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Abstract
The introduction of a biomass-derived ionic liquid into the Hiyama coupling reactions, which has been considered as a 
powerful tool for the synthesis of symmetrically and non-symmetrically substituted biaryl structures, could further control 
or even reduce the environmental impact of this transformation. It was shown that tetrabutylphosphonium 4-ethoxyvaler-
ate, a γ-valerolactone-based ionic liquid, can be utilized as an alternative solvent to create carbon–carbon bonds between 
aryl iodides and functionalized organosilanes in the presence of 1 mol% Pd under typical Hiyama conditions (130 °C, 24 h, 
tetrabutylammonium fluoride activator). A comparison of different ionic liquids was performed, and the effects of the cata-
lyst precursor and the moisture content of the reaction mixture on the activity of the catalyst system were investigated. The 
functional group tolerance was also studied, resulting in 15 cross-coupling products (3a–o) with isolated yields of 45–72% 
and excellent purity (> 98%).
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Introduction

The transition-metal-catalyzed cross-coupling reactions have 
emerged as one of the most powerful tools for the creative 
construction of both C–C and C–X (X: heteroatom) bonds, 
especially in multistep synthesis of biologically active com-
pounds (Yang et al. 2017; Shi et al. 2011; Hosseinian et al. 
2018; Jana et al. 2011). From the series of typically applied 
d10 metals, the palladium-catalyzed transformations have 

received outstanding interest, due to their excellent chemo
selectivity, functional group tolerance, and mild operation 
conditions, which are of great importance in the synthesis 
of pharmaceuticals and agrochemicals (Devendar et  al. 
2018; Johansson Seechurn et al. 2012; Biajoli et al. 2014; 
González-Sebastián and Morales–Morales 2019). Among 
these reactions, the Hiyama coupling represents an excel-
lent protocol for the synthesis of symmetrically and non-
symmetrically substituted biaryl structures via coupling of 
corresponding aryl halides and organosilanes (Hatanaka and 
Hiyama 1988; Sore et al. 2012; Nakao and Hiyama 2011). 
The latter, as transmetalation reagents exhibit several advan-
tages over organoboranes or organostannanes, such as low 
cost, low toxicity, ready availability, and high chemical sta-
bility. The protocol exhibits high regio- and stereochemistry, 
as well (Horn 1995; Nakao and Hiyama 2011). The silicon 
waste of the reaction can easily be incinerated to harmless 
SiO2. All of these points have made the Hiyama coupling an 
environmentally attractive method; however, it had received 
limited attention in comparison with Heck, Sonogashira, or 
Suzuki reaction, before the improved synthetic approaches 
towards novel organosilane compounds renewed its impor-
tance (Denmark and Regens 2008; Denmark and Liu 2010). 
Depending on the structure and/or nature of organosilanes, 
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i.e., vinyl silanes (Wolf and Lerebours 2004), alkoxysilanes, 
silanols (Hirabayashi et al. 1999), and silanolates (Denmark 
et al. 2008), a huge variety of application scope can be drawn 
including representation of a key step in the total synthesis 
of complex structures, for example, the total synthesis of 
(+)–brasilenyne (Denmark and Yang 2004) and of (+)-papu-
lacandin D (Denmark et al. 2007).

Despite these advantages, the Hiyama couplings are usu-
ally performed in common organic solvents, which usually 
have high toxicity, flammability, and vapor pressure even at 
low temperatures resulting in serious environmental con-
cerns. As reported by U.S. FDA guidelines (CDER 2017), 
the commonly used solvents for the Hiyama reactions such 
as tetrahydrofuran (Miller and Montgomery 2014; Cheng 
et al. 2013), dioxane (Zhang et al. 2014), N,N-dimethylfor-
mamide (Handy et al. 2005), toluene (Denmark et al. 2008), 
and 1,2-dichloroethane (Ramgren and Garg 2014) are classi-
fied into Class 1 and 2, which utilizations should be avoided 
or limited, respectively, particularly in the pharmaceutical 
industry. To eliminate these hazardous auxiliary materials, 
the reactions have been demonstrated in alternative media, 
e.g., water (Sakon et al. 2017; Inés et al. 2011; Wolf and 
Lerebours 2004) or glycerol (Marset et al. 2018). Although, 
numerous Pd-catalyzed coupling reactions such as Suzuki, 
Sonogashira, Heck, and Stille were demonstrated in ionic 
liquids (ILs) (Li et al. 2018; Prechtl et al. 2010; Hallett and 
Welton 2011), which have been utilized as versatile and eas-
ily tunable alternative reaction media, and only a few studies 
were published on the Hiyama reaction (Mandal et al. 2019). 
First, Slattery and co-workers demonstrated the applicabil-
ity of 1-pentyl-1-methylpyrrolidinium bis(trifluoromethyl-
sulfonyl)imide ([C5MPyrr][Tf2N]) as a reaction media for 
allyl–aryl coupling under mild conditions (Bäuerlein et al. 
2009). Jain developed a phosphane-free protocol for the 
manufacture of functionalized biaryls with good to excellent 
yields in 3-(3-cyanopropyl)-1-methyl-1H-imidazol-3-ium 
hexafluorophosphate ([CN-bmim][PF6]) by the use of in situ 
generated Pd nanoparticles (Premi and Jain 2013). The effect 
of the ILs on the stabilization of Pd nanoparticles was also 
shown. However, acceptable isolated yields were achieved in 
the presence of a common co-solvent (Planellas et al. 2014).

Although Hiyama coupling is a well-known transforma-
tion, according to the best of our knowledge, it has not been 
carried out in biomass-originated ILs, which could addi-
tionally act as a ligand. Therefore, by the introduction of 
a biomass-based solvent into this synthetically important 
reaction, the environmental impacts of a Hiyama reaction 
involved synthesis could be further controlled and reduced.

Herein, we report a study on the palladium-catalyzed 
Hiyama coupling reactions to synthesize various biaryl 
structures in biomass-originated γ-valerolactone-based 
ionic liquid tetrabutylphosphonium 4-ethoxyvalerate ([TBP]
[4EtOV]) extending its utilization for catalysis.

Experimental

Materials and equipment

The sources of chemicals are listed in the Supplementary 
Material. The γ-valerolactone-based ionic liquids were 
prepared by a published method with details presented in 
Supplementary Material.

The NMR spectra were recorded on a Brucker Avance 
250 MHz spectrometer. Water contents of the ionic liquids 
were determined by Karl Fischer titration performed by 
HANNA Instruments 904. GC analyses were performed 
on an Agilent 6890 N instrument with HP-Innowax capil-
lary column (15 m × 0.25 μm × 0.25 μm) using H2 as a 
carrier gas.

General procedure for Hiyama coupling reactions

In a 4 mL screw-cap vial, 0.5 mmol of the corresponding 
iodoarene compounds, 1.5 eq of the corresponding silane, 
1.5 eq of tetrabutylammonium fluoride (TBAF), 0.01 eq 
PdCl2(PPh3)2, and 0.8 mL of tetrabutylphosphonium 4-eth-
oxyvalerate ([TBP][4EtOV]) ionic liquid were mixed and 
stirred at 130 °C for 24 h. After cooling, the mixture was 
partitioned between 5 mL of 1 M HCl and 5 mL of pen-
tane. The aqueous phase was extracted subsequently with 
3 × 5 mL of pentane. The combined organic phase was 
washed with brine, dried over MgSO4, and filtered, and 
the solvent was evaporated under reduced pressure (ca. 
1.333 kPa). The residue was purified by chromatography 
on silica gel (Merck Silicagel 60 (0.063−0.200 mm) for 
column chromatography (70−230 mesh ASTM)) eluted 
with n-pentane:EtOAc. The detailed experimental proce-
dure, as well as the characterization of isolated compounds 
are provided in the Supporting Information.

Preparation and characterization of isolated 
compounds

Preparation and characterization of earlier published com-
pounds (3a–k and 3 m–o) are presented in Supporting 
Information.

1-Phenyl-2-chloro-4-(trifluoromethyl)benzene (3 l) was 
prepared according to general procedure using 0.5 mmol 
2-chloro-1-iodo-4-(trifluoromethyl)benzene, 0.75 mmol 
triethoxyphenylsilane, 0.75  mmol [N(C4H9)4][F]. Iso-
lated yield: 50%. 1H NMR (250 MHz, CDCl3): δ (ppm) 
7.42–7.51 (m, 5H), 7.51–7.54 (m, 1H), 7.56–7.65 (m, 1H), 
7.76–7.83 (m, 1H). 13C NMR (62.9 MHz, CDCl3) 123.8 
(q, J = 272 Hz), 124.1 (q, J = 3.8 Hz), 127.4 (q, J = 3.8 Hz), 
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128.7, 128.8, 129.6, 131.3 (q, J = 33.4 Hz), 132.2, 133.6, 
138.5. HRMS [M + H]+ Calculated: 257.0345, Measured: 
257.0341 (0.5 ppm).

Results and discussion

The applications of ionic liquids into the synthesis protocols 
have become into the focus of interest due to their versatil-
ity and tunability. However, it was shown that the number 
of chemical steps could be over 20 or even 30, reducing 
their impact towards green chemistry (Jessop 2011). Using 
a biomass-originated building block for the synthesis of an 
IL, this number could be significantly reduced. It was shown 
that valerate-based ionic liquids could easily be synthesized 
from γ-valerolactone (Fegyverneki et al. 2010; Orha et al. 
2018), which can be obtained by a two-step synthesis via 
valorization of lignocellulosic biomass wastes (Tukacs et al. 
2014 and 2017).

To demonstrate their further applicability, they were first 
compared to the conventional 1-butyl-3-methylimidazolium 
cation-based ILs in the coupling of iodobenzene (1a) and 
triethoxyphenylsilane (2a) as a model reaction (Scheme 1) 
under typically used “Hiyama conditions” using tetrabuty-
lammonium fluoride as a F− source (Ismalaj et al. 2014). 
As with Sonogashira coupling in ILs (Orha et al. 2019), 
negligible conversion rates of 1a were detected in butyl-
methylimidazolium cation containing ILs (Table 1 entries 
1–3). The reaction efficiency could be significantly increased 
by the introduction of tetrabutylphosphonium 4-ethoxyvaler-
ate [TBP][4EtOV], resulting in the conversion of 1a. The  
product biphenyl (3a) was isolated with a yield of 58% 
(Table 1, entry 6), which could be assumed to be higher by 
subsequent optimization of the reaction parameters. 

The selection of a palladium source could have a sig-
nificant effect on the efficiency of a catalytic transfor-
mation (Błaszczyk et  al. 2009). When different pre-
cursors were compared, it was revealed that using 
of bis(triphenylphosphine)palladium(II) dichloride 
(Pd(PPh3)2Cl2) and tris(dibenzylideneacetone)dipalla-
dium(0) (Pd2(dba)3) gave acceptable yields of 3a (Table 2, 
entries 1 and 5). A similar observation was reported for the 
Sonogashira reaction performed in biomass-originated ILs 
(Orha et al. 2019).

The residual moisture content could dramatically affect 
a transition-metal-catalyzed reaction. In this case, however, 
the fluoride activator ([N(C4H9)4][F], hereafter TBAF) con-
taining 3 eq water, the water content of the reaction mixtures 
was ca 10 m/m%. It exceeds the typical residual water con-
tent of GVL-based ionic liquids (Strádi et al. 2015, Orha 
et al. 2018). Consequently, that, the protocol is hardly sen-
sitive to water up to 10%, can be assumed and no special 
handling of the reaction regarding the exclusion of air and 
moisture is necessary.

Generally, the organosilane activation with fluoride ion, 
that is, the formation of the pentavalent silicon center, is 
considered as a key step. In this way, a facile bond breaking 
of the carbon–silicon bond during transmetalation is favored. 
It was demonstrated that alkali metal salt such as NaF or 
CsF could also act as silane activators for Hiyama coupling 
reactions (Gurung et al. 2013; Monguchi et al. 2012). In 
addition, both ammonium- and phosphonium-based ionic 
liquid have been proved to be good extractants of Pd sug-
gesting their complexing ability (Katsuta et al. 2011; Regel-
Rosocka et al. 2015). Because of high water tolerance of 

Scheme  1   Palladium-catalyzed Hiyama cross-coupling of iodoben-
zene (1a) and triethoxyphenylsilane (2a) in ionic liquid. F− source: 
TBAF

Table 1   Palladium-catalyzed Hiyama coupling reactions of iodoben-
zene (1a) and triethoxyphenylsilane (2a)

Reaction conditions: solvent 0.5 mL, 0.5 mmol iodobenzene, 0.75 
mmol triethoxyphenylsilane, 1 mol% Pd(OAc)2, 1.5 eq TBAF, T = 
130 °C, t = 24 h

Entry Ionic liquids Isolated 
yield 
(%)

1 [BMIM][PF6] < 5
2 [BMIM][BF4] < 1
3 [BMIM][OctS] < 1
4 [TEA][4HV] 10
5 [TBA][4HV] 8
6 [TBP][4EtOV] 58

Table 2   Palladium-catalyzed Hiyama coupling reactions of iodoaro-
matic compounds with triethoxyphenylsilane

Reaction conditions: [TBP][4EtOV] solvent 0.5 mL, 0.5 mmol iodo-
benzene, 0.75 mmol triethoxyphenylsilane, 1 mol% catalyst, 1.5 eq 
TBAF, T = 130 °C, t = 24 h
dba benzylideneacetone, cod: 1,5-cyclooctadiene, OAc acetate

Entry Catalyst precursor Isolated 
yield 
(%)

1 Pd(PPh3)2Cl2 70
2 Pd(OAc)2 58
3 Pd(cod)Cl2 45
4 Pd(dba)2 64
5 Pd2(dba)3 76
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the catalytic reactions, we attempt to convert 1a and 2 to 3 
by the use of cheaper NaF in the presence of the different 
amount of water. However, no conversion was detected up to 
20 wt% water. When 30 wt% of water loading was applied, 
moderate (39%) conversion of 1a to 3a was detected in the 
presence of 2 eqv NaF, even higher activator concentration 
at 130 °C for 24 h. To conclude, the fluoride activator cannot 
be eliminated from the system.

Hereafter, to facilitate C–C bond coupling involving sev-
eral iodoaromatic substances (1a–o) and triethoxyphenyl-
silane (2), bis(triphenylphosphine)palladium(II) dichloride 
was selected as a catalyst precursor by the use of 1.5 eq 
TBAF in the absence of any additional ligands and auxil-
iary base in [TBP][4EtOV] at 130 °C for 24 h (Table 3). 
It was demonstrated that the catalytic system generally 
could be utilized for the conversion of various iodoaromatic 
compounds. The substrate reactivity was not affected by 
the electronic parameters of the aromatic substrates. Thus, 
no Hammet-sigma (σp) correlation can be established for 
para-substituted species. Both electron-donating groups, 
i.e., methyl, tert-butyl, methoxy (Table 3 entries 2–6), and 
electron-withdrawing groups, i.e., chloro, fluoro or trifluo-
romethoxy (Table 2, entries 7–12) were tolerated on the 
aryl iodide. No significant differences of the isolated yields 
were observed. Under identical conditions, iodopyridine 
derivatives and 2-iodothiophene were easily converted to 
the corresponding biphenyls (3 m–o). The conversion of 
4-chloro-1-iodobenzene did not lead to the formation of 
1,4-diphenylbenzene.

The GVL-based [TBP][4EtOV] ionic liquid has been 
proven as an excellent reaction media for transition-metal-
catalyzed C–N (Ullmann type) (Orha et al. 2018) and C–C 
(Sonogashira) (Orha et al. 2019) coupling reactions previ-
ously. In the present work, we demonstrated that its utiliza-
tion can be extended for Hiyama coupling, as well, which 
makes it an attractive biomass-based, environmentally 
friendly alternative for common, fossil-based solvents, and 
opens the possibility for its application in wider range of 
chemical transformations.

Conclusions

In conclusion, we have shown that tetrabutylphosphonium 
4-ethoxyvalerate [TBP][4EtOV], a γ-valerolactone-based 
partially biomass-derived ionic liquid, can be applied as an 
alternative, safer reaction media for palladium-catalyzed 
Hiyama-type carbon–carbon bond-forming reactions of 
iodoaromatic compounds with triethoxyphenylsilane. A 
variety of biphenyl derivatives (3b–l) and aromatic heterocy-
cles (3 m–o) were obtained with 45–72 % yield. The protocol 
that can be performed under air showed excellent tolerance 
to the moisture content of the reaction mixture.
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Table 3   Palladium-catalyzed Hiyama coupling reactions of iodoaro-
matic compounds with triethoxyphenylsilanea

# Iodoaromatic 
compounds

Product Yield 
(%)b

1 1a 3a 70

2 1b 3b 64

3 1c 3c 72

4 1d 3d 69

5 1e 3e 55

6 1f 3f 63

7 1g 3g 45

8 1h 3h 48

9 1i 3i 61

10 1j 3j 68

11 1k 3k 58

12 1l 3l 50

13 1m 3m 55

14 1n 3n 55

15 1o 3o 66

[TBA][4EtOV]

1a-o

+
Pd(PPh3)2Cl2Si(OEt)3

R

TBAF2a 3a-o

I
R

I

I

CH3

IH3C

I

H3C

ItBu

IH3CO

IPh

ICl

IF3CO

IF

I
O

Ph

I

Cl

F3C

N
I

N
I

NH2

S
I

a Reaction conditions: 0.5 mL [TBP][4EtOV], 0.5 mmol iodoaromatic 
compounds, 0.75 mmol triethoxyphenylsilane, 1.5 eq TBAF, T = 130 
°C, t = 24 h
b Isolated yield
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copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.
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