiO₂ (20 mg, 0.25 mmol, 1.3 eq), and $(NH_4)_2S_2O_8$ (6 mg) were dispersed in a mixture of water (2.5 mL) and DMM (2.5 mL). After the addition of benzaldehyde (**2a**, 31.8 mg, 0.30 mmol 1.5 eq) and *p*-toluidine (**1b**, 21.4 mg, 0.20 mmol), the reaction mixture was degassed with argon for 1 min and stirred for 20 h under UV-A (400 W) at room temperature. Then it was filtered and the filter cake was washed with DCM (40 mL) and ethyl acetate (40 mL). The combined filtrates were concentrated *in vacuo* and the resulting residue dissolved in DCM (40 mL) and filtered again. After the removal of DCM, the residue was dissolved in THF (0.2 mL). To the resulting mixture were added water (0.5 mL) and 1M HCl (4 mL) and the mixture was stirred at 60 °C for

12 h. After cooling to room temperature, water (10 mL) was added and the solution was made alkaline by addition of 1N NaOH prior to extraction with DCM (3 x 20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (cyclohexane/AcOEt = 4/1) to afforded the title compound (21.8 mg, 48%) as a yellow oil).

R_f = 0.21 (cyclohexane/AcOEt/Et₃N = 7.0/2.5/0.5). IR (ATR): 3388 (s, br), 3025 (m), 2920 (m), 2868 (m), 1616 (m), 1517 (s), 1302 (m), 1068 (m), 808 (s), 701 (m). ¹H NMR, COSY (400 MHz, CDCl₃): δ = 7.39–7.32 (m, 4H, Ar-H), 7.30–7.24 (m, 1H, H-1'), 6.96–6.90 (XX'-part of a AA'XX'-system, 2H, H-3", H-5"), 6.54–6.49 (AA'-part of a AA'XX'-system, 2H, H-2", H-6"), 4.49 (dd, *J* = 7.2, 4.2 Hz, 1H, H-2), 3.93 (dd, *J* = 11.1, 4.2 Hz, 1H, H_a-1), 3.73 (dd, *J* = 11.1, 7.2 Hz, 1H, H_b-1), 2.21 (s, 3H, C4"-CH₃). ¹³C NMR, HMBC, HSQC (101 MHz, CDCl₃): δ = 145.0 (C1"), 140.4 (C1'), 129.8 (2C, C3", C5"), 128.9 (2C, C3', C5'), 127.7 (C4'), 127.3 (C4"), 126.8 (2C, C2', C6'), 114.2 (2C, C2", C6"), 67.5 (C1), 60.3 (C2), 20.5 (C4"-CH₃). ESI-MS: *m/z* (%) = 228.1 (100) [M+H]⁺.

The spectroscopic data are in accordance with the literature.³⁷

2-Phenyl-2-(phenylamino)ethanol (20b)

TiO₂ (20 mg, 0.25 mmol, 1.3 eq), and $(NH_4)_2S_2O_8$ (6 mg) were dispersed in a mixture of water (2.5 mL) and DMM (2.5 mL). After the addition of benzaldehyde (**2a**, 31.8 mg, 0.30 mmol 1.5 eq) and aniline (**1a**, 18.6 mg, 0.20 mmol), the reaction mixture was degassed with argon for 1 min and stirred for 20 h under UV-A (400 W) at room temperature. Then it was filtered and washed with DCM (40 mL) and ethyl acetate (40 mL). The filtrate was concentrated *in vacuo* and the resulting residue dissolved in DCM (40 mL) and filtered again. After the removal of DCM the residue was dissolved in THF (0.2 mL). To the resulting mixture were added water (0.5 mL) and

The Journal of Organic Chemistry

1M HCl (4 mL) and the mixture was stirred at 60 °C for 12 h. After cooling to room temperature, water (10 mL) was added and the solution was made alkaline by addition of 1N NaOH prior to extraction with DCM (3 x 20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (cyclohexane/AcOEt = 8/2) to afforded the title compound (17.9 mg, 42%) as a yellow oil). $R_f = 0.19$ (cyclohexane/AcOEt/Et₃N = 7.0/2.5/0.5). IR (ATR): 3520 (m, sh), 3396 (s, br), 1601

(s), 1503 (s), 1316 (m), 1066 (m), 1028 (m), 750 (s), 649 (s). ¹H NMR, COSY (300 MHz, CDCl₃): δ = 7.41–7.31 (m, 4H, H-2", H-3", H-5", H-6"), 7.31–7.24 (m, 1H, H-4"), 7.15–7.06 (m, 2H, H-3', H-5'), 6.68 (tt, *J* = 7.4, 1.0 Hz, 1H, H-4'), 6.61–6.54 (m, 2H, H-2', H-6'), 4.52 (dd, *J* = 6.9, 4.2 Hz, 1H, H-2), 3.96 (dd, *J* = 11.1, 4.2 Hz, 1H, H_a-1), 3.77 (dd, *J* = 11.1, 6.9 Hz, 1H, H_b-1). ¹³C NMR, HMBC, HSQC (75 MHz, CDCl₃): δ 147.2 (C1'), 140.1 (C1"), 129.3 (2C, C3', C5'), 129.0 (2C, C3", C5"), 127.8 (C4"), 126.9 (2C, C2", C6"), 118.1 (C4'), 114.1 (2C, C2', C6'), 67.5 (C1), 60.1 (C2). ESI-MS: *m/z* (%) = 214.0 (100) [M+H]⁺.

The spectroscopic data are in accordance with the literature.³⁷

Acknowledgements

We thank Stefan Pusch (Mainz) for the DFT calculations, Dr. J. C. Liermann (Mainz) for NMR spectroscopy and Dr. N. Hanold (Mainz) for mass spectrometry.

Supporting Information

One- and two-dimensional NMR spectra of all compounds. This material is available free of charge via the Internet at http://pubs.acs.org

References

- Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 10236-10254.
- (2) Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212-11222.
- (3) Andreatta, J. R.; McKeown, B. A.; Gunnoe, T. B. J. Organomet. Chem. 2011, 696, 305-315.
- (4) Nakao, Y. Chem. Rec. 2011, 11, 242-251.
- (5) Foley, N. A.; Lee, J. P.; Ke, Z.; Gunnoe, T. B.; Cundari, T. R. Acc. Chem. Res. 2009, 42, 585-597.
- (6) Godula, K.; Sames, D. *Science* **2006**, *312*, 67-72.
- Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. *Chem. Eur. J.* 2010, 16, 2654-2672.
- (8) Ramachary, D. B.; Jain, S. Org. Biomol. Chem. 2011, 9, 1277-1300.
- (9) Pellissier, H. Chem. Rev. 2013, 113, 442-524.
- (10) Brauch, S.; Gabriel, L.; Westermann, B. Chem. Commun. 2010, 46, 3387-3389.
- (11) Essamlali, Y.; Amadine, O.; Maati, H.; Abdelouahdi, K.; Fihri, A.; Zahouily, M.; Varma,
 R. S.; Solhy, A. *ACS Sustainable Chem. Eng.* 2013, *1*, 1154-1159.
- (12) Azath, I. A.; Puthiaraj, P.; Pitchumani, K. ACS Sustainable Chemistry & Engineering
 2013, 1, 174-179.
- (13) Brahmachari, G.; Banerjee, B. ACS Sustainable Chemistry & Engineering 2014, 2, 411422.
- (14) Rossi, B.; Pastori, N.; Prosperini, S.; Punta, C. Beilstein J. Org. Chem. 2015, 11, 66-73.
- (15) Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Green Chem. 2014, 16, 2958-2975.
- (16) Bergmeier, S. C. *Tetrahedron* **2000**, *56*, 2561-2576.

ACS Paragon Plus Environment

3
4
5
S C
0
1
8
9
10
11
10
12
13
14
15
16
17
18
10
20
2U
21
22
23
24
25
26
20
21
28
29
30
31
32
33
24
34
35
36
37
38
39
40
- - -U /1
41
42
43
44
45
46
47
<u>1</u> 8
- - -0 /0
49
50
51
52
53
54
55
56
50
ວ/ ເວິ
58
59
60

- (17) Lahm, G.; Deichmann, J.-G.; Rauen, A. L.; Opatz, T. J. Org. Chem. 2015, 80, 2010-2016.
- (18) Pastori, N.; Gambarotti, C.; Punta, C. Mini-Rev. Org. Chem. 2009, 6, 184-195.
- (19) Rossi, B.; Prosperini, S.; Pastori, N.; Clerici, A.; Punta, C. Molecules 2012, 17, 14700.
- (20) Clerici, A.; Porta, O. *Tetrahedron Lett.* **1990**, *31*, 2069-2072.
- (21) Cannella, R.; Clerici, A.; Pastori, N.; Regolini, E.; Porta, O. Org. Lett. 2005, 7, 645-648.
- (22) Zhang, L.; Deng, Y.; Shi, F. Tetrahedron Lett. 2013, 54, 5217-5219.
- (23) Yamada, K.-i.; Fujihara, H.; Yamamoto, Y.; Miwa, Y.; Taga, T.; Tomioka, K. *Org. Lett.* **2002**, *4*, 3509-3511.
- (24) Jin, J.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2015, 54, 1565-1569.
- (25) Tauber, J.; Imbri, D.; Opatz, T. *Molecules* **2014**, *19*, 16190.
- (26) Corey, E. J.; Zhang, F.-Y. Angew. Chem. Int. Ed. 1999, 38, 1931-1934.
- (27) Yadav, J. S.; Reddy, A. R.; Narsaiah, A. V.; Reddy, B. V. S. J. Mol. Catal. A: Chem.
 2007, 261, 207-212.
- (28) Subhas Bose, D.; Venkat Narsaiah, A. *Bioorg. Med. Chem.* 2005, 13, 627-630.
- (29) O'Brien, P. Angew. Chem. Int. Ed. 1999, 38, 326-329.
- (30) Nilov, D.; Reiser, O. Adv. Synth. Catal. 2002, 344, 1169-1173.
- (31) Bodkin, J. A.; McLeod, M. D. J. Chem. Soc., Perkin Trans. 1 2002, 2733-2746.
- (32) Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421-431.
- (33) Williamson, K. S.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 4570-4571.
- (34) Selva, M.; Fabris, M.; Lucchini, V.; Perosa, A.; Noe, M. Org. Biomol. Chem. 2010, 8, 5187-5198.
- (35) Li, G.; Chang, H.-T.; Sharpless, K. B. Angew. Chem. Int. Ed. 1996, 35, 451-454.
- (36) Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Melchiorre, P.; Sambri, L. *Org. Lett.*2004, 6, 3973-3975.

- (37) Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am.
 Chem. Soc. 2011, 133, 15372-15375.
 - (38) Kison, C.; Opatz, T. Eur. J. Org. Chem. 2008, 2008, 2740-2745.
 - (39) Akindele, T.; Yamamoto, Y.; Maekawa, M.; Umeki, H.; Yamada, K.-i.; Tomioka, K. Org.
 Lett. 2006, *8*, 5729-5732.
 - (40) Yamada, K.-i.; Nakano, M.; Maekawa, M.; Akindele, T.; Tomioka, K. Org. Lett. 2008, 10, 3805-3808.
 - (41) Clerici, A.; Ghilardi, A.; Pastori, N.; Punta, C.; Porta, O. Org. Lett. 2008, 10, 5063-5066.
 - (42) Prosperini, S.; Pastori, N.; Ghilardi, A.; Clerici, A.; Punta, C. *Org. Biomol. Chem.* 2011, 9, 3759-3767.
- (43) Aldridge, C. L.; Zachry, J. B.; Hunter, E. A. J. Org. Chem. 1962, 27, 47-51.
- (44) Dyker, G. J. Org. Chem. 1993, 58, 6426-6428.
- (45) Ohishi, T.; Yamada, J.; Inui, Y.; Sakaguchi, T.; Yamashita, M. J. Org. Chem. 1994, 59, 7521-7522.