Tetrahedron Letters 54 (2013) 699-702

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Co₂(CO)₈-mediated cycloisomerization of arylene 1,7-enynes

Ping Xing^a, Zuo-gang Huang^b, Yun Jin^a, Biao Jiang^{a,b,*}

^a CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China ^b Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China

ARTICLE INFO

ABSTRACT

Article history: Received 13 July 2012 Revised 12 October 2012 Accepted 7 December 2012 Available online 19 December 2012 $C_{O_2}(CO)_8$ was found to be effective for cycloisomerization reaction of arylene 1,7-enynes to form 2,3dihydroindene derivatives, and a catalytic version assisted by different Lewis base ligands was also studied.

© 2012 Elsevier Ltd. All rights reserved.

etrahedro

Keywords: Dicobalt octacarbonyl Cycloisomerization 1,7-Enyne 2,3-Dihydroindene

Cycloisomerization of various aliphatic or aromatic enynes has been regarded as an important synthetic method for functionalized cyclic structures. A number of transition metals have been used as effective mediators or catalysts in these transformations.¹ Among them, cobalt species have been well known for affecting [2+2+2] cyclotrimerizations,² Pauson-Khand reactions,³ Diels-Alder reactions,⁴ and ene type reactions.⁵ In particular, Co(I) species were able to promote cycloisomerizations.⁶ However, to the best of our knowledge, Co(0) species are rarely used for this purpose, and the only example we could find was the 5-endo-dig cycloisomerization of 1,6-enynes in the presence of $Co_2(CO)_{8}^{7}$ During our studies using Co₂(CO)₈-mediated Pauson-Khand reactions for natural product synthesis,⁸ we found that, rather than a conventional Pauson-Khand pathway⁹⁻¹² as designed for the synthesis of Hamigeran B,¹³ a cycloisomerization of arylene-1,7-enyne occurred in the presence of $Co_2(CO)_8$ (Scheme 1).¹⁴ Herein, we would like to report the expansion of this observation to a synthetic method for cycloisomerization reaction of arylene 1,7-enynes to form 2,3-dihydroindene derivatives.

The arylene 1,7-enyne substrates **1a–1i** were prepared as shown in Scheme 2. Then we studied a variety of substitution on the arylene 1,7-enynes for effects on the cycloisomerization reaction, and the results are summarized in Table 1.¹⁵

In general, the cycloisomerization in the presence of 1.1 equiv of $Co_2(CO)_8$ in refluxing toluene for 5 h enjoyed excellent yields (>90%), and tolerated many alkynes with R^1 being alkyl (entries 1–3) or phenyl (entry 4). The results were also good for different aromatic skeletons (entries 1–8). The cycloisomerization

Scheme 1. The cycloisomerization of 1a.

R₃=OMe, R₄=H, R₅=Me, X=Br; R₃=H, R₄, R₅=OCH₂O or R₃=R₄=R₅=H, X=I

Scheme 2. Synthesis of arylene 1,7-enyne 1a-1i.

proceeded in excellent yield with different substitutes on the alkenyl moiety (entries 6 and 9).¹⁶

On the basis of the reaction results from a cycloisomerization pathway (A-P) rather than the Pauson-Khand pathways (to **P1** and **P2**) as shown in Scheme 3, we reasoned that the steric

^{*} Corresponding author. Tel.: +86 21 54925181; fax: +86 21 64166128. *E-mail addresses:* jiangb@mail.sioc.ac.cn, jiangb@sioc.ac.cn (B. Jiang).

^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.12.016

Scheme 3. Proposed mechanistic pathways.

Scheme 4. Cycloisomerization of arylene-1,6-enyne 1j.

hindrance between R¹ and the neighboring benzene ring or conformational issues might have restricted the conversion of **C**–**D1**,¹⁷ and a beta-H elimination (**F** \rightarrow **G**) might be favorable than a CO insertion (**F** \rightarrow **G1**) with a tertiary carbon center,¹⁸ or a direct migratory insertion (**D** \rightarrow **G**) might have contributed to the cyclo-isomerization outcomes.¹⁴

Since an alkene rearrangement sequence $(\mathbf{C} \to \mathbf{D} \to \mathbf{E})$ might have been involved in the cycloisomerization pathway, we synthesized the arylene-1,6-enyne **1j**, and then tried the reaction under the same conditions and obtained **2e** in 80% yield (Scheme 4). This observation was in accordance with the major mechanistic pathways and diversions under Pauson–Khand reaction conditions as proposed in the literature for a plethora of unexpected results.¹⁴

The 1,1'-*exo*-double bond of the cycloisomerization product **2a–2i** could be expected as (*Z*)-configuration. As a representative

Scheme 5. The nOe study of 2c.

Table 1Cycloisomerization reaction of arylene-1,7-enynea

R ⁴ R ⁵	R ³		2 Co ₂ (C	O) ₈ (1.1 e e, 110 °C	q.) , 5 h	R ⁴	R ³	R ²
1a-1i						2a-2i		
Entry	1	\mathbb{R}^1	\mathbb{R}^2	R ³	R^4	R ⁵	2	Yield ^b (%)
1	1a	i-Pr	Me	OMe	Н	Me	2a	91
2	1b	c-Pr	Me	OMe	Н	Me	2b	92
3	1c	t-Bu	Me	OMe	Н	Me	2c	94
4	1d	Ph	Me	OMe	Н	Me	2d	87
5	1e	Ph	Me	Н	OCH ₂ O		2e	94
6	1f	t-Bu	Me	Н	Н	Н	2f	92
7	1g	Ph	Me	Н	Н	Н	2g	90
8	1h	c-Pr	Me	Н	Н	Н	2h	91
9	1i	t-Bu	c-Pr	Н	Н	Н	2i	99

^a Reaction was carried out under argon atmosphere.

^b Isolated yield.

study, the nOe analysis of **2c** confirmed this geometry. The olefinic H1' (δ 5.48 ppm) and H2 (δ 3.53 ppm) on the 2,3-dihydroindene ring showed remarkable nOe, while no clear nOe was observable between H1' and H7 (δ 7.20 ppm) on the benzene ring (Scheme 5).

It has been well documented that Lewis bases or other ligands could serve as promoters in CO decoordination from the cobalt center, help to prevent the cobalt species from deactivations, and render the Pauson–Khand reaction catalytic.¹⁹ Then catalytic conditions for the cycloisomerization were tried using some Lewis base ligands as usually used for the catalytic Pauson–Khand reactions,²⁰ and the results are shown in Table 2.²¹ Without Lewis base ligands added, a catalytic amount of Co₂(CO)₈ was ineffective

^a Reaction was carried out under argon atmosphere.

^b Isolated yield.

(entry 1). When a ligand such as Ph_3P (entry 2), *rac*-Binap (entry 3), sulfone (entry 4), sulfide (entry 5), or amine (entry 6) was used, all the cycloisomerization with 10% mol of $Co_2(CO)_8$ completed in excellent yields (>90%) in only 1.5 h.

In conclusion, the cycloisomerization of various arylene 1,7enynes mediated by $Co_2(CO)_8$ has been studied, and high yields of 2,3-dihydroindene have been achieved. We also demonstrated a catalytic version of this reaction with 10% mol of $Co_2(CO)_8$ and Lewis base ligands.

Acknowledgments

We are grateful for the National Basic Research Program of China (2010CB833200 and 2010CB833300), the National Natural Science Foundation of China (20832007 and 21102167), the Science and Technology Commission of Shanghai Municipality (12DZ1930902) and the Knowledge Innovation Program of the Chinese Academy of Sciences.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2012. 12.016.

References and notes

- For reviews see (a) Michelet, V.; Toullec, P. Y.; Genet, J.-P. Angew. Chem., Int. Ed. 2008, 47, 4268; (b) Zhang, L.-M.; Sun, J.-W.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271; (c) Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. Angew. Chem., Int. Ed. 2005, 44, 6630; (d) Solan, G. A. Organomet. Chem. 2005, 32, 314; (e) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813; (f) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067; (g) Trost, B. M. Chem. Eur. J. 1998, 4, 2405; (h) Trost, B. M.; Krische, M. J. Synlett 1998, 1; (i) Ojima, I.; Tzamarioudaki, M.; Li, Z. Y.; Donovan, R. J. Chem. Rev. 1996, 96, 635; For examples see (j) Gryparis, C.; Efe, C.; Raptis, C.; Lykakis, I. N.; Stratakis, M. Org. Lett. 2012, 14, 2956; (k) Ozawa, T.; Kurahashi, T.; Matsubara, S. Org. Lett. 2012, 14, 3008; (I) Wang, W.-F.; Yang, J.-M.; Wang, F.-J; Shi, M. Organometallics 2011, 30, 3859; (m) Corkum, E. G.; Hass, M. J.; Sullivan, A. D.; Bergens, S. H. Org. Lett. 2011, 13, 3522; (n) Nishimura, T.; Maeda, Y.; Hayashi, T. Org. Lett. 2011, 13, 3674; (o) Lopez-Carrillo, V.; Huguet, N.; Mosquera, A.; Echavarren, A. Chem. Eur. J. 2011, 17, 10972; (p) Kim, S.-Y.; Chung, Y.-K. J. Org. Chem. 2010, 75, 1281; (q) Trost, B. M.; Gutierrez, A. C.; Ferreira, E. M. J. Am. Chem. Soc. 2010, 132, 9206; (r) Fuerstner, A.; Majima, K.; Martin, R.; Krause, H.; Kattnig, E.; Goddard, R.; Lehmann, C. W. J. Am. Chem. Soc. 1992, 2008, 130; (s) Fuerstner, A.; Martin, R.; Majima, K. J. Am. Chem. Soc. 2005, 127, 12236; (t) Schmidt, B. Eur. J. Org. Chem. 2004, 9, 1865; (u) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215.
- For reviews see (a) Dominguez, G.; Perez-Castells, J. Chem. Soc. Rev. 2011, 40, 3430; For examples see (b) Weding, N.; Jackstell, R.; Jiao, H.; Spannenberg, A.;

Hapke, M. Adv. Synth. Catal. **2011**, 353, 3423; (c) Sugiyama, Y. K.; Kato, R.; Sakurada, T.; Okamoto, S. J. Am. Chem. Soc. **2011**, 133, 9712; (d) Eichman, C. C.; Bragdon, J. P.; Stambuli, J. P. Synlett **2011**, 1109; (e) Turek, P.; Hocek, M.; Pohl, R.; Klepetarova, B.; Kotora, M. Eur. J. Org. Chem. **2008**, 19, 3335; (f) Hilt, G.; Hengst, C.; Hess, W. Eur. J. Org. Chem. **2008**, 13, 2293; (g) Agenet, N.; Gandon, V.; Vollhardt, K. P. C.; Malacria, M.; Aubert, C. J. Am. Chem. Soc. **2007**, 129, 8860; (h) Chang, H.-T.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. **2007**, 9, 505; (i) Lombardo, M.; Pasi, F.; Trombini, C.; Seddon, K. R.; Pitner, W. R. Green Chem. **2007**, 9, 321; (j) Hilt, G.; Vogler, T.; Hess, W.; Galbiati, F. Chem. Commun. **2005**, 11, 1474; (k) Hilt, G.; Hess, W.; Vogler, T.; Hengst, C. J. Organomet. Chem. **2005**, 690, 5170; (l) Petit, M.; Aubert, C.; Malacria, M. Org. Lett. **2004**, 6, 3937.

- (a) Shore, N. E. In Comprehensive Organic Synthesis; Trost, B. M., Felming, I., Paquette, L. A., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, pp 1037-1064; (b) Geis, O.; Schmalz, H.-G. Angew. Chem., Int. Ed. 1998, 37, 911; (c) Gibson, S. E.; Mainolfi, N. Angew. Chem., Int. Ed. 2005, 44, 3022; (d) Cambeiro, X. C.; Pericas, M. A. In The Pauson-Khand Reaction: Scope, Variations and Applications; Rios Torres, R., Ed.; John Wiley & Sons, 2012.
- 4. For reviews see (a) Hilt, G. Synlett 2011, 1654; (b) Lautcns, M.; Tam, W.; CraigLautens, J.; Edwards, C. G.; Crudden, C. M.; Smith, C. J. Am. Chem. Soc. 1995, 117, 6863; For examples see (c) Arndt, M.; Hilt, G.; Khlebnikov, A. F.; Kozhushkov, S. I.; Meijere, A. Eur. J. Org. Chem. 2012, 16, 3112; (d) Erver, F. Hilt, G. Org. Lett. 2012, 14, 1884; (e) Reus, C.; Liu, N.-W.; Bolte, M.; Lerner, H.-W.; Wagner, M. J. Org. Chem. 2012, 77, 3518; (f) Erver, F.; Hilt, G.; Harms, K. Synthesis 2011, 972; (g) Hilt, G.; Arndt, M.; Weske, D. F. Synthesis 2010, 1321; (h) Hilt, G.; Janikowski, J. Org. Lett. 2009, 11, 773; (i) Moerschel, P.; Janikowski, J.; Hilt, G.; Frenking, G. J. Am. Chem. Soc. 2008, 130, 8952; (j) Hilt, G.; Danz, M. Synthesis 2008, 225; (k) Hilt, G.; Hess, W.; Harms, K. Org. Lett. 2006, 8, 3287; (l) Hilt, G.; Jaikowski, J.; Hess, W. Angew. Chem., Int. Ed. 2006, 45, 5204; (m) Hilt, G.; Luers, S.; Harms, K. J. Org. Chem. 2004, 69, 624.
- (a) Hilt, G.; Erver, F.; Harms, K. Org. Lett. 2011, 13, 304; (b) Hilt, G.; Paul, A.; Treutwein, J. Org. Lett. 2010, 12, 1536; (c) Hilt, G.; Treutwein, J. Angew. Chem., Int. Ed. 2007, 46, 8500; (d) Hutson, G. E.; Dave, A. H.; Rawal, V. H. Org. Lett. 2007, 9, 3869; (e) Kezuka, S.; Ikeno, T.; Yamada, T. Org. Lett. 2001, 3, 1937; (f) Llerena, D.; Aubert, C.; Malacria, M. Tetrahedron Lett. 1996, 37, 7027.
- (a) Buisine, O.; Aubert, C.; Malacria, M. Chem. Eur. J. 2001, 7, 3517; (b) Llerena, D.; Aubert, C.; Malacria, M. Tetrahedron Lett. 1996, 37, 7353.
- (a) Ajamian, A.; Gleason, J. L. Org. Lett. 2003, 5, 2409; (b) Ajamian, A.; Gleason, J. L. Org. Lett. 2001, 3, 4161; (c) Dolaine, R.; Gleason, J. L. Org. Lett. 2000, 2, 1753.
 (a) Jiang, B.; Xu, M. Angew. Chem., Int. Ed. 2004, 43, 2543; (b) Jiang, B.; Xu, M.
- Org. Lett. 2002, 4, 4077.
 9. Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. J. Chem. Soc. Chem. Commun.
- Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. J. Chem. Soc. Chem. Commun. 1971, 1, 36.
- 10. Magnus, P.; Principe, L. M. Tetrahedron Lett. 1985, 26, 4851.
- 11. Magnus, P.; Exon, C.; Albaugh-Robertson, P. Tetrahedron 1985, 41, 5861.
- 12. Magnus, P.; Principe, L. M.; Slater, M. J. J. Org. Chem. 1987, 52, 1483.
- (a) Wellington, K. D.; Cambie, R. C.; Rutledge, P. S.; Bergquist, P. R. J. Nat. Prod. 2000, 63, 79; (b) Madu, C. M.; Lovely, C. J. Org. Lett. 2007, 9, 4697; (c) Arnaiz, E.; Blanco-Urgoiti, J.; Abdi, D.; Dominguez, G.; Castells, J. P. J. Organomet. Chem. 2008, 693, 2431.
- 14. Bonaga, L. V. R.; Krafft, M. E. Tetrahedron 2004, 60, 9795.
- 15. General procedure for the stoichiometric cycloisomerization of **1a-1i**: A mixture of 1,7-enyne **1** (0.1 mmol) and $Co_2(CO)_8$ (0.11 mmol) in PhMe (4 mL) was stirred at room temperature under argon atmosphere for 1 h. Then it was heated to reflux for 5 h. The resultant reaction mixture was concentrated, the residue was purified by flash chromatogra-phy on silica gel to provide 2,3-dihydroindene **2**.
- (Z)-4-Methoxy-6-methyl-1-(2-methylpropylidene)-2-(prop-1-en-2-yl)-2,3dihydro-1H-indene (2a): ¹H NMR: δ 7.05 (s, 1H), 6.55 (s, 1H), 5.21 (dd, J = 9.4, 1.9 Hz, 1H), 4.82 (s, 1H), 4.77 (s, 1H), 3.83 (s, 3H), 3.62–3.54 (m, 1H), 3.24–3.08 (m, 1H), 2.99 (dd, J = 16.7, 9.1 Hz, 1H), 2.72 (dd, J = 16.7, 5.4 Hz, 1H), 2.38 (s, 3H), 1.59 (s, 3H), 1.08 (t, J = 6.1 Hz, 6H). ¹³C NMR: δ 155.9, 147.9, 140.0, 137.7, 132.6, 130.8, 117.3, 112.0, 109.9, 55.2, 52.8, 32.0, 27.1, 23.1, 23.0, 22.0, 17.9, EI-MS m/z (%): 256 (M⁺, 62.72), 213 (100). HRMS (EI) calcd for C₁₈H₂₄O: 256.1825; found: 256.1835. IR (KBr): 2959, 1586, 1465, 1287, 890, 830 cm⁻¹.

(*Z*)-1-(*Cyclopropylmethylene*)-4-methoxy-6-methyl-2-(prop-1-en-2-yl)-2,3dihydro-1H-indene (**2b**): ¹H NMR: δ 7.26 (s, 1H), 6.56 (s, 1H), 4.86 (d, *J* = 9.1 Hz, 1H), 4.77 (d, *J* = 13.1 Hz, 1H), 3.83 (s, 3H), 3.58 (t, *J* = 6.3 Hz), 3.00 (dd, *J* = 16.7, 9.0 Hz, 1H), 2.73 (dd, *J* = 16.6, 5.3 Hz, 1H), 2.38 (s, 3H), 2.10-1.94 (m, 1H), 1.58 (s, 3H), 0.92–0.83 (m, 2H), 0.48–0.37 (m, 2H). ¹³C NMR: δ 155.8, 147.8, 142.4, 142.0, 137.6, 130.5, 128.1, 117.0, 112.0, 110.0, 55.1, 52.9, 32.0, 22.0, 17.9, 10.8, 7.9, 7.8. EI-MS m/z (%): 254 (M⁺, 42.97), 199 (100). HRMS (EI) calcd for C₁₈H₂₂O: 254.1671; found: 254.1667. IR (KBr): 2926, 1716, 1595, 1464, 1314, 1139 cm⁻¹.

115 cm ¹ · (2)-1-(2,2-Dimethylpropylidene)-4-methoxy-6-methyl-2-(prop-1-en-2-yl)-2,3dihydro-1H-indene (**2c**): ¹H NMR: δ 7.20 (s, 1H), 6.55 (s, 1H), 5.48 (s, 1H), 4.78 (s, 1H), 4.74 (s, 1H), 3.82 (s, 3H), 3.53 (t, J = 6.6 Hz, 1H), 2.96 (dd, J = 16.6, 9.1 Hz, 1H), 2.68 (dd, J = 16.6, 4.5 Hz, 1H), 2.35 (s, 3H), 1.55 (s, 3H), 1.28 (s, 9H). ¹³C NMR: δ 155.7, 148.5, 141.5, 140.5, 136.9, 135.9, 132.0, 120.1, 112.0, 109.8, 55.2, 55.1, 31.8, 31.6, 30.5, 22.1, 17.9. El-MS m/z (%): 270 (M⁺, 48.82), 213 (100). HRMS (El) calcd for C₁₉H₂₆O: 270.1984; found: 270.1984. IR (KBr): 2961, 1646, 1585, 1296, 833 cm⁻¹.

(Z)-1-Benzylidene-4-methoxy-6-methyl-2-(prop-1-en-2-yl)-2,3-dihydro-1Hindene (**2d**): ¹H NMR: δ 7.42–7.26 (m, 4H), 6.64 (s, 1H), 6.50 (s, 1H), 6.44 (s, 1H), 4.93 (s, 1H), 4.85 (s, 1H), 3.81 (s, 3H), 3.80–3.71 (m, 1H), 3.07 (dd, J = 16.7, 9.1 Hz, 1H), 2.80 (dd, J = 16.7, 5.4 Hz, 1H), 2.14 (s, 3H), 1.67 (s, 3H). ¹³C NMR: δ 155.9, 147.5, 145.0, 141.1, 138.4, 137.2, 131.9, 128.6, 128.6, 128.2, 126.7, 123.1, 117.2, 112.7, 110.7, 55.2, 53.6, 32.0, 29.7, 21.8, 17.9. EI-MS m/z (%): 290 (M⁺, 100). HRMS (EI) calcd for C₂₁H₂₂O: 290.1671; found: 290.1664.

 $\begin{array}{l} (Z) \hbox{-}5-Benzylidene-6-(prop-1-en-2-yl)-6,7-dihydro-5H-indeno[5,6-d][1,3]dioxole \\ (\textbf{2e}) : \ ^{1}\text{H}\ \text{NMR}\ (acetone-d_{6}:\ \delta\ 7.49-7.23\ (m,\ 5H),\ 6.76\ (s,\ 1H),\ 6.51\ (s,\ 1H),\ 6.32\ (s,\ 1H),\ 5.92\ (s,\ 2H),\ 4.93\ (s,\ 1H),\ 4.85\ (s,\ 1H),\ 3.81-3.73\ (m,\ 1H),\ 3.08\ (dd,\ J=16.4,\ 8.8\ Hz,\ 1H),\ 2.84\ (dd,\ J=16.5,\ 5.1\ Hz,\ 1H),\ 1.66\ (s,\ 3H).\ ^{13}\text{C}\ \text{NMR}\ (acetone-d_{6}):\ \delta\ 149.4,\ 148.1,\ 147.1,\ 145.3,\ 142.1,\ 139.1,\ 133.4,\ 128.3,\ 129.1,\ 127.5,\ 121.1,\ 113.1,\ 105.8,\ 104.3,\ 102.1,\ 54.6,\ 36.0,\ 17.9,\ El-MS\ m/z\ (\%):\ 290\ (M^{*},\ 100),\ HRMS\ (EI)\ calcd\ for\ C_{20}H_{18}O_{2}:\ 290.1307;\ found:\ 290.1312.\ IR\ (KBr):\ 2919,\ 1473,\ 1249,\ 1041\ cm^{-1}. \end{array}$

(*Z*)-1-(2,2-Dimethylpropylidene)-2-(prop-1-en-2-yl)-2,3-dihydro-1H-indene (**2f**): ¹H NMR: δ 7.78 (d, *J* = 6.7 Hz, 1H), 7.30–7.15 (m, 3H), 5.55 (d, *J* = 1.9 Hz, 1H), 4.83 (s, 1H), 4.79 (s, 1H), 3.62–3.54 (m, 1H), 3.10 (dd, *J* = 16.3, 8.8 Hz, 1H), 2.85 (dd, *J* = 16.3, 5.4 Hz, 1H), 1.59 (s, 3H), 1.31 (s, 9H). ¹³C NMR: δ 148.1, 147.0, 141.1, 138.8, 136.0, 127.2, 127.1, 125.8, 125.1, 112.3, 55.1, 35.6, 31.9, 30.3, 18.0, EI-MS *m/z* (%): 226 (M^{*}, 30.98), 155 (100). HRMS (EI) calcd for C₁₇H₂₂: 226.1722; found: 226.1718. IR (KBr): 2956, 1471, 1363, 891, 739 cm⁻¹.

(*Z*)-1-Benzylidene-2-(prop-1-en-2-yl)-2,3-dihydro-1H-indene (**2g**): ¹H NMR: δ 7.46–7.22 (m, 7H), 7.18 (t, *J* = 7.5 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.50 (d, *J* = 1.6 Hz, 1H), 4.98 (s, 1H), 4.92 (s, 1H), 3.81 (ddd, *J* = 8.4, 5.9, 2.1 Hz, 1H), 3.19 (dd, *J* = 16.5, 8.9 Hz, 1H), 2.99 (dd, *J* = 16.5, 5.8 Hz, 1H), 1.72 (s, 3H). ¹³C NMR: δ 147.1, 146.6, 144.5, 139.4, 138.3, 128.4, 128.3, 126.7, 125.9, 125.1, 124.2, 123.1, 113.1, 53.5, 35.7, 18.0. EI-MS *m/z* (%): 246 (M⁺, 79.35), 142 (100). HRMS (EI) calcd for C₁₉H₁₈: 246.1409; found: 246.1411. IR (KBr): 3066, 2922, 1715, 1448, 1027, 699 cm⁻¹.

(Z)-1-(Cyclopropylmethylene)-2-(prop-1-en-2-yl)-2,3-dihydro-1H-indene (**2h**): ¹H NMR: δ 7.84 (d, J = 7.1 Hz, 1H), 7.32–7.15 (m, 3H), 4.95 (d, J = 8.8 Hz, 1H), 4.83 (s, 1H), 4.79 (s, 1H), 3.63 (t, J = 7.3 Hz, 1H), 3.11 (dd, J = 16.4, 8.9 Hz, 1H), 2.90 (dd, J = 16.4, 5.8 Hz, 1H), 2.08–1.92 (m, 1H), 1.61 (s, 3H), 0.96–0.78 (m, 2H), 0.49–0.41 (m, 2H). ¹³C NMR: δ 147.5, 145.7, 141.8, 140.8, 128.1, 127.3, 126.3, 125.0, 124.1, 112.3, 52.9, 35.9, 18.0, 10.9, 8.0, 7.8. EI-MS m/z (%): 210 (M°, 7.14), 173 (59.34). HRMS (EI) calcd for C₁₆H₁₈: 210.1409; found: 210.1377. IR (KBr): 2927, 1714, 1461, 1380, 1027, 761 cm⁻¹. (*Z*)-2-(1-*Cyclopropylvinyl*)-1-(2,2-*dimethylpropylidene*)-2,3-*dihydro*-1*H*-*indene* (*2i*): ¹H NMR: δ 7.77 (d, *J* = 6.5 Hz, 1H), 7.29–7.14 (m, 3H), 5.59 (d, *J* = 1.9 Hz, 1H), 4.68 (s, 1H), 4.54 (s, 1H), 3.69–3.62 (m, 1H), 3.19–3.01 (m, 2H), 1.30 (s, 9H), 1.17–1.05 (m, 1H), 0.64–0.35 (m, 4H). ¹³C NMR: δ 154.2, 147.2, 141.5, 139.0, 136.4, 127.2, 127.1, 125.8, 125.1, 106.4, 55.6, 36.3, 31.9, 30.3, 12.6, 7.79, 6.99. EI-MS *m/z* (%): 252 (M*, 12.24), 195 (100). HRMS (EI) calcd for C₁₉H₂₄: 252.1878; found: 252.1883. IR (KBr): 2956, 1638, 1471, 1363 cm⁻¹.

- For a less sterically hindered example: Blanco-Urgoiti, J.; Abdi, D.; Dominguez, G.; Perez-Castells, J. *Tetrahedron* 2008, 64, 67.
- For less sterically hindered examples (a) Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. J. Am. Chem. Soc. 2002, 124, 3806; (b) Fuji, K.; Morimoto, T.; Tsutsumi, K.; Kakiuchi, K. Angew. Chem., Int. Ed. 2003, 42, 2409; (c) Ikeda, K.; Morimoto, T.; Tsumagari, T.; Tanimoto, H.; Nishiyama, Y.; Kakiuchi, K. Synlett 2012, 393.
- (a) Kerr, W. J. In The Pauson-Khand Reaction: Scope, Variations and Applications; Rios Torres, R., Ed.; John Wiley & Sons, 2012; (b) Shibata, T. In The Pauson-Khand Reaction: Scope, Variations and Applications; Rios Torres, R., Ed.; John Wiley & Sons, 2012; (c) Gibson, S. E.; Stevenazzi, A. Angew. Chem., Int. Ed. 1800, 2003, 42; (d) Sugihara, T.; Yamaguchi, M.; Nishizawa, M. Chem. Eur. J. 2001, 7, 1589.
- Catalytic Pauson–Khand reaction using Lewis base as ligand. See (a) Tang, Y.-F.; Deng, L.-J.; Zhang, Y.-D.; Dong, G.-B.; Chen, J.-H.; Yang, Z. Org. Lett. **2005**, 7, 593; (b) Krafft, M. E.; Bonaga, L. V. R.; Hirosawa, C. J. Org. Chem. **2001**, 66, 3004; (c) Hayashi, M.; Hashimoto, Y.; Yamamoto, Y.; Usuki, J.; Saigo, K. Angew. Chem., Int. Ed. **2000**, 39, 631; (d) Jeong, N.; Hwang, S. H.; Lee, Y.; Chung, Y. K. J. Am. Chem. Soc. **1994**, *116*, 3159.
- 21. General procedure for the catalytic cycloisomerization of **1f**: A mixture of 1,7enyne **1f** (0.1 mmol), $Co_2(CO)_8$ (0.01 mmol), and ligand (0.01 mmol) in PhMe (4 mL) was stirred at room temperature under argon atmosphere for a while. Then it was heated to reflux for 1.5 h. The resultant reaction mixture was concentrated, and the residue was purified by flash chromatography on silica gel to provide 2,3-dihydroindene **2f**.