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We report a convenient approach for the synthesis of a new ring system: 4,5-dihydro-1,3-thiazino[5,4-
b]indoles. The procedure involves the use of Lawesson’s reagent in the presence of silica to achieve the
one-step ring-closure reactions of 2-benzoylamino-3-hydroxymethylindole intermediates to furnish 4,5-dihy-
dro-2-aryl-1,3-thiazino[5,4-b]indoles. 2-Phenylimino-1,3-thiazino[5,4-b]indoles were obtained via the corre-

sponding 3-phenylthiourea-2-carboxylic acid ester derivatives by chemoselective reduction of the ester
group, followed by ring closure under acidic conditions. The structures of the novel products were elucidated
by IR, 1H-NMR, and 13C-NMR spectroscopy, including 2D-HMQC, 2D-HMBC, and DEPT measurements.

J. Heterocyclic Chem., 48, 1079 (2011).

INTRODUCTION

In contrast with their valuable pharmacological activ-

ities, few derivatives are known of the six possible 1,3-

thiazinoindoles condensed at bond b of the indole skele-

ton (Fig. 1). Probably the best-known compounds of this

family are 1,3-thiazino[6,5-b]indole phytoalexins [1].

The phytoalexins, not present in healthy plant tissues,

are synthesized in plants in response to by attack patho-

gens or physical or chemical stress, probably as a result

of the de novo synthesis of enzymes [2]. Takasugi et al.
isolated the first thiazinoindole phytoalexin, cyclobrassi-

nin (2-methylthio-thiazino[6,5-b]indole), from Chinese

cabbage [3], and �30 phytoalexins are now known in

cruciferous plants, 6 of them possessing a thiazinoindole

skeleton [1]. Besides its antimicrobial activity, cyclo-

brassinin exerts an antiproliferative effect against human

cancer cell lines [4]. As concerns the remaining thia-

zino[6,5-b]indoles, only a few derivatives of cyclobrassi-

none [5] and 2-phenyl analogues of cyclobrassinin [6]

have been synthesized and investigated.

We recently prepared two regioisomeric 1,3-thiazinoin-

doles (2, Fig. 1); 2-methylthio-1,3-thiazino[5,6-b]indole

(isocyclobrassinin) and its 2-benzylthio analogue, both of
which exerted good in vitro antiproliferative effects on
cervix adenocarcinoma (HeLa), breast adenocarcinoma
(MCF7), and squamous skin carcinoma (A431) cell lines
[7]. For structure-activity relationships, further analogues
were synthesized [8]. The highest cytotoxic effect was
displayed by 2-phenylimino-1,3-thiazino[5,6-b]indole,
which demonstrated inhibition activity comparable to that
of cisplatin on the above three cell lines. This sulfur ana-
logue of b-carboline proved to be a novel type of antitu-
mor compound [7].

Procedures were also devised for a further two new

thiazinoindole ring systems: 4-thiaharmalan analogues

(2,5-dihydro-1,3-thiazino[5,6-b]indoles, 3 Fig. 1) [9] and

c-carboline analogue 2,9-dihydro-4-aryl-1,3-thiazino[6,5-

b]indoles (4, Fig. 1) were obtained [10].

Among the remaining positional isomers (types 5 and

6, Fig. 1), 1,5-dihydro-1,3-thiazino[5,4-b]indole-2,4-
dithione was prepared from 3-aminoindole with carbon

disulfide [11]. A series of 2-alkyl- or arylimino-1,3-thia-

zino[5,4-b]indol-4-one derivatives have been synthesized

by ring closure of the appropriate indolylthiourea deriva-

tives in polyphosphoric acid [12]. Members of this class
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of compounds inhibit human leukocyte elastase and a-
chymotrysin. To the best of our knowledge, a procedure

for the synthesis of 4,5-dihydro-1,3-thiazino[5,4-

b]indoles (5, Fig. 1) has not yet been published

previously.

As a continuation of our work on S,N heterocycles

[13–15], including thiazinoindoles [6–10], we now

describe an efficient route for the synthesis of the

fifth 1,3-thiazinoindole isomer: 4,5-dihydro-1,3-thia-

zino[5,4-b]indoles (13a�c, Scheme 1) and 2-phenyli-

mino derivatives 17a�c (Scheme 2). These com-

pounds are bioisosteres of 4,5-dihydro-1,3-thiazino[5,6-

b]indoles (2, Fig. 1) [7] possessing in vitro antiproli-

ferative effects.

RESULTS AND DISCUSSION

For the preparation of different 1,3-thiazines, 1,3-

aminoalcohols are generally used by using two-compo-

nent reactions [16]. In our hands, the reduction of

ethyl 3-aminoindole-2-carboxylate (7) to obtain amino-

alcohol 8 under different reduction conditions failed.

One step procedures for 1,3-S,N heterocycles generally

utilize thioamides containing a hydroxy group [17] or

amides containing a hydroxy group [18]. In the latter

case 1,3-thiazines are formed in low yields, and side

products can also be isolated. To attempt one-compo-

nent ring-closure reactions, we prepared substituted

ethyl 3-benzoylaminoindole-2-carboxylate derivatives

10a�c from ethyl 3-aminoindole-2-carboxylate 7 and

the corresponding benzoyl chlorides 9a�c under Schot-

ten-Baumann conditions. The chemoselective reduction

of benzamido esters 10a�c with lithium aluminum

hydride in THF provided substituted N-benzoyl amino-

alcohols 11a�c under mild reaction conditions. The

one-step cyclization reaction of 11a�c with Lawes-

son’s reagent in toluene proceeded smoothly and vari-

ous side-products were observed on TLC. Interestingly,

when silica gel was added to the reaction mixture

(Lawesson’s reagent in toluene at 90�C), the target

thiazines were achieved within a relatively short reac-

tion time and in good yield. Thus, 2-aryl-1,3-thia-

zino[5,4-b]indole derivatives 13a�c were obtained,

most probably via intermediates 12a�c.

To prepare 2-phenylimino-substituted thiazinoindoles,

7 was reacted with phenyl isothiocyanates at 110�C to

provide thioureas 15a�c. Chemoselective reduction of

Figure 1. R1 ¼ MeS, Ar; R2 ¼ MeS, BnS, Ar, PhN.

Scheme 1. Reagents and conditions: (i) Toluene, chloroform, 6% NaOH, 20 min; (ii) LiAlH4,THF, 0
�C, 1 h; (iii) Lawesson’s reagent, silica gel,

toluene, 90�C, 1 h.
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the ester functionality with lithium aluminum hydride in

THF gave 2-hydroxymethylindole derivatives 16a�c. 2-

Phenylimino-1,3-thiazino[5,4-b]indoles 17a�c were

obtained from 16a�c in HCl/EtOH, followed by column

chromatographic purification.

The spectral data (IR, 1H- and 13C-NMR) on the new

compounds are reported in Tables 1 and 2. The pre-

sumed structures follow unambiguously from these data.

Only the following additional remarks are necessary:

The lower amide-I frequencies of 11a–c (1627 6 1

cm–1) are noteworthy relative to those of 10a–c (1655

6 6 cm–1). The values observed for the compounds of

type 11 do not lie in the expected interval characteristic

of secondary amides [19]. This can be explained by the

strong polarization of the amide group resulting in a

lower bond order and consequently lower amide-I fre-

quency in such derivatives. This effect is hindered in

10a–c by the electron-withdrawing influence of the 2-

carbethoxy group. This phenomenon confirms strong

conjugation between the ester and arylamide groups via

the 2,3-double bond of the indole skeleton of 10a–c. In

accord with this, the 13C-NMR chemical shifts of C-3

are higher for 10a–c (120–124 ppm) than for 11a–c

(~110 ppm), indicating lower electron density for the for-

mer carbons. A similar delocalization is not present in

thioureas 16a–c as the other NH substituent attached to

the thiocarbonyl group acts as an electron reservoir. The

high 1H-NMR chemical shift of the ortho aryl hydro-

gens (7.92 6 0.03 ppm) is a consequence of the tauto-

meric preference with a C¼¼N bond for 17a–c; this can

be explained by the substitution of the electron-attract-

ing C¼¼N bond (instead of NH) on CAr-1 and by the

upfield shift of the indole C-2 line in the 13C-NMR

spectra (113.4 6 0.1 ppm) as compared with those for

13a–c (116.2 6 0.2 ppm).

In summary, we report a convenient approach for the

synthesis of a new ring system: 4,5-dihydro-1,3-thia-

zino[5,6-b]indoles. Indole 3-benzamido- and 3-phenyl-

thiourea-2-carboxylic acid esters (10a�c, 15a�c) were

chemoselectively reduced to the corresponding 2-

hydroxymethylindole derivatives (11a�c, 16a�c).

Treatment of intermediates 11a�c with Lawesson’s rea-

gent in the presence of silica gel provided thiazinoin-

doles 13a�c in good yields in a one-step protocol. The

target 2-phenyliminothiazinoindoles (17a�c) were

obtained from 16a�c by acidic treatment.

EXPERIMENTAL

Melting points were determined on a Kofler micro melting

apparatus and are uncorrected. Elemental analyses were per-
formed with a PerkinElmer 2400 CHNS elemental analyser.
Merck Kieselgel 60F254 plates were used for TLC, and Merck
Silica gel 60 (0.063–0.100) for column chromatography. Ethyl

3-aminoindole-2-carboxylate (7) was prepared by a literature
method [20].

The 1H- and 13C-NMR spectra were recorded in CDCl3 so-
lution in 5 mm tubes at room temperature, on a Bruker DRX
500 spectrometer at 500.13 (1H) and 125.76 (13C) MHz, with

the deuterium signal of the solvent as the lock and TMS as in-
ternal standard. The standard Bruker micro-program to gener-
ate NOE was used. DEPT spectra were run in a standard man-
ner, using only the y ¼ 135o pulse to separate CH/CH3 and
CH2 lines phased ‘‘up’’ and ‘‘down,’’ respectively. The 2D-

HSC spectra were obtained by using the standard Bruker pulse
program.

General procedure for substituted ethyl 3-benzoylami-

noindole-2-carboxylates (10a�c). Amino acid ester 7 (0.72 g,
3.5 mmol) was dissolved in a mixture of toluene (25 mL) and

chloroform (50 mL). To this solution, sodium hydroxide (0.62
g, 15.4 mmol) dissolved in water (10 mL) was added. After
the addition of benzoyl chloride (0.42 g, 3.9 mmol), the reac-
tion mixture was shaken intensively for 20 min. The crystals

that separated out were filtered off, washed in turn with water
and with toluene, and dried. The white crystalline benzamides
were recrystallized.

Ethyl 3-benzoylaminoindole-2-carboxylate (10a). White
crystalline needles, mp: 166–168�C (from EtOH), Lit [21] mp:

171–171.5�C yield 1.00 g (92%). Anal. Calcd. for C18H16N2O3

(308.33): C, 70.12; H, 5.23; N, 9.09. Found: C, 70.38; H,
5.39; N, 8.89.

Ethyl 3-(4-chlorobenzoyl)aminoindole-2-carboxylate (10b). White
crystalline powder, mp: 245–246�C (from EtOH, CHCl3), yield

1.02 g (85%). Anal. Calcd. for C18H15ClN2O3 (342.78): C,
63.07; H, 4.41; N, 8.17. Found: C, 63.28; H, 4.55; N, 8.09.

Ethyl 3-(4-methylbenzoyl)aminoindole-2-carboxylate
(10c). White crystalline needles, mp: 204–206�C (from EtOH),
yield 0.94 g (83%). Anal. Calcd. for C19H18N2O3 (322.36): C,

70.79; H, 5.63; N, 8.69. Found: C, 70.65; H, 5.83; N, 8.84.
General procedure for chemoselective reduction of substi-

tuted ethyl 3-benzoylaminoindole-2-carboxylates (10a�c). To
intensively stirred and cooled (ice-water) THF (5 mL), lithium

aluminum hydride (0.24 g, 6.3 mmol) was added in small por-
tions. To this cooled suspension a solution of 10a�c (2.5

Scheme 2. Reagents and conditions: (i) Neat, 110�C, 30 min; (ii)

LiAlH4,THF, 0
�C, 1 h; (iii) 5% HCl/EtOH, reflux, 20 min.

September 2011 1081One-Step Ring-Closure Procedure for 4,5-Dihydro-1,3-thiazino[5,4-b]indole
Derivatives with Lawesson’s Reagent. The Fifth Dihydro-1,3-thiazino[b]indole Isomer

Journal of Heterocyclic Chemistry DOI 10.1002/jhet



mmol) in THF (10 mL) was added dropwise over a period of
30 min. The reaction mixture was stirred at the same tempera-
ture for 30 min. Ethyl acetate (40 mL) was then added drop-
wise during 5 min, followed by the dropwise addition of water
(30 mL) during 10 min. After stirring for 10 min, the phases

were separated, the organic phase was dried (sodium sulfate)
and evaporated (water bath <50�C) and the residue was puri-
fied by column chromatography, with ethyl acetate:n-hexane
(2:1) as eluent to give 11a–c as a crystalline powder.

3-Benzoylamino-2-hydroxymethylindole (11a). Pale-brown
crystalline needles, mp: 222–224�C, yield 0.47 g (71%). Anal.
Calcd. for C16H14N2O2 (266.29): C, 72.16; H, 5.30; N, 10.52.
Found: C, 72.28; H, 5.41; N, 10.39.

3-(4-Chlorobenzoyl)amino-2-hydroxymethylindole (11b). Pale-
brown crystalline powder, mp: 219–221�C, yield 0.56 g

(74%). Anal. Calcd. for C16H13ClN2O2 (300.74): C, 63.90; H,
4.36; N, 9.31. Found: C, 64.15; H, 4.39; N, 9.09.

3-(4-Methylbenzoyl)amino-2-hydroxymethylindole (11c). Pale-
brown crystalline powder, mp: 208–212�C, yield 0.46 g

(65%). Anal. Calcd. for C17H16N2O2 (280.32): C, 72.84; H,
5.75; N, 9.99. Found: C, 72.71; H, 5.57; N, 9.72.

General procedure for 4,5-dihydro-2-aryl-1,3-thia-

zino[5,4-b]indoles (13a�c) from 3-benzoylamino-2-hydroxy-

methylindole (11a�c). To a suspension of 3-benzoylamino-2-
hydroxymethylindoles (11a�c) (1.6 mmol) in toluene (20
mL), Lawesson’s reagent (0.7 g, 1.7 mmol) was added in one
portion, followed by the addition of silica gel powder (0.5 g).
The reaction mixture was stirred at 95�C for 3 h. After evapo-
ration, the residue was purified by column chromatography,
with n-hexane:ethyl acetate 4:1 as eluent, to give 13a�c as a
crystalline powder.

4,5-Dihydro-2-phenyl-1,3-thiazino[5,4-b]indole (13a). Brownish-
green crystalline powder, mp: 180–186�C, yield 0.26 g (61%).
Anal. Calcd. for C16H12N2S (264.35): C, 72.70; H, 4.58; N,
10.60; S, 12.13. Found: C, 72.92; H, 4.44; N, 10.51; S, 12.31.

4,5-Dihydro-2-(4-chlorophenyl)-1,3-thiazino[5,4-b]indole
(13b). Brownish-green crystalline powder, mp: 185–189�C,
yield 0.25 g (53%). Anal. Calcd. for C16H11ClN2S (298.79):
C, 64.32; H, 3.71; N, 9.38; S, 10.73. Found: C, 64.54; H, 3.65;
N, 9.22; S, 10.97.

4,5-Dihydro-2-(4-methylphenyl)-1,3-thiazino[5,4-b]indole
(13c). Brownish-green crystalline powder, mp: 164–168�C,

Table 1

Characteristic IR frequenciesa and 1H NMR datab for compounds 10a–c, 11a–c, 13a–c, 15a–c, 16a–c, and 17a–c.c

Compound

mNH þ
mOH
bandd

mC¼¼O

bande
cCArH

bandf
CH3

t(3H)g

XCH2
h

s, d or

qa
H-4

�df
H-5

�tf
H-6

�tf
H-7

�df

H-20,60

�d
(2H)i

H-30,50

�t
(2H)j

H-40

�t
(1H)k

NH

amide

NH

indole

10a 3322 1681 737 1.27 4.32 7.76 7.10 7.14 7.32 8.09 7.57 7.60 10.14 11.80

10b 3313 1678 741 1.25 4.30 7.67 7.08 7.30 7.46 8.07 7.64 – 10.2 11.8

10c 3322 1676 740 1.26 4.31 7.72 7.08 7.30 7.46 7.96 7.36 – 10.03 11.76

11a �3250 1627 723 – 4.62 7.42 7.00 7.10 7.38 8.08 7.55 7.59 9.90 11.06

11b 3355, 3265 1628 746 – 4.56 7.38 6.97 7.07 7.35 8.07 7.61 – 9.94 11.05

11c 3352, 3266 1626 743 – 4.56 7.38 6.97 7.07 7.35 7.96 7.34 – 9.78 11.02

13a 3250–2800 1582 758 – 4.52 7.73 7.12 7.16 7.39 8.04 7.51l 7.50l – 11.35

13b 3383 1534 750 – 4.51 7.71 7.11 7.16 7.39 8.03 7.56 – – 11.38

13c �3245 1532 742 – 4.49 7.70 7.10 7.14 7.37 7.92 7.31 – – 11.30

15a 3311 1653 736 1.33 4.33 7.57 7.08 7.27 7.44 7.52 7.32 7.12 9.38 11.78

15b 3311 1651 735 1.32 4.32 7.55l 7.08 7.28 7.45 7.55l 7.36 – 9.53, 9.72 11.81

15c 3306 1658 738 1.34 4.32 7.57 7.08 7.27 7.43 7.35 6.89 – 9.22, 9.50 11.75

16a 3350–2800 1661 735 – 4.58 7.36l 7.00 7.09 7.36l 7.47m 7.29m 7.10 8.8, 9.3n 9.3n

16b 3166 1524 744 – 4.58 �7.35 7.00 7.09 �7.36 �7.35 �7.35 – 8.88, 9.52 11.2

16c 3299, 3180 1535 738 – 4.58 7.37 7.01 7.09 7.36 �7.3l 6.87 – �7.3,l �8.7 11.18

17a 3200–2800 1605 741 – 4.38 7.57 7.02 7.07 �7.3l 7.91 �7.3l 6.94 9.10 10.85

17b 3390 1600 747 – 4.39 7.57 7.02 7.07 7.30 7.95 7.35 – 9.25 10.88

17c 3406 1592 737 – 4.35 7.54 7.00 7.05 7.28 7.82 6.90 – �8.93 10.79

a In KBr discs (cm�1). Further bands, Amide-I: 1661 (10a), 1649 (10b), 1651 (10c); mCAO: 1253 (10a), 1248 (10b,c), 1023 (11a), 1007 (11b),

1015 (11c), 1271 (15a and 16a), 1263 (15b), 1243 (15c and 16b,c); cCArH and cCArCAr bands (mono- or para-disubst. benzene ring): 710 (10a),

843 (10b), 834 (10c), 688 (11a), 845 (11b), 836 (11c), 737, 686 (11a), 828 (13b, 15c, 16c and 17b), 819 (13c and 15b), 693 (16a), 832 (16b and

17c) 690 (17a).
b In DMSO-d6 solution at 500.1 MHz. Chemical shifts in ppm (dTMS ¼ 0 ppm), coupling constants in Hz. Further signals: ArCH3, s (3H): 2.40

(10c and 11c), 2.37 (13c); OCH3, s (3H): 3.74 (15c, 16c and 17c); OH, t, J: 5.3 (1H): 5.20 (11a), 5.16 (11b,c and 16c), 5.18 (16a,b).
c Assignments were supported by HMQC (except for 10c, 11c, 13c, 15c and 17a), HMBC (except for 10a,c, 11a,c, 13c, 15c and 17a)
d Broad or very broad overlapping bands of NH and OH groups, separated maximum at 3395 (17a).
e Ester (10a–c and 15a–c), amide I (11a–c), mC¼¼N (13a–c and 17a–c), thiourea (16a–c). Split, with the second maximum at 1511 (16a), 1583

(17a), 1579 (17c).
f Indole ring.
g Ethyl group, J: 7.1, 7.3 (15a,b).
h X¼¼O, qa (10a–c and 15a–c), X¼¼O, d (J: 5.2, (11a,c), 5.5 (11b and 15b) 4.9 (16a,c), X¼¼S, s (13a–c and 17a–c).
i,j,k A/B/C part of an AA0BB0C (for a-type compd.) or AA0BB0 spectrum (b and c-type compd.).
l,nOverlapping signals.
mBroad signal due to hindered rotation of the thiourea moiety.
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yield 0.33 g (75%). Anal. Calcd. for C17H14N2S (278.37): C,
73.35; H, 5.07; N, 10.06; S, 11.52. Found: C, 73.18; H, 4.92;
N, 9.83; S, 11.77.

General procedure for thiourea derivatives (15a-c) from

ethyl 3-aminoindole-2-carboxylate (7) and substituted phe-

nylisothiocyanates (14a-c). Amino acid ester 7 (1.2 g, 4.8
mmol) was mixed thoroughly with the corresponding substituted
phenyl isothiocyanate (14a�c) (5 mmol) in a round bottle, and

the mixture was heated at 110�C for 30 min. To the crystalline
thiourea derivatives, ethyl acetate was then added. The crystals
were filtered off, washed with ethyl acetate, and recrystallized.

Phenyl thiourea ester derivative (15a). White crystalline
powder, mp: 194–196�C (from EtOH, CHCl3), Lit [3] mp:

184–185�C, yield 1.50 g (92%). Anal. Calcd. for
C18H17N3O2S (339.41): C, 63.70; H, 5.05; N, 12.38; S, 9.45.
Found: C, 63.49; H, 5.12; N, 12.51; S, 9.67.

4-Chlorophenyl thiourea ester derivative (15b). White crys-
talline powder, mp: 187–188�C (from EtOH, CHCl3), Lit [22]

mp: 179–180�C, yield 1.68 g (94%). Anal. Calcd. for
C18H16ClN3O2S (373.86): C, 57.83; H, 4.31; N, 11.24; S, 8.58.
Found: C, 58.04; H, 4.53; N, 11.26; S, 8.42.

4-Methoxyphenyl thiourea ester derivative (15c). White
crystalline flakes, mp: 181–182�C (from EtOH), yield 1.15 g

(65%). Anal. Calcd. for C19H19N3O3S (369.43): C, 61.77; H,
5.18; N, 11.37; S, 8.68. Found: C, 61.52; H, 5.07; N, 11.49; S,
8.72.

General procedure for chemoselective reduction of thiou-

rea derivatives (15a�c). To an intensively stirred and cooled
(ice water) THF (5 mL) lithium aluminum hydride was added

(0.24 g, 6.3 mmol) was added in small portions. To this cooled
suspension a solution of 15a�c (3.2 mmol) in THF (10 mL) was
added dropwise over a period of 30 min. The reaction mixture
was stirred at the same temperature for 30 min. Ethyl acetate (40

mL) was then added dropwise (5 min), followed by the dropwise
addition of water (1 mL). After stirring for 10 min. the reaction
mixture was filtered, and the filtrate dried (sodium sulphate)
evaporated (water bath <50�C), and the residue was purified by

column chromatography, using ethylacetate:n-hexane (2:1) as
eluent to give 16a-c as a crystalline powder.

Phenyl thiourea alcohol derivative (16a). Pale-brown crys-
talline powder, mp: 195–197�C, yield 0.51 g (54%). Anal.
Calcd. for C16H15N3OS (297.38): C, 64.62; H, 5.08; N, 14.13;

S, 10.78. Found: C, 64.82; H, 5.21; N, 13.91; S, 10.89.
4-Chlorophenyl thiourea alcohol derivative (16b). Pale-

brown crystalline powder, mp: 177–178�C, yield 0.58 g
(55%). Anal. Calcd. for C16H14ClN3OS (331.82): C, 57.91; H,
4.25; N, 12.66; S, 9.66. Found: C, 58.21; H, 4.07; N, 12.42; S,

58.48.
4-Methoxyphenyl thiourea alcohol derivative (16c). Pale-

brown crystalline powder, mp: 190–192�C, yield 0.65 g (62 %).
Anal. Calcd. for C17H17N3O2S (327.40): C, 62.36; H, 5.23; N,
12.83; S, 9.79. Found: C, 62.55; H, 5.49; N, 12.61; S, 9.51.

General procedure for preparation of 2-arylimino-1,3-

thiazino[5,4-b]indoles 17a–c from thiourea alcohol deriva-

tives (16a–c). The appropriate thiourea alcohol derivative
16a–c (0.9 mmol) was suspended in absol. EtOH (10 mL).

20% HCl/EtOH (2.5 mL) was added to the mixture, and it was
refluxed for 20 min. After evaporation the residue was

Table 2

13C NMR chemical shiftsa for compounds 10a–c, 11a–c, 13a–c, 15a–c, 16a–c, and 17a–c.b

Com-

pound

CH3

(Et)

C¼¼O

ester

C¼¼O

amidec C-2 C-3 C-3a

C-4 C-5

C-6 C-7 C-7a

OCH2

or

SCH2
d C-10

C-20,60 C-30,50

C-40Indole Ring Aryl Group

10a 15.1 162.3 165.9 119.7e 123.7 121.4e 122.9 120.5 126.1 113.5 136.2 61.3 135.3 128.4 129.4 132.5

10b 15.1 162.1 165.0 120.2e 120.7e 123.9 122.5 120.6 126.1 113.5 136.1 61.3 134.0 130.4 129.5 137.3

10c 15.1 162.3 165.7 119.5e 123.6 121.5e 123.0 120.4 126.1 113.4 136.2 61.3 132.4 129.9 128.5 142.5

11a – – 166.7 134.2 110.4 125.3 119.1 119.4 121.9 112.2 134.8 55.8 135.5 128.6 129.2 132.2

11b – – 165.6 134.16e 110.1 125.2 119.1 119.4 121.8 112.2 134.8 55.7 134.2e 130.5 129.3 137.0

11c – – 166.6 134.1 110.5 125.3 119.1 119.3 121.8 112.2 134.1 55.8 132.6 128.6 129.7 142.1

13a – – 149.3 124.4 116.2 125.1 117.7 120.9 122.8 112.7 135.5 24.0 138.7 127.5 129.5 131.1

13b – – 147.9 124.5 116.3 125.1 117.7 121.0 122.9 112.7 135.6 24.0 137.4 129.1 129.5 135.7

13c – – 149.3 124.4 116.0 125.1 117.7 120.8 122.8 112.6 135.5 24.0 136.0 130.0 127.5 141.0

15a 15.2 161.7 181.6 121.8 121.0 124.7 121.6 120.7 125.8 113.6 136.0 61.3 140.6 124.8 129.1 125.3

15b 15.2 161.6 181.7 120.6e 122.0 124.7 121.4 120.8 125.9 113.6 136.0 61.3 139.7 126.5 128.9 129.1

15c 15.2 161.7 181.8 121.69e 121.1e 124.7 121.75 120.7 125.8 113.5 136.0 61.2 133.4 127.1 114.4 157.4

16a – – 181.9 135.6 118.5 119.9 122.2 112.5 135.0 55.4 140.7 125.3f 129.0 125.3f

16b – – 181.9 135.6e 125.0 118.4 119.9 122.1 112.5 135.0f 55.4 139.8 127.5 128.8 129.1

16c – – 182.3 135.1 127.4 125.2 118.5 119.9 122.1 112.5 135.7 55.4 133.5 127.4 114.2 157.4

17a – – 144.2e 124.3g 113.4 124.5g 117.6 119.5h 122.0k 112.3 135.2 25.0 142.4e 122.13k 129.4 119.7h

17b – – 144.1 124.1 113.5 124.4 117.6 119.7 122.1 112.3 135.2 25.0 141.3 120.9 129.3 125.5

17c – – 144.3 124.5e 113.3 124.6e 117.6 119.6 122.0 112.2 135.1 25.0 135.8 121.0 114.6 154.8

a In ppm (dTMS ¼ 0 ppm) at 125.7 MHz. Solvent: DMSO-d6. Further signals, ArCH3: 21.9 (10c and 11c), 21.8 (13c); OCH3: 56.1 (15c and 16c),

56.0 (17c). Due to slow motion (hindered rotation) of the thiourea moiety, it was not possible to identify the C-3 (16a,b) and C-3a lines(16a).
b Assignments were supported by DEPT (except for 16b and 15a), HMQC (except for 10c, 11c, 13c, 15c and 17a) and HMBC (except for 10a,c,

11a,c, 13c, 15c and 17a) measurements.
c C¼¼S (15a–c and 16a–c), C¼¼N (13a–c and 17a–c).
d For 13a–c and 17a–c.
e g,h,k Reversed assignments are also possible.
f Overlapping lines.
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dissolved in an extraction funnel in CHCl3 (20 mL) and
MeOH (1 mL), water was added (10 mL) and the mixture was
neutralized with 10% NaHCO3 solution. The organic layer was
separated, extracted with water (10 mL), dried and evaporated.
The residue was purified by column chromatography, with

ethyl acetate:n-hexane (3:2) as eluent, to give 17a–c as a crys-
talline powder.

2-Phenylimino-1,3-thiazino[5,4-b]indole (17a). Pale-brown
crystalline powder, mp: 179–183�C, yield 0.11 g (42%). Anal.
Calcd. for C16H13N3S (279.36): C, 68.79; H, 4.69; N, 15.04;

S, 11.48. Found: C, 68.71; H, 4.88; N, 14.87; S, 11.73.
2-(4-Chlorophenylimino)-1,3-thiazino[5,4-b]indole (17b). Pale-

brown crystalline powder, mp: 184–190�C, yield 0.11 g (40%).
Anal. Calcd. for C16H12ClN3S (313.81): C, 61.24; H, 3.85; N,
13.39; S, 10.22. Found: C, 61.10; H, 4.02; N, 13.61; S, 10.51.

2-(4-Methoxyphenylimino)-1,3-thiazino[5,4-b]indole (17c). Pale-
brown crystalline powder, mp: 174–177�C, yield 0.14 g (49 %).
Anal. Calcd. for C17H15N3OS (309.39): C, 66.00; H, 4.89; N,
13.58; S, 10.36. Found: C, 65.82; H, 6.17; N, 13.71; S, 10.56.
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Tetrahedron 2009, 65, 1475.

[11] (a) Velezheva, V. S.; Yarosl, A. V.; Kozik, T. A.; Suvorov,

U. N. Khim Geterosikl Soedin 1978, 1497; (b) Velezheva, V. S.; Yar-

osl, A. V.; Kozik, T. A.; Suvorov, U. N. Chem Abstr 1979, 90,

87375f.

[12] (a) Romeo, G.; Russo, F.; Guccione, S.; Chabin, R.; Kuo,

D.; Knight, W. B. Bioorg Med Chem Lett 1994, 4, 2399; (b) Romeo,

G.; Russo, F.; Guccione, S.; Chabin, R.; Kuo, D.; Knight, W. B. Chem

Abstr 1995, 122, 81330.
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