Complexes with a Monohapto Bound Phosphorus Tetrahedron and Phosphaalkyne¹

Thomas Gröer, Gerhard Baum, and Manfred Scheer^{*,2}

Institut für Anorganische Chemie der Universität Karlsruhe, D-76128 Karlsruhe, Germany

Received August 7, 1998

Summary: The reaction of white phosphorus with the coordinatively unsaturated $[M(CO)_3(PR_3)_2]$ complexes (M = Mo, W; R = Cy, Pr^{i}) yields the compounds $[M(CO)_{3}$ - $(PR_3)_2(\eta^1 - P_4)$ in which the P₄-tetrahedron is end-on bonded to the metal. In the same manner reacts $Ar'C \equiv P$ $(Ar' = C_6 H_2 Bu^t_3 - 2, 4, 6)$ with this complex to give $[W(CO)_3 - 2, 4, 6]$ $(PCy_3)_2(\eta^1 - P \equiv CAr')]$. The X-ray structures of the products are discussed, and for the P_4 -unit in $[W(CO)_3(PCy_3)_2(\eta^1 P_4$)] the librational analysis was performed to correct their translational and rotational motions.

Interest has been focused on unsubstituted group 15 ligands bonded to transition metal complexes for several years.³ Most of the P_x ligand complexes are formed by reaction of white phosphorus with the appropriate transition metal complexes. However, only one type of compounds with a monohapto bound P₄-tetrahedron is known, the $[(\eta^1 - P_4)M(np_3)]$ (1) (M = Ni (a), Pd (b); np₃ $= N(CH_2CH_2PPh_2)_3$) complexes reported by Sacconi and co-workers.⁴ Moreover, Ginsberg and Lindsell suggested the occurrence of a side-on coordinated P₄-unit in compounds of the type $[(R_3P)_2MCl(\eta^2-P_4)]$ (2) (M = Rh (a), Ir (b)).⁵ The nature of bonding to P_4 in the latter complexes was established to be a side-on coordination of a P-P edge of the intact P_4 tetrahedron. The long P–P bond of 2.4616(22) Å, however, rather gives evidence for an open edge, where a tetraphosphabicyclobutane coordinates to a metal(III) center. Other reactions of transition metal complexes with white phosphorus lead to transformation of the tetrahedral P₄unit.^{3,6} In a similar manner, the number of mononuclear coordination complexes formed with untransformed phosphaalkyne remains small.⁷ Among them only the complexes *trans*- $[Mo(\eta^1-P=CAd)_2(depe)_2]$ **3a**⁸ and *trans*-

Ed. Engl. **1979**, *18*, 510. (b) Dapporto, P.; Sacconi, L.; Stoppioni P.; Zanobini, F. *Inorg. Chem.* **1981**, *20*, 3834.

(5) Ginsberg, P.; Lindsell, W. E.; McCullough, K. J.; Sprinkle, C. R.; Welch, A. J. J. Am. Chem. Soc. 1986, 108, 403.

 (6) (a) Scheer, M.; Schuster, K.; Becker, U. Phosphorus, Sulfur,
 Silicon 1996, 109–110, 141. Scheer, M.; Becker, U. Chem. Ber. 1996,
 129, 1307. (c) Scheer, M.; Becker, U. J. Organomet. Chem. 1997, 545– 546. 451.

 $[FeH(\eta^1-P \equiv CBu^t)(dppe)_2][BPh_4]$ **3b**⁹ with a η^1 -ligated phosphaalkyne are structurally characterized. Recently, Bedford et al. reported the synthesis of the complex $[Ru(\eta^1-P=CAr')(CO)_2(PPh_3)_2]$ suggesting an η^1 -coordination of the phosphaalkyne $P \equiv CAr'$ ($Ar' = C_6H_2Bu^t_3$ -2,4,6) to the central ruthenium atom, which was confirmed by spectroscopic data.¹⁰

We found that in both respects—forming η^1 -complexes of P₄ as well as of phosphaalkynes—the electronically and coordinatively unsaturated compounds [M(CO)₃- $(PCy_3)_2$] (M = Mo, W), serve as the ideal starting material. These complexes are known to coordinate numerous small molecules such as H₂ and N₂.¹¹

The reaction of $[M(CO)_3(PR_3)_2]$ with 1 equiv of P₄ in toluene at -78 °C leads to the capture of one phosphorus lone pair yielding the η^1 -bonded P₄ complexes [M(CO)₃- $(PR_3)_2(\eta^1 - P_4)$] (4a-c) (4a: M = W, R = Cy; 4b: M = W, $R = Pr^{i}$; **4c**: M = Mo, R = Cy). These complexes are stable in solution (hexane, toluene) up to 0 °C, and then they decompose to the 18 VE compounds [M(CO)₄- $(PR_3)_2]^{12}$ (**5a,b**) (M = W, Mo) and P₄. However at low temperatures 4a-c crystallize as orange-yellow compounds. The air-sensitive solids are stable at ambient temperatures under argon. They are soluble in common organic solvents.

The structure of 4a reveals the 18-valence-electron complex $[W(CO)_3(PCy_3)_2(\eta^1-P_4)]$ with a η^1 -bonded P_4 tetrahedron (Figure 1). The distance of the coordinated

⁽¹⁾ Dedicated to Prof. Dr. O. J. Scherer in occasion of his 65th birthday.

⁽²⁾ To whom the correspondence should be addressed. Tel.: +49(0) 721 608 3088. Fax: +49 (0) 721 662119. E-mail: mascheer@ achibm6.chemie.uni-karlsruhe.de.

^{(3) (}a) Scheer, M.; Herrmann, E. Z. Chem. 1990, 30, 41. (b) Scherer, O. J. Angew. Chem., Int. Ed. Engl. 1990, 29, 1137.
 (4) (a) Dapporto, P.; Midollini, S.; Sacconi, L. Angew. Chem., Int.

^{(7) (}a) Nixon, J. F. Chem. Rev. 1988, 88, 1327. (b) Binger, P. In Multiple Bonds and Low Coordination in Phosphorus Chemistry, Regitz, M., Scherer, O. J., Eds.; G. Thieme Verlag: Stuttgart, 1990; p 90ff. (c) Nixon, J. F.; *Chem. Ind.* **1993**, *7*, 404. (d) Nixon, J. F. *Chem.* Soc. Rev. 1995, 319. (e) Nixon, J. F. Coord. Chem. Rev. 1995, 95, 201-

⁽⁸⁾ Hitchcock, P. B.; Maah, M. J.; Nixon, J. F.; Zora, J. A.; Leigh, G. J.; Bakar, M. A. *Angew. Chem., Int. Ed. Engl.* **1987**, *26*, 474.

^{(9) (}a) Nixon, J. F.; Meidine, M. F.; Lemos, M. A. N. D. A.; Hitchcock, P. B.; Pombeiro, A. J. L. *J. Chem. Soc, Dalton, Trans.* **1998**, in press. (b) Hitchcock, P. B.; Amelia, M.; Lemos, M. A. N. D. A.; Meidine, M. F.; Nixon, J. F.; Pombeiro, A. J. L. J. Organomet. Chem. 1991, 402,

C23.

⁽¹⁰⁾ Bedford, B.; Hill, A. F.; Wilton-Ely, J. D. E. T.; Francis, M. D.; Jones, C. *Inorg. Chem.* **1997**, *36*, 5142. (11) Wassermann, J.; Kubas, G. J.; Ryan, R. R. J. Am. Chem. Soc.

^{1986, 108, 2294.}

⁽¹²⁾ Moers, F. G.; Reuvers, J. G. A. Recl. Trav. Chim. Pays-Bas. 1974, *93*, 246.

phosphorus to the central tungsten atom is of 2.463(2) Å, which is shorter than the P–W bond lengths of the two tricyclohexylphosphine phosphorus atoms which increase from 2.463(1) and 2.494(1) Å in the starting complex to 2.520(2) and 2.525(2) Å upon coordination of P₄.

There are substantial differences in the bond distances within the P4-tetrahedron compared to those in **1a** reported by Sacconi and co-workers.^{4a} The basal P-P bonds [P(4)-P(5), P(5)-P(6), P(6)-P(4)] in **4a** vary between 2.183(3) Å and 2.195(5) Å and hence tend to be longer than the apical P-P distances [P(3)-P(4)], P(3)-P(5), P(3)-P(6), which are in the range of 2.162(3) Å to 2.181(3) Å. Whereas in 1a was found the basal P-P distances at 2.09(3) Å to be shorter than the apical P-Pbond lengths at 2.20(3) Å (due to symmetry reasons, all basal as well as apical distances are equal). The structure of 1a was established at ambient temperature without a librational analysis. For the X-ray structure of 4a at 200 K, the rigid-body model was applied for the P₄ unit to correct the shortened bond length due to translational and rotational motions of the P atoms.¹³ By using a "dummy atom" as described for β -P₄¹⁴ the iterations converged to R = 0.020 with a lengthening of the P-P bond distance between 1.8 and 4.3 pm (Figure 1). The analysis shows the same relation of the P-P bonds, longer basal and shorter apical bonds. These experimental features are furthermore supported by recent MP2/6-31G(d,p) calculations, revealing at the "end-on" H⁺ attached P₄ tetrahedron longer basal P-P bonds of 2.269 Å and shorter apical ones of 2.122 Å.15

³¹P NMR data of the isostructural complexes **4a**–**c** reveals three different groups of signals as an A₂MX₃ spin system [A = P(1), P(2); M = P(3); X = P(4), P(5), P(6)], two of which, a doublet and a quartet, are assignable to the η^1 -bound P₄-tetrahedron. No WP-coupling can be observed in the quartet resonance of the coordinated P_M-atom, probably due to the similarity between PP- and WP-coupling constants, which causes the set of satellites to be obscured by the main signals. The ¹J_{P(M),P(X)} values, ranging from 206 (**4b**) to 185 (**4c**)

Figure 1. Molecular structure of **4a** (ellipsoids drawn at 50% probability level). Selected bond distances (Å) and angles (deg) [by librational analysis corrected distances]: W–P(1) 2.520(2), W–P(2) 2.525(2), W–P(3) 2.463(2), P(3)–P(4) 2.162(3) [2.187], P(3)–P(5) 2.181(3) [2.199], P(3)–P(6) 2.172(3) [2.199], P(4)–P(5) 2.191(3) [2.225], P(4)–P(6) 2.195(5) [2.238], P(5)–P(6) 2.183(3) [2.214], P(1)–W–P(2) 179.29(5), C(2)–W–P(3) 174.5(2), C(1)–W–C(3) 171.9(3).

Figure 2. Molecular structure of **5a** (ellipsoids drawn at 30% probability level). Selected bond distances (Å) and angles (deg): W-P(2) 2.506(3), W-P(1) 2.525(3), W-C(1) 2.129(13), W-C(2) 2.064(13), W-C(3) 2.018(14), W-C(4) 1.99(2), P(2)-W-P(1) 170.93(8), C(4)-W-C(2) 170.0(4), C(3)-W-C(1) 177.9(5), C(2)-W-C(1) 96.6(4).

Hz, reflect a relatively high s-character in the P-P bonds of the P_4 tetrahedron. The third group of signals (P_A) can be assigned to the phosphine phosphorus atoms and bears a set of satellites due to a WP-coupling. The spectra of **4a,b** reveal a doublet with a very small ${}^2J_{P(A)P(M)}$ of 11 and 20 Hz, respectively.

The molecular structure of the complex **5a** is shown in Figure 2. For the isostructural Mo complex **5b**, the X-ray structural analysis was also carried out.¹⁶ The cyclohexyl substituents are eclipsed with a slightly bent P-M-P axis. In contrast to this, the Cy groups in the P₄-complex **4a** are staggered with an almost linear P(2)-W-P(1) arrangement.

⁽¹³⁾ Dunitz, J. D.; Maverick, E. F.; Trueblood, K. N. Angew. Chem., Int Ed. Engl. **1988**, 27, 880.

⁽¹⁴⁾ Simon, A.; Borrmann, H.; Horakh, J. *Chem. Ber. / Recueil* **1997**, *130*, 1235.

⁽¹⁵⁾ Abboud, J.-L. M.; Herreros, M.; Notario, R.; Esseffar, M.; Mó, O.; Yáñez, M. *J. Am. Chem. Soc.* **1996**, *118*, 1126.

⁽¹⁶⁾ Recently, Alyea et al. described the X-ray structure of the solvent-free Mo complex **5b**: Alyea, E. C.; Ferguson, G.; Kannan, S. *Acta Crystallogr. C* **1996**, *52*, 765.

	Table 1.	Crystallograu	phic Data fo	or 4a and 5a	.b
--	----------	---------------	--------------	--------------	-----------

	4a •0.5C ₇ H ₈	5a •0.5C ₇ H ₈	5b •0.5C ₆ H ₆		
formula	C _{42.5} H ₇₀ O ₃ P ₆ W	$C_{43.5}H_{70}O_4P_2W$	C ₄₃ H ₆₉ O ₄ P ₂ Mo		
formula weight	998.15	902.79	807.86		
cryst size, mm	0.15 imes 0.15 imes 0.08	0.15 imes 0.04 imes 0.02	0.12 imes 0.08 imes 0.02		
T, K	200(1)	203(2)	200(1)		
space group	<i>P</i> 1 (no. 2)	<i>P</i> 1 (no. 2)	<i>P</i> 1 (no. 2)		
crystal system	triclinic	triclinic	triclinic		
a, Å	9.518(2)	10.996(2)	10.913(2)		
b, Å	10.096(2)	14.247(3)	14.150(3)		
<i>c</i> , Å	24.217(5)	14.799(4)	14.807(4)		
α, deg	92.54(3)	66.02(2)	65.63(2)		
β , deg	100.13(3)	82.91(2)	83.34(2)		
γ , deg	96.20(3)	82.92(2)	83.03(2)		
<i>V</i> , Å ³	2272.6(8)	2089.5(7)	2061.9(7)		
Ζ	2	2	2		
$d_{\rm c}$, g/cm ³	1.459	1.435	1.301		
$\mu_{\rm c},{\rm cm}^{-1}$	27.89	28.80	4.35		
radiation (λ, Å)	Μο Κα (0.71073)	Μο Κα (0.71073)	Μο Κα (0.71073)		
diffractometer	STOE IPDS	STOE IPDS	STOE IPDS		
2θ range, deg	$4.40 \leq 2\Theta \leq 52.26$	$4.62 \le 2\Theta \le 52$	$3.74 \le 2\Theta \le 52$		
<i>hkl</i> range	$-11 \le h \le 11, -12 \le k \le 9,$	$-11 \le h \le 13, -17 \le k \le 13,$	$-13 \le h \le 13, -17 \le k \le$		
	$-29 \le l \le 28$	$-18 \le l \le 15$	$17-18 \leq l \leq 18$		
data/restraints/parameters	6855/0/480	5873/14/446	7481/0/458		
independent reflections with $I > 2\sigma(I)$	5866 ($R_{\rm int} = 0.0234$)	4207 ($R_{\rm int} = 0.0611$)	$6042 \ (R_{\rm int} = 0.0363)$		
goodness-of-fit on F ²	1.067	0.938	1.007		
$R_1,^a W R_2^b (I > 2\sigma(I))$	0.0418, 0.1037	0.0525, 0.1168	0.0313, 0.0734		
R_1 , ^{<i>a</i>} wR_2^b (all data)	0.0519, 0.1097	0.0815, 0.1266	0.0454, 0.0776		
largest diff peak, hole, e/ų	1.250, -1.238	0.895, -1.488	0.603, -0.339		
${}^{a}R = \sum F_{0} - F_{c} / \sum F_{0} . \ {}^{b}WR_{2} = [\sum \omega (F_{0}^{2} - F_{c}^{2})^{2}] / [\sum (F_{0}^{2})^{2}]^{1/2}; \ \omega^{-1} = \sigma^{2}(F_{0}^{2}) + \mathbf{a}(P)^{2} + \mathbf{b}P, \ P = [F_{0}^{2} + 2F_{c}^{2}]/3.$					

Addition of the phosphaalkyne $P \equiv CAr'$ ($Ar' = C_6H_2$ - $Bu_{3}^{t}-2,4,6$) to $[M(CO)_{3}(PCy_{3})_{2}]$ (M = W, Mo) in hexane produces an orange precipitate of $[M(CO)_3(PCy_3)_2(\eta^1 - \eta^2)]$ P≡CAr')] (6a,b),¹⁷ which is insoluble in nonpolar solvents, but slightly soluble in toluene, CH₂Cl₂, and THF. The mass spectrum of 6b reveals the molecular ion, while 6a shows significant fragmentation assignable to the free phosphaalkyne and the complex fragment $[W(CO)_3(PCy_3)_2]^+$. ³¹P{¹H} NMR spectra of **6** reveal a doublet at δ 29.6 and 54.1 ppm, respectively, assigned to the two equivalent phosphine phosphorus atoms and a triplet at δ 24.4 and 57.0 ppm, respectively, due to the phosphorus atom of the η^1 -coordinated P=CAr', the two showing mutual PP-coupling of 25 and 31 Hz, respectively. In the X-ray structure analysis the poor quality of the very small crystals of **6a** led to significant residual electron density at the phosphine phosphorus atoms of the PCy₃ groups and hence did not allow the complete refinement of its structure. However, the position of all desired atoms could be determined and clearly reveals the monohapto coordination of P=CAr' to the tungsten atom (d(W-PC) = 2.390(5) Å, d(P=C)= 1.54(2) Å, Figure 3). To the best of our knowledge **6a** is one of the very rare examples for the coordination chemistry of the "supermesityl" phosphaalkyne $P=CAr'^{10,18}$ and for a structurally characterized η^{1-1} ligated phosphaalkyne.³

In conclusion, the reactivity of $[M(CO)_3(PR_3)_2]$ toward Lewis-base, diminished by the steric influence of its bulky phosphine ligands, allows the smooth formation of complexes with unusual $\eta^1\text{-}\mathrm{coordination.}$

Figure 3. Molecular structure of 6a (ellipsoids drawn at 30% probability level). Selected bond distances (Å) and angles (deg): W-P(1) 2.390(5), W-P(2) 2.523(5), W-P(3) 2.510(5), P(1)-C(4) 1.54(2), P(1)-W-P(3) 92.4(2), P(1)-W-P(3) 92.4(2), P(1)-W-P(3)W-P(2) 91.5(2), P(3)-W-P(2) 175.1(2), C(4)-P(1)-W 179.3(7), C(5)-C(4)-P(1) 178(2)

Experimental Section

General Comments. All reactions were performed under an Ar atmosphere using standard Schlenk techniques. Solvents were dried prior to use: toluene over Na/benzophenone, hexane over LiAlH₄. Phosphaalkynes P=CAr', ¹⁹ P=CBu^{t 20} as well as the complexes $[M(CO)_3(PR_3)_2]$ (M = W, Mo; R = Cy, Prⁱ)¹¹ were prepared according to modified literature methods.

⁽¹⁷⁾ Furthermore the reaction of $Bu^{t}C \equiv P$ with $[W(CO)_{3}(PCy_{3})_{2}]$ leads to a mixture of products inseparable by chromatography. The ³¹P{¹H} NMR studies reveal resonances indicating primary products with oligomerized phosphaalkynes. Within the resonances a doublet at δ 25.4 ppm and a triplet at δ 18.2 ppm with a small PP-coupling of 4.4 Hz appear, which can be assigned to the compound [W(CO)₃(PCy₃)₂- $(\eta^1 - P \equiv CBu^t)]$ (6c).

⁽¹⁸⁾ Kramkowski, P.; Scheer, M. J. Organomet. Chem. 1998, 553, 511 - 516.

⁽¹⁹⁾ Märkl, G.; Sejpka, H. Tetrahedron Lett. 1986, 27, 171. Seipka,

<sup>H. Ph.D. Thesis, University of Regensburg, 1987.
(20) Rösch, W.; Alspach, T.; Bergsträsser, U.; Regitz, M. In Synthetic</sup> Methods of Organometallic and Inorganic Chemistry; Herrmann, W. A., Ed.; Thieme Verlag: Stuttgart, 1996; p 13.

Synthesis of $[M(CO)_3(PR_3)_2(\eta^1-P_4)]$ (4a-c). To a solution of $[M(CO)_3(PR_3)_2]$ (M = W, R = Cy: 140 mg, 0.17 mmol) in toluene at -78 °C was added 1 equiv of P₄ (21 mg, 0.17 mmol) in toluene over a period of 30 min. On warming up to -20 °C the solution changed color from violet to green. On concentrating the solution in vacuo and storing it at -30 °C, orangeyellow crystalline product could be obtained. Solutions of 4a-c decompose above 0-5 °C, whereas the crystalline solids are stable under argon at ambient temperature. 4a (65% yield): ³¹P{¹H} NMR [101.26 MHz, 244 K, toluene- d_8 , A = P(1), P(2); M = P(3); X = P(4), P(5), P(6)]: δ 26.5 (P_A) (d, 11 Hz, ¹J_{WP} 262 Hz), $\delta -422$ (P_M) (q, ¹*J*_{MX} 204 Hz, ²*J*_{AM} and ¹*J*_{WP} not resolved); δ -473 (P_X) (d, ¹J_{MX} 204 Hz). IR (KBr, cm⁻¹): 1951 s, 1922 w, 1836 vs [ν (CO)]. EI MS: m/z (%) = 952.6 (1) [M]⁺, 828.7 (1.5) [M-P₄]⁺, 123.9 (74) [P₄]. **4b** (58% yield): ¹H NMR (250.13) MHz, 244 K, toluene-*d*₈): δ 1.12 (dd, 36H, *J*_{HH} 7.2 Hz, *J*_{PH} 12.9 Hz), δ 2.10 (sept, 6H, J_{HH} 7.2 Hz). ³¹P{¹H} NMR (101.26 MHz, 244 K, toluene- d_8): δ 33.7 (P_A) (d, ² J_{AM} 20 Hz, ¹ J_{WP} 263.9 Hz), δ -422.6 (P_M) (q, ²J_{AM} 20 Hz, ¹J_{MX} 206 Hz,), δ -476.9 (P_X) (d, ¹*J*_{MX} 206 Hz, ¹*J*_{WP} not resolved). IR (KBr, cm⁻¹): 1964 s, 1923 w, 1844 vs [ν (CO)]. EI MS: m/z (%) = 656.1 (5) [M - 2CO]⁺, 588.2 (50) $[M - P_4]^+\!\!.$ 4c (62% yield): $^{31}P\{^1H\}$ NMR (101.26 MHz, 244 K, toluene- d_8): δ 51.2 (P_A) (s), δ -400.2 (P_M) (q, ¹J_{MX} 185 Hz), δ -480.0 (P_X) (d, ¹J_{MX} 185 Hz). EI MS: m/z (%) = 742.4 (45) $[M - P_4]^+$

Synthesis of [M(CO)₃(PCy₃)₂(\eta^{1}-P=CAr')] (6a,b). To a solution of [M(CO)₃(PCy₃)₂] (M = W: 166 mg, M = Mo: 148 mg, 0.2 mmol) in hexane at -20 °C was added an equimolar solution of P=CAr' (58 mg, 0.2 mmol) in hexane dropwise over a period of 30 min. The violet solution changed color to bright red, and upon being warmed, a microcrystalline orange precipitate formed, which was filtered off, washed with hexane, and dried in vacuo (yields are about 76–85%). **6a**: ¹H NMR (250.13 MHz, 300 K, THF-*d*₈): δ 1.26–2.21 (m, 93H), δ 7.35 (s, 2H). ³¹P{¹H} NMR (101.26 MHz, 300 K, THF-*d*₈): δ 24.4 (t, ²*J*_{PP} 25 Hz, ¹*J*_{WP} 280 Hz), δ 29.6 (d, ²*J*_{PP} 25 Hz, ¹*J*_{WP} 260 Hz). IR (KBr): 1975 w, 1965 s, 1859 vs cm⁻¹ [ν (CO)]. EI MS: *m/z* (%) = 828.75 (1) [M – PCAr']⁺, 288.2 (72) [PCAr']⁺. **6b**: ¹H NMR (250.13 MHz, 300 K, THF-*d*₈): δ 1.25–2.20 (m, 93H),

δ 7.42 (s, 2H). ³¹P{¹H} NMR (THF-*d*₈): δ 54.1 (d, ²*J*_{PP} 31 Hz), δ 57.0 (t, ²*J*_{PP} 31 Hz). IR (KBr): 1979 s, 1960 w, 1881 vs cm⁻¹ [ν (CO)]. EI MS: *m*/*z* (%) = 1030.56 (3) [M]⁺, 742.34 (12) [M – PCAr']⁺.

X-ray Structure Determination and Details of Refinement. Data were collected on a Stoe IPDS diffractometer using Mo K α ($\lambda = 0.71069$ Å) radiation, no absorption corrections were performed. Machine parameters, crystal data, and data collection parameters are summarized in Table 1. The structures were solved by direct methods using SHELXS-86^{21a} and a full-matrix-least-squares refinement on F^2 in SHELXL-93^{21b} with anisotropic displacement for non-H atoms. Hydrogen atoms were placed in idealized positions and refined isotropically according to the riding model.

[W(CO)₃(PCy₃)₂(η¹-P=CAr)] (**6a**): C₅₈H₆₂O₃P₃W, M= 1083.83, crystal dimensions 0.2 × 0.15 × 0.03 mm, triclinic, space group P1, unit cell parameters a = 10.114(2), b = 16.904(3), c = 19.054(4) Å, $\alpha = 92.11(3)$, $\beta = 101.71(3)$, $\gamma = 97.69(3)^{\circ}$, Z = 2, V = 3154.2(11) Å³, T = 200(1) K, $D_c = 1.176$ mg m⁻³, μ (Mo $K_{\alpha}) = 19.44$ cm⁻¹, 14230 independent reflections ($2\theta_{max} = 56.66^{\circ}$), 8115 observed with $F_o \ge 4\sigma$ (F_o); 296 parameter, $R_1 = 0.1584$, $wR_2 = 0.4074$. Only the W, P, and the C(4)-atom were refined anisotropically. Several attempts to receive crystals of better quality of **6a** and **6b**, respectively, remained unsuccessful.

Acknowledgment. The authors thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

Supporting Information Available: Complete tables of atomic coordinates, H-atom parameters, bond distances and anisotropic displacement parameters, and fully labeled figures for **4a**, **5a**,**b**, and **6a** (38 pages). Ordering information is given on any current masthead page.

OM9806794

^{(21) (}a) Sheldrick, G. M. *SHELXS-86*, University of Göttingen, 1986. (b) Sheldrick, G. M. *SHELXL-93*, University of Göttingen, 1993.