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Abstract: An intermolecular hydrogen bond promoted atom-transfer radical addition 

of simple alcohol to aliphatic alkyne is demonstrated here. Through this strategy, a 

variety of allyl alcohols can be synthesized in high selectivity and yields. Furthermore, 

this work reveals the relationship between the selectivity and the substrate.

INTRODUCTION

The construction of a C-C bond by selective cleavage of the α-hydroxy (sp3)C-H 

bond in simple aliphatic alcohol is attractive and valuable for organic synthesis.1 In 

the past decades, a series of efficient C-C forming methods via atom-transfer radical 

addition (ATRA) of alcohols with alkenes have been successfully achieved by Tu,2 

Liu,3 Han and Pan4 et al.5 However, ATRA reaction of alcohols with alkynes to 

produce allylic alcohols has rarely been investigated. In 2009, a first Ru-catalyzed 

alkenylation of alcohols using alkynes was developed by Krische et al.6 Subsequently, 

Liu et al. reported an ATRA of simple alcohols and ethers to aryl alkyne in the same 

year.3a Nevertheless, there are limitations in both systems. For example, only aryl 

alkynes could be amenable to Liu’s system. In addition, the allyl alcohols were 

obtained in mixed isomers (E/Z ≈ 1/1). And Krische’s work was limited in primary 

alcohols. Hence, efficient strategy for alkenylation of alcohol is highly desirable. 

Herein we demonstrated an effective ATRA reaction of simple alcohols with aliphatic 
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alkynes (Scheme 1).
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Scheme 1. Alkenylation of alcohols with alkynes.

RESULTS AND DISCUSSION

As shown in Scheme 2, the rate-determining step (RDS) in this conversion should 

be the hydrogen-atom transfer (HAT) from alcohol to the alkenyl radical B and then 

regenerating radical A. It might be energetically unfavorable for cleavage of a 

relatively strong (sp3)C-H bond (BDE > 91 kcal/mol)(path I).7 Inspired by our 

previous resolution for the ATRA of simple alcohol to unactivated alkene,8 we began 

to wonder whether an hydrogen-bond donor could facilitate the HAT process. Since 

the hydrogen bond (RO-H...A) might strengthen the n-σ*C-H delocalization,9 and thus 

the α-hydroxy (sp3)C-H would be weakened. Subsequently the path II would be 

favorable to afford the allyl alcohol.

+

R1 OH

R1 R OH

H

R OH
R OH

H

R OH
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Scheme 2. Possible resolution by addition of hydrogen-bond acceptors.

In order to evaluate the hypothesis, a set of experiments were carried out. Initially, 
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the 2-phenyl-3-butyn-2-ol and ethanol were chosen as the model substrates to 

optimize suitable conditions for this reaction (Table 1). Without any additives, no 

reaction occurred by using TBPB as the initiator (entry 1). But the desired product 

was obtained in 38% yield with DTBP at 130 C (entry 2). It is noteworthy that only 

E allylic product was observed. To our delight, the catalytic amount of KF (from 1 

mol% to 20 mol%) could dramatically facilitate this reaction (entries 3-10). With 5 

mol% KF, 2 equiv. of TBPA afforded the desired product in nearly quantitative yields 

(entry 6). The product was isolated in 70% yield even with 1 mol% KF (entry 10).

Table 1. Optimization of the radical addition of alcohols to alkynes a

OH
additive
peroxide OH

OH

+

OH

Entry
Peroxide

(equiv)

Additive 

(mol%)
Temp. (C) Sol. (mL)

Yield b

(%)

1 TBPB (3) - 130 5 -

2 DTBP (2) - 130 5 38

3 DTBP (2) KF (20) 130 5 87

4 TBPB (3) KF (20) 130 5 67

5 TBPA (3) KF (20) 130 5 91

6 TBPA (2) KF (5) 130 5 96

7 TBPA (1) KF (5) 130 5 75

8 TBPA (2) KF (5) 120 5 53

9 TBPA (2) KF (5) 130 3 80

10c TBPA (2) KF (1) 130 25 70
a Reaction conditions: Alkynes (1 equiv., 0.20 mmol), ethanol as solvent, sealed tube, 3 h, unless 

otherwise noted. b Isolated yield. c Alkynes (1 equiv., 1.0 mmol). TBPB = tert-butyl peroxybenzoate; 
DTBP = Di-tert-butyl peroxide; TBPA = tert-butyl peroxyacetate. 

Next we began to evaluate the substrate scope under the typical conditions (Scheme 

3). A wide range of alkynes afforded the desired allyl alcohols in good to excellent 

yields (1-20). Aryl halides such as fluorine, chlorine and iodine as well as heteroarene 

can be well tolerated in the system (3-6). Simple cyclic and acyclic alkyl alkynes were 

effective substrates (7-9). Furthermore, amide was also compatible with this system 
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(10). Gratifyingly, alkynes with complex natural product motif also gave the desired 

compound in good yield (11). It is noteworthy that only E-allyl alcohols were 

observed in these substrates (1-11). Why is the selectivity so high? Whether is it 

related to the size of vicinal substituent on the triple bond? Then we examined other 

type of alkynes (12-20). The 1-phenylprop-2-yn-1-ol afforded a mixture of isomers 

with E/Z = 4.5/1 (12). But only E-product was isolated with 1-phenylprop-2-yn-1-yl 

acetate (13). In addition, substituents with different size of groups were screened 

(14-20). As a result, the approximate trend is that the larger substituent on triple bond 

is, the higher selectivity would be obtained. As a comparison, several randomly 

chosen examples demonstrated that KF facilitates this reaction (9 and 20). 

Scheme 3. Examine the scope of unactivated alkynes a

R +
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130 C, 3 h R OH

R1 R2
2 eq TBPA

OH

HO
OH

8 71%

OH

1 92%b

OH
Ph OH

2 86%

OH
OH

3 87%

F

OH
OH

4 66%

Cl

OH
OH

5 54%
I

OHN
OH

6 72%

OH
OH

7 88%

O 11 52%9 83% (49%c)

OH
OH H

HO

HH

OH

5

N
H

O
OH

10 91%

N
Boc

OH

15 69%, E/Z = 2:1

OH
OH

OAc
OH

12 63% E/Z = 4.5:1d

13 60%

OH
OH

14 58%, E/Z = 3:1

OH
OH

16 75%, E/Z = 3:1

Page 4 of 19

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



O

O
OHOH

OH HO
OH

18 81%, E/Z = 2.7:1 20 75% (49%c), E/Z = 2:1

Cl
OH

19 71%, E/Z = 2.3:117 71%, E/Z = 1.4:1

3

a Reaction conditions: Alkynes (1 equiv., 0.20 mmol), KF (0.6 mg, 5 mol%, 0.01 mmol), TBPA (53 mg, 
2 equiv., 0.40 mmol), 5 mL of alcohol as solvent, sealed tube, 130 C (measured temperature of the oil 
bath), 3 h, unless otherwise noted. b Isolated yield. c Isolated yield without KF. d The ratio of the E/Z 
isomers was determined by crude 1 H NMR. 

Then we tested a series of alcohols, and we found that diverse primary and 

secondary alcohols as well as diol were amenable to this system (Scheme 4). Both 

linear and cyclic alcohols were effective substrates (21-29). Glycol also gave the 

expected product in 25% yield (29). Furthermore we found that this reaction could be 

scaled up to gram level without decreasing efficiency. For example, reaction of 

1,1-diphenylprop-2-yn-1-ol (1.04 g, 5 mmol) with ethanol produced the 

corresponding product (E)-1,1-diphenylpent-2-ene-1,4-diol (30) in 87% yield. 

Scheme 4. Scope of alcohols.a

R +
OH

R2R1

5 mol% KF

130 C, 3 h R OH

R1 R2
2 eq TBPA

HO

OH

HO
OH

22 64%21 96%b

HO

HO

HO
OH

24 69%

23 89%

HO

OH

HO

26 53%25 81%

OH

HO
OHHO

OH

28 78%27 59%

3

HO

OH
OH

29 25%
a Typical reaction conditions. b Isolated yield. 

Finally, a series of experiments were carried out to verify the mechanism we 
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proposed previously (Scheme 5). Firstly, kinetic isotope effect experiments were 

conducted. The results showed that it should be a primary isotope effect (kH/kD = 7.0), 

which suggested that the cleavage of C-H bond might be involved in the RDS (eq. 1). 

Ultimately, an isotopic tracer experiment further confirmed that it should be a typical 

ATRA process (eq. 2).

Scheme 5. Mechanistic studies.

HO
OH

HO

HO
OD

D D

typical reaction
conditions H

H

CH3OH
(2.5 mL)

CD3OD
(2.5 mL)

kH/kD = 7.0

eq (1)

HO HO
OD

D D

typical reaction
conditions

D
eq (2)CD3OD

31 44%

CONCLUSIONS

In summary, we have developed herein a metal-free ATRA reaction of simple 

alcohols with aliphatic alkynes. By addition of 5 mol% of KF, a wide range of allylic 

alcohols can be facilely synthesized via intermolecular H-bonding. Additionally, this 

work revealed that the E/Z selectivity in this type of reaction is not related to alcohol 

but the size of substituent on the triple bond. The more sterically crowded alkyne is, 

the higher selectivity will be. Hence this method is expected to have wide applications 

in material science and medicinal chemistry community.

EXPERIMENTAL SECTION

General Information: All chemicals were commercially available and used as 

received without further purification. Reactions were monitored by thin-layer 

chromatography (TLC). 1H NMR, 13C NMR, and 19F NMR spectra were recorded at 

400, 100, and 375 MHz, respectively. Mass spectra were determined on a Hewlett 

Packard 5988A spectrometer by direct inlet at 70 eV. High-resolution mass spectral 
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analysis (HRMS) data were measured on a Bruker Apex II with a Q-TOF detector. All 

products were identified by 1H and 13C NMR, MS or HRMS. The starting materials 

were purchased from Energy chemistry, Aldrich, Acros Organics, J&K Chemicals or 

TCI and used without further purification. Chemical shifts (δ) are given relative to 

internal TMS. The NMR data are presented as follows: chemical shift (ppm), 

multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling 

constant J (Hz), and integration. 

Typical Experimental Procedure for the Synthesis of 1-31.

A mixture of alkynes (1 equiv., 0.20 mmol), alcohols (5 mL), KF (0.6 mg, 5 mol%, 

0.01 mmol), and TBPA (53 mg, 2 equiv., 0.40 mmol) was heated at 130 C (the 

measured temperature of the oil bath) for 3 h in a sealed tube (35 mL). After the 

reaction finished, the mixture was evaporated under vacuum and purified by column 

chromatography to afford the desired product.

A scaled-up experimental procedure: A mixture of 1,1-diphenylprop-2-yn-1-ol 

(1.04 g, 1 equiv., 5.0 mmol), ethanol (125 mL), KF (14.5 mg, 5 mol%, 0.25 mmol), 

and TBPA (1.32 g, 2 equiv., 10.0 mmol) was heated at 130 C (the measured 

temperature of the oil bath) for 3 h in a sealed tube (300 mL). After the reaction 

finished, the mixture was evaporated under vacuum and purified by column 

chromatography to afford the desired product (30, 

(E)-1,1-diphenylpent-2-ene-1,4-diol, 1.04 g, isolated yield: 87%).

(E)-4-phenylpent-2-ene-1,4-diol10 (1). A colorless liquid after purification by flash 

column chromatography (petroleum ether/ethyl acetate = 1/1, 32.7 mg, 92%). 1H 

NMR (400 MHz, CDCl3) δ 7.47 (m, 2H), 7.35 (m, 2H), 7.26 (m, 1H), 6.04 (dt, J = 

15.6, 1.2 Hz, 1H), 5.88 (dt, J = 15.6, 5.2 Hz, 1H), 4.19 (dd, J = 5.2, 1.3 Hz, 2H), 1.98 

(s, 1H), 1.68 (s, 3H), 1.26 (s, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 146.5, 138.2, 

128.3, 127.2, 127.0, 125.1, 74.2, 63.0, 29.7. MS(EI): m/z(%): 178(0.05), 160(10.8), 

147(67.4), 117(100.0), 43(50.1).

(E)-1,1-diphenylbut-2-ene-1,4-diol (2). A colorless liquid after purification by 

flash column chromatography (petroleum ether/ethyl acetate = 2/1, 41.3 mg, 86%). 1H 

NMR (400 MHz, CDCl3) δ 7.31 – 7.17 (m, 10H), 6.30 (dt, J = 15.6, 1.6 Hz, 1H), 5.81 
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(dt, J = 15.6, 5.2 Hz, 1H), 4.16 (dd, J = 5.2, 1.2 Hz, 2H), 2.35 (s, 1H), 1.52 (s, 1H). 

13C{1H} NMR (101 MHz, CDCl3) δ 145.9, 136.6, 128.9, 128.2, 127.3, 126.8, 78.8, 

63.0. HRMS (ESI, m/z): Calculated for C16H17O2 (M+H)+ 241.1233, found 241.1231.

(E)-4-(2-fluorophenyl)pent-2-ene-1,4-diol (3). A colorless liquid after purification 

by flash column chromatography (petroleum ether/ethyl acetate = 1/1, 34.1 mg, 87%). 
1H NMR (400 MHz, CDCl3) δ 7.55 (t, J = 8.0 Hz, 1H), 7.28 – 7.22 (m, 1H), 7.13 (t, J 

= 7.6 Hz, 1H), 7.01 (dd, J = 12.0, 8.0 Hz, 1H), 6.13 (d, J = 15.6 Hz, 1H), 5.81 (dt, J = 

15.6, 5.2 Hz, 1H), 4.15 (d, J = 5.2 Hz, 2H), 2.52 (s, 1H), 1.87 (s, 1H), 1.71 (s, 3H). 
13C{1H} NMR (101 MHz, CDCl3) δ 161.1, 158.7, 136.9, 136.8, 133.3, 133.2, 129.0, 

128.9, 127.5, 126.8, 126.7, 124.1, 124.0, 116.2, 115.9, 73.1, 73.0, 62.9, 28.5, 28.5. 19F 

NMR (376 MHz, CDCl3) δ -112.05, -112.08, -112.10, -112.12. HRMS (ESI, m/z): 

Calculated for C11H14FO2 (M+H)+ 197.0972, found 197.0975.

(E)-4-(2-chlorophenyl)pent-2-ene-1,4-diol (4). A colorless liquid after purification 

by flash column chromatography (petroleum ether/ethyl acetate = 1/1, 30.0 mg, 66%). 

1H NMR (400 MHz, CDCl3) δ 7.69 (dd, J = 7.8, 1.6 Hz, 1H), 7.34 (dd, J = 7.8, 1.6 Hz, 

1H), 7.29 – 7.25 (m, 1H), 7.21 (td, J = 7.6, 1.6 Hz, 1H), 6.15 (dt, J = 15.6, 1.6 Hz, 

1H), 5.76 (dt, J = 15.6, 5.4 Hz, 1H), 4.17 (dd, J = 5.4, 1.6 Hz, 2H), 2.95 (s, 1H), 1.78 

(s, 3H), 1.75 (s, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 142.9, 136.8, 131.7, 131.2, 

128.6, 128.6, 127.4, 126.9, 74.4, 63.0, 27.9. HRMS (ESI, m/z): Calculated for 

C11H14ClO2 (M+H)+ 213.0677, found 213.0675. 

(E)-4-(2-iodophenyl)pent-2-ene-1,4-diol (5). A colorless liquid after purification 

by flash column chromatography (petroleum ether/ethyl acetate = 1/1, 32.8 mg, 54%). 

1H NMR (400 MHz, CDCl3) δ 7.80 (s, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.39 (d, J = 7.8 

Hz, 1H), 7.05 (t, J = 7.8 Hz, 1H), 5.96 (d, J = 15.6 Hz, 1H), 5.84 (dt, J = 15.6, 7.8 Hz, 

1H), 4.14 (dd, J = 5.2, 1.2 Hz, 2H), 2.39 (s, 1H), 2.28 (s, 1H), 1.61 (s, 3H). 13C{1H} 

NMR (101 MHz, CDCl3) δ 149.0, 137.4, 136.0, 134.2, 130.0, 127.7, 124.5, 94.42, 

73.7, 62.7, 29.7. HRMS (ESI, m/z): Calculated for C11H14IO2 (M+H)+ 305.0033, 

found 305.0032. 

(E)-2-(pyridin-2-yl)hex-3-ene-2,5-diol (6). A colorless solid after purification by 

flash column chromatography (petroleum ether/ethyl acetate = 1/2, 27.8 mg, 72%). 1H 
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NMR (400 MHz, CDCl3) δ 8.34 (dd, J = 5.6, 4.4 Hz, 2H), 7.30 (dd, J = 5.6, 1.2 Hz, 

2H), 5.89 (d, J = 15.6 Hz, 1H), 5.77 (ddd, J = 15.6, 7.6, 5.6 Hz, 1H), 4.31 (p, J = 6.4 

Hz, 1H), 3.80 (s, 2H), 1.58 (d, J = 1.2 Hz, 3H), 1.24 (dd, J = 6.4, 2.4 Hz, 4H). 13C{1H} 

NMR (75 MHz, CDCl3) δ 156.9, 148.7, 134.6, 133.4, 120.6, 73.1, 67.6, 29.19, 23.27. 

HRMS (ESI, m/z): Calculated for C11H16NO2 (M+H)+ 194.1176, found 194.1175.

 (E)-2-methylhex-3-ene-2,5-diol (7). A colorless liquid after purification by flash 

column chromatography (petroleum ether/ethyl acetate = 1/1, 20.4 mg, 88%). 1H 

NMR (400 MHz, CDCl3) δ 5.85 (d, J = 15.6 Hz, 1H), 5.79 (dd, J = 15.6, 4.4 Hz, 1H), 

4.14 (d, J = 4.4 Hz, 2H), 2.05 (s, 1H), 2.03 (s, 1H), 1.32 (s, 6H). 13C{1H} NMR (101 

MHz, CDCl3) δ 139.4, 125.8, 70.5, 63.0, 29.6. HRMS (ESI, m/z): Calculated for 

C6H13O2 (M+H)+ 117.0910, found 117.0912.

(E)-4-methyldec-2-ene-1,4-diol (8). A colorless liquid after purification by flash 

column chromatography (petroleum ether/ethyl acetate = 1/1, 18.5 mg, 71%). 1H 

NMR (400 MHz, CDCl3) δ 5.88 – 5.80 (m, 1H), 5.78 (d, J = 15.6 Hz, 1H), 4.18 (d, J 

= 4.4 Hz, 2H), 1.53 (m, 2H), 1.44 (s, 1H), 1.28 (m, 11H), 0.88 (t, J = 6.4 Hz, 3H). 

13C{1H} NMR (101 MHz, CDCl3) δ 138.7, 126.4, 72.7, 63.2, 42.7, 31.8, 29.7, 27.9, 

23.9, 22.6, 14.0. HRMS (ESI, m/z): Calculated for C11H23O2 (M+H)+ 187.1693, found 

187.1694.

(E)-1-(3-hydroxyprop-1-en-1-yl)cyclohexan-1-ol (9). A colorless liquid after 

purification by flash column chromatography (petroleum ether/ethyl acetate = 2/1, 

25.9 mg, 83%). 1H NMR (400 MHz, CDCl3) δ 5.87 (dd, J = 15.6, 4.4 Hz, 1H), 5.81 (d, 

J = 15.6 Hz, 1H), 4.15 (d, J = 4.0 Hz, 2H), 1.81 (s, 2H), 1.63 – 1.24 (m, 10H). 13C{1H} 

NMR (101 MHz, CDCl3) δ 139.3, 126.5, 71.2, 63.2, 37.8, 25.4, 22.0. HRMS (ESI, 

m/z): Calculated for C9H17O2 (M+H)+157.1223, found 157.1224.

(E)-N-(5-hydroxy-2-methylpent-3-en-2-yl)acetamide (10). A colorless liquid after 

purification by flash column chromatography (petroleum ether/ethyl acetate = 1/1, 

28.6 mg, 91%). 1H NMR (400 MHz, CDCl3) δ 5.88 (d, J = 15.6 Hz, 1H), 5.69 (dt, J = 

15.6, 5.6 Hz, 2H), 4.12 (dd, J = 5.6, 0.8 Hz, 2H), 2.80 (s, 1H), 1.93 (s, 3H), 1.42 (s, 

6H). 13C{1H} NMR (101 MHz, CDCl3) δ 139.4, 125.8, 70.5, 63.0, 29.6. HRMS (ESI, 

m/z): Calculated for C8H16NO2 (M+H)+ 158.1176, found 158.1174.

Page 9 of 19

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(8R,9S,10R,13S,14S,17R)-17-hydroxy-17-((E)-3-hydroxyprop-1-en-1-yl)-10,13-di

methyl-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenan

thren-3-one (11). A white solid after purification by flash column chromatography 

(petroleum ether/ethyl acetate = 1/2, 34.7mg, 53%). 1H NMR (400 MHz, CDCl3) δ 

5.89 (d, J = 15.6 Hz, 1H), 5.77 (dt, J = 15.6, 5.2 Hz, 1H), 5.72 (s, 1H), 4.25 – 4.15 (m, 

2H), 2.43 – 2.24 (m, 4H), 2.03 – 1.94 (m, 2H), 1.86 (m, 2H), 1.68 – 1.47 (m, 6H), 

1.43 – 1.35 (m, 2H), 1.25 – 1.20 (m, 2H), 1.18 (s, 3H), 0.95 (s, 3H). 13C{1H} NMR 

(101 MHz, CDCl3) δ 199.5, 171.2, 136.1, 127.1, 123.8, 83.3, 63.2, 53.6, 49.6, 46.4, 

38.6, 36.6, 36.3, 35.7, 33.9, 32.8, 32.0, 31.6, 23.4, 20.6, 17.4, 14.0. HRMS (ESI, m/z): 

Calculated for C22H33O3 (M+H)+ 345.2424, found 345.2423

(E)-4-methyl-1-phenylpent-2-ene-1,4-diol (12). A colorless liquid after purification 

by flash column chromatography (petroleum ether/ethyl acetate = 1/1, 19.8 mg, 51%). 
1H NMR (400 MHz, CDCl3) δ 7.38 – 7.26 (m, 5H), 5.94 (d, J = 15.6 Hz, 1H), 5.86 

(dd, J = 15.6, 6.0 Hz, 1H), 5.21 (d, J = 6.0 Hz, 1H), 2.04 (s, 1H), 1.33 (d, J = 1.6 Hz, 

6H), 1.25 (s, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 142.9, 139.1, 129.0, 128.6, 

127.7, 126.2, 74.6, 70.6, 29.7. HRMS (ESI, m/z): Calculated for C12H17O2 (M+H)+ 

193.1223, found 193.1223.

(E)-4-hydroxy-4-methyl-1-phenylpent-2-en-1-yl acetate (13). A colorless liquid 

after purification by flash column chromatography (petroleum ether/ethyl acetate = 

2/1, 28.1 mg, 60%). 1H NMR (400 MHz, CDCl3) δ 7.41 – 7.31 (m, 5H), 6.27 (d, J = 

4.7 Hz, 1H), 5.88 (d, J = 15.6 Hz, 1H), 5.83 (dd, J = 15.6, 4.8 Hz, 1H), 2.10 (s, 3H), 

1.31 (d, J = 4.4 Hz, 6H). 13C{1H} NMR (101 MHz, CDCl3) δ 169.9, 140.9, 139.3, 

128.5, 128.1, 127.0, 125.2, 75.6, 70.5, 29.6, 21.3. HRMS (ESI, m/z): Calculated for 

C14H19O3 (M+H)+ 235.1329, found 235.1328

(Z)-5-methyl-1-phenylhex-3-ene-1,5-diol (14’). A colorless liquid after purification 

by flash column chromatography (petroleum ether/ethyl acetate = 1/1, 4.5 mg, 14.5%). 
1H NMR (400 MHz, CDCl3) δ 7.37 – 7.29 (m, 4H), 7.27 – 7.24 (m, 1H), 5.64 (d, J = 

12.0 Hz, 1H), 5.37 (ddd, J = 12.0, 9.2, 7.6 Hz, 1H), 4.73 (dd, J = 8.4, 3.6 Hz, 1H), 

3.01 – 2.94 (m, 1H), 2.80 (s, 1H), 2.62 – 2.55 (m, 1H), 1.33 (d, J = 2.0 Hz, 6H), 1.23 

(s, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 144.4, 140.1, 128.4, 127.4, 125.7, 124.8, 
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73.1, 72.0, 37.3, 32.0, 31.2. HRMS (ESI, m/z): Calculated for C13H19O2 (M+H)+ 

207.1038, found 207.1036. 

(E)-5-methyl-1-phenylhex-3-ene-1,5-diol (14). A colorless liquid after purification 

by flash column chromatography (petroleum ether/ethyl acetate = 1/1, 17.9 mg, 

43.5%). 1H NMR (400 MHz, CDCl3) δ 7.34 – 7.29 (m, 4H), 7.26 – 7.22 (m, 1H), 5.68 

(d, J = 15.6 Hz, 1H), 5.60 (dt, J = 15.6, 6.4 Hz, 1H), 4.68 (dd, J = 7.2, 5.6 Hz, 1H), 

2.46 – 2.38 (m, 2H), 2.19 (d, J = 6.8 Hz, 1H), 1.69 (s, 1H), 1.26 (s, 6H). 13C{1H} 

NMR (101 MHz, CDCl3) δ 143.9, 141.9, 128.4, 127.5, 125.8, 122.6, 73.7, 70.6, 42.1, 

29.8, 29.7. HRMS (ESI, m/z): Calculated for C13H19O2 (M+H)+ 207.1038, found 

207.1037.

tert-butyl (E)-4-(3-hydroxy-3-methylbut-1-en-1-yl)piperidine-1-carboxylate (15’). 

A colorless liquid after purification by flash column chromatography (petroleum 

ether/ethyl acetate = 1/1, 12.4 mg, 23%). 1H NMR (400 MHz, CDCl3) δ 5.44 (d, J = 

12.0 Hz, 1H), 5.1 (t, J = 6.4 Hz,1H), 4.07 (s, 2H), 3.02 (dt, J = 15.0, 11.2 Hz, 1H), 

2.73 (s, 2H), 1.60 (d, J = 10.4 Hz, 2H), 1.45 (s, 9H), 1.37 (s, 6H), 1.22 (dd, J = 13.6, 

5.3 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ 154.8, 136.0, 135.2, 79.3, 71.7, 

43.23, 34.9, 32.3, 31.6, 28.5. HRMS (ESI, m/z): Calculated for C15H28NO3 (M+H)+ 

270.2064, found 270.2062

tert-butyl (E)-4-(3-hydroxy-3-methylbut-1-en-1-yl)piperidine-1-carboxylate (15). 

A colorless liquid after purification by flash column chromatography (petroleum 

ether/ethyl acetate = 1/1, 24.8 mg, 46%).  1H NMR (400 MHz, CDCl3) δ 5.59 (d, J = 

15.6 Hz, 1H), 5.54 (d, J = 15.6 Hz, J = 6.4 Hz, 1H), 4.07 (s, 2H), 2.71 (t, J = 11.6 Hz, 

2H), 2.12 – 2.01 (m, 1H), 1.64 (d, J = 12.8 Hz, 2H), 1.58 (d, J = 10.7 Hz, 1H), 1.44 (s, 

9H), 1.28 (s, 6H), 1.27 – 1.20 (m, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ 154.8, 

136.6, 130.8, 79.3, 70.5, 43.9, 38.4, 31.8, 29.8, 28.4. HRMS (ESI, m/z): Calculated 

for C15H28NO3 (M+H)+ 270.2064, found 270.2065. 

(Z)-2,6,6-trimethylhept-3-ene-2,5-diol (16’). A colorless liquid after purification by 

flash column chromatography (petroleum ether/ethyl acetate = 1/1, 6.5 mg, 19%). 1H 

NMR (400 MHz, CDCl3) δ 5.62 (dd, J = 12.4, 1.2 Hz, 1H), 5.50 (dd, J = 12.4, 6.8 Hz, 

1H), 4.40 (dd, J = 6.8, 1.2 Hz, 1H), 2.93 (s, 1H), 1.39 (d, J = 4.2 Hz, 6H), 1.25 (s, 1H), 

Page 11 of 19

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0.94 (s, 9H). 13C{1H} NMR (101 MHz, CDCl3) δ 140.3, 126.3, 80.2, 70.5, 34.8, 29.8, 

25.5.  HRMS (ESI, m/z): Calculated for C10H21O2 (M+H)+ 173.1536, found 

173.1537. 

(E)-2,6,6-trimethylhept-3-ene-2,5-diol (16). A colorless liquid after purification by 

flash column chromatography (petroleum ether/ethyl acetate = 1/1, 19.4 mg, 56%). 1H 

NMR (400 MHz, CDCl3) δ 5.82 (d, J = 15.6 Hz, 1H), 5.73 (dd, J = 15.6, 6.8 Hz, 1H), 

3.75 (d, J = 6.8 Hz, 1H), 1.51 (s, 1H), 1.49 (s, 1H), 1.33 (s, 6H), 0.90 (s, 9H). 13C{1H} 

NMR (101 MHz, CDCl3) δ 140.5, 126.4, 80.4, 70.7, 35.0, 29.9, 29.8, 25.6. HRMS 

(ESI, m/z): Calculated for C10H21O2 (M+H)+ 173.1536, found 173.1537. 

(Z)-2-methylhex-3-ene-2,5-diol (17’). A colorless liquid after purification by flash 

column chromatography (petroleum ether/ethyl acetate = 1/1, 7.7 mg, 30%). 1H NMR 

(400 MHz, CDCl3) δ 5.50 (dd, J = 12.4, 1.2 Hz, 1H), 5.38 (dd, J = 12.4, 6.4 Hz, 1H), 

4.87 (pd, J = 6.4, 1.2 Hz, 1H), 3.63 (s, 2H), 1.39 (s, 6H), 1.30 (d, J = 6.4 Hz, 3H). 

13C{1H} NMR (101 MHz, CDCl3) δ 138.2, 132.7, 71.8, 64.0, 31.9, 30.8, 23.8. HRMS 

(ESI, m/z): Calculated for C7H15O2 (M+H)+ 131.1067, found 131.1065.

(E)-2-methylhex-3-ene-2,5-diol (17). A colorless liquid after purification by flash 

column chromatography (petroleum ether/ethyl acetate = 1/1, 10.7 mg, 41%). 1H 

NMR (400 MHz, CDCl3) δ 5.80 (d, J = 16.0 Hz, 1H), 5.70 (dd, J = 15.6, 6.0 Hz, 1H), 

4.32 (p, J = 6.4 Hz, 1H), 2.35 (s, 2H), 1.32 (s, 6H), 1.28 (d, J = 6.4 Hz, 3H). 13C{1H} 

NMR (75 MHz, CDCl3) δ 137.6, 130.7, 70.4, 68.3, 29.7, 29.5, 23.4. HRMS (ESI, 

m/z): Calculated for C7H15O2 (M+H)+ 131.1067, found 131.1066.

(Z)-4-methylpent-2-ene-1,4-diol (18’). A colorless liquid after purification by flash 

column chromatography (petroleum ether/ethyl acetate = 5/1, 5.1 mg, 21.9%). 1H 

NMR (400 MHz, CDCl3) δ 5.59 (d, J = 12.0 Hz, 1H), 5.51 (dd, J = 12.0, 4.8 Hz, 1H), 

4.31 (d, J = 4.2 Hz, 2H), 3.14 (s, 1H), 3.13 (s, 1H), 1.38 (s, 6H). 13C{1H} NMR (101 

MHz, CDCl3) δ 139.4, 127.5, 71.9, 59.0, 31.2. HRMS (ESI, m/z): Calculated for 

C6H13O2(M+H)+ 117.0910, found 117.0908. 

(E)-4-methylpent-2-ene-1,4-diol (18). A colorless liquid after purification by flash 

column chromatography (petroleum ether/ethyl acetate = 5/1, 13.7 mg, 59%). 1H 

NMR (400 MHz, CDCl3) δ 5.83 (d, J = 15.6 Hz, 1H), 5.77 (dd, J = 15.6, 4.8 Hz, 1H), 
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4.11 (d, J = 4.4 Hz, 2H), 2.66 (s, 1H), 2.52 (s, 1H), 1.31 (s, 6H). 13C{1H} NMR (101 

MHz, CDCl3) δ 139.4, 125.8, 70.5, 62.8, 29.5. HRMS (ESI, m/z): Calculated for 

C6H13O2(M+H)+ 117.0910, found 117.0909.

(E)-7-chloro-2-methylhept-3-en-2-ol (19). A colorless liquid after purification by 

flash column chromatography (petroleum ether/ethyl acetate = 1/1, 14.8 mg, 49.5%). 

1H NMR (400 MHz, CDCl3) δ 5.67 (d, J = 15.6 Hz, 1H), 5.59 (dt, J = 15.6, 6.4 Hz, 

1H), 3.53 (t, J = 6.4 Hz, 2H), 2.19 (q, J = 1 6.4 Hz, 2H), 1.82 – 1.89 (m, 2H), 1.38 (s, 

1H), 1.31 (s, 6H). 13C{1H} NMR (101 MHz, CDCl3) δ 139.4, 125.1, 70.6, 44.3, 32.0, 

29.9, 29.2. HRMS (ESI, m/z): Calculated for C8H15ClO (M+H)+ 163.0884, found 

163.0883. 

(Z)-4-hydroxy-4-methylpent-2-en-1-yl benzoate (20’). A colorless liquid after 

purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1, 11 

mg, 25%). 1H NMR (400 MHz, CDCl3) δ 8.11 – 8.00 (m, 2H), 7.60 – 7.52 (m, 1H), 

7.48 – 7.41 (m, 2H), 5.67 (dt, J = 12.0, 1.2 Hz, 1H), 5.50 (dt, J = 12.0, 6.8 Hz, 1H), 

5.25 (dd, J = 6.8, 1.2 Hz, 2H), 2.85 (s, 1H), 1.39 (s, 6H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 166.9, 140.8, 133.0, 130.3, 129.6, 128.3, 123.0, 72.2, 61.6, 31.0. HRMS 

(ESI, m/z): Calculated for C13H17O3 (M+H)+ 221.1172, found 221.1171.

(E)-4-hydroxy-4-methylpent-2-en-1-yl benzoate (20). A colorless liquid after 

purification by flash column chromatography (petroleum ether/ethyl acetate = 2/1, 22 

mg, 50%). 1H NMR (400 MHz, CDCl3) δ 8.12 – 8.00 (m, 2H), 7.55 (d, J = 7.4 Hz, 

1H), 7.44 (t, J = 7.7 Hz, 2H), 6.00 (d, J = 15.7 Hz, 1H), 5.89 (dd, J = 13.7, 7.8 Hz, 

1H), 4.82 (dd, J = 5.8, 0.9 Hz, 2H), 1.69 (s, 1H), 1.35 (s, 6H). 13C{1H} NMR (101 

MHz, CDCl3) δ 166.3, 142.3, 132.9, 130.2, 129.6, 128.3, 120.9, 70.5, 64.9, 29.6. 

HRMS (ESI, m/z): Calculated for C13H17O3 (M+H)+ 221.1172, found 221.1170.

(E)-4-phenylpent-2-ene-1,4-diol3a (21). A colorless liquid after purification by 

flash column chromatography (petroleum ether/ethyl acetate = 1/1, 36.9 mg, 96%). 1H 

NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.0 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.26 – 

7.21 (m, 1H), 5.98 (ddd, J = 15.6, 4.0, 0.8 Hz, 1H), 5.72 (ddd, J = 15.6, 6.5, 3.0 Hz, 

1H), 4.12 – 3.98 (m, 1H), 2.26 (d, J = 16.8 Hz, 1H), 1.87 (s, 1H), 1.64 (t, J = 3.2 Hz, 

3H), 1.62 – 1.51 (m, 2H), 0.91 (td, J = 7.4, 2.8 Hz, 3H). 13C{1H} NMR (101 MHz, 
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CDCl3) δ 146.6, 136.6, 132.1, 128.2, 126.9, 125.1, 74.1, 68.3, 29.7, 23.3. MS (EI): 

m/z (%): 192(0.1), 177(5.3), 147(100.0),131(79.5), 105(42.8), 91(37.0), 43(88.5).

(E)-2-phenylhept-3-ene-2,5-diol (22). A colorless liquid after purification by flash 

column chromatography (petroleum ether/ethyl acetate = 1/1, 26.4 mg, 64%). 1H 

NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.0 Hz, 2H), 7.33 (t, J = 8.0 Hz, 2H), 7.26 – 

7.22 (m, 1H), 5.98 (ddd, J = 15.6, 4.0, 0.8 Hz, 1H), 5.72 (ddd, J = 15.6, 6.4, 3.2 Hz, 

1H), 4.05 (dd, J = 6.4, 3.6 Hz, 1H), 2.26 (d, J = 16.8 Hz, 1H), 1.87 (s, 1H), 1.65 (d, J 

= 2.8 Hz, 3H), 1.61 – 1.52 (m, 2H), 0.91 (td, J = 7.2, 2.8 Hz, 3H). 13C{1H} NMR (75 

MHz, CDCl3) δ 146.6, 137.7, 130.6, 128.2, 126.9, 125.0, 74.1, 73.7, 30.0, 29.7, 9.8. 

HRMS (ESI, m/z): Calculated for C13H19O2 (M+H)+ 207.1380, found 207.1380. 

(E)-2-methyl-5-phenylhex-3-ene-2,5-diol11 (23). A white solid after purification by 

flash column chromatography (petroleum ether/ethyl acetate = 1/1, 36.7 mg, 89%). 1H 

NMR (400 MHz, CDCl3) δ 7.43 (d, J = 7.6 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.23 (t, J 

= 7.2 Hz, 1H), 5.95 (d, J = 15.8 Hz, 1H), 5.83 (d, J = 15.8 Hz, 1H), 2.30 (s, 1H), 2.03 

(s, 1H), 1.62 (s, 3H), 1.30 (s, 6H). 13C{1H} NMR (75 MHz, CDCl3) δ 146.8, 135.8, 

133.4, 128.1, 126.8, 125.1, 74.1, 70.6, 29.8, 29.7, 29.6. MS (EI): m/z(%): 206(0.02), 

191(5.5), 171(16.6), 145(100.0), 105(73.5).

(E)-5-methyl-2-phenylhept-3-ene-2,5-diol (24). A colorless liquid after purification 

by flash column chromatography (petroleum ether/ethyl acetate = 1/1, 30.4 mg, 69%). 
1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 7.2 Hz, 2H), 7.34 (d, J = 7.2 Hz, 2H), 7.25 

(d, J = 6.8 Hz, 1H), 5.98 (dd, J = 15.6, 1.2 Hz, 1H), 5.76 (d, J = 15.6 Hz, 1H), 2.03 (s, 

1H), 1.65 (s, 3H), 1.60 – 1.54 (m, 2H), 1.28 (d, J = 1.6 Hz, 3H), 0.87 (td, J = 7.6, 4.4 

Hz, 3H). 13C{1H} NMR (75 MHz, CDCl3) δ 146.8, 134.7, 134.5, 128.2, 126.9, 125.1, 

74.2, 73.0, 35.2, 29.9, 27.4, 8.3. HRMS (ESI, m/z): Calculated for C14H21O2 (M+H)+ 

221.1536, found 221.1539. 

(E)-2-phenyloct-3-ene-2,5-diol (25). A colorless liquid after purification by flash 

column chromatography (petroleum ether/ethyl acetate = 1/1, 35.7 mg, 81%). 1H 

NMR (400 MHz, CDCl3) δ 7.8 (d, J = 7.6 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.29 – 

7.24 (m, 1H), 6.00 (ddd, J = 15.6, 3.6, 0.8 Hz, 1H), 5.75 (ddd, J = 15.6, 6.4, 3.0 Hz, 

1H), 4.16 (q, J = 6.4 Hz, 1H), 2.29 (s, 1H), 2.13 (s, 1H), 1.67 (d, J = 2.8 Hz, 1H), 1.60 
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– 1.48 (m, 2H), 1.45 – 1.33 (m, 2H), 0.95 (td, J = 7.2, 3.0 Hz, 3H). 13C{1H} NMR (75 

MHz, CDCl3) δ 146.6, 137.5, 131.0, 128.2, 126.9, 125.1, 74.1, 72.2, 39.3, 29.7, 18.6, 

14.0. HRMS (ESI, m/z): Calculated for C14H21O2 (M+H)+ 221.1536, found 221.1537.

(E)-2-phenylnon-3-ene-2,5-diol (26). A colorless liquid after purification by flash 

column chromatography (petroleum ether/ethyl acetate = 1/1, 21.8 mg, 53%). 1H 

NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.0 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.26 – 

7.22 (m, 1H), 5.98 (dd, J = 15.6, 3.2 Hz, 1H), 5.74 (dd, J = 15.6, 6.4 Hz, 1H), 4.13 (q, 

J = 6.4 Hz, 1H), 2.12 (s, 1H), 2.03 (s, 1H), 1.66 (d, J = 2.8 Hz, 3H), 1.60 – 1.51 (m, 

2H), 1.35 – 1.32 (m, 4H), 0.90 (td, J = 6.8, 2.4 Hz, 3H). 13C{1H} NMR (75 MHz, 

CDCl3) δ 146.5, 137.5, 131.1, 128.2, 127.0, 125.1, 74.1, 72.5, 36.9, 29.7, 27.6, 22.6, 

14.0. HRMS (ESI, m/z): Calculated for C15H23O2 (M+H)+ 235.1393, found 235.1391. 

(E)-5-ethyl-2-phenylhept-3-ene-2,5-diol (27). A colorless liquid after purification 

by flash column chromatography (petroleum ether/ethyl acetate = 1/1, 27.6 mg, 59%). 

1H NMR (400 MHz, CDCl3) δ 7.47 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.26 

– 7.23 (m, 1H), 5.98 (d, J = 15.8 Hz, 1H), 5.67 (d, J = 15.8 Hz, 1H), 1.94 (s, 1H), 1.66 

(s, 3H), 1.59 – 1.52 (m, 4H), 1.39 (s, 1H), 0.86 (q, J = 7.2 Hz, 6H). 13C{1H} NMR 

(75 MHz, CDCl3) δ 146.8, 135.5, 133.4, 128.2, 126.9, 125.2, 75.3, 74.4, 33.2, 30.0, 

7.9. HRMS (ESI, m/z): Calculated for C15H23O2 (M+H)+ 235.1393, found 235.1392. 

(E)-1-(3-hydroxy-3-phenylbut-1-en-1-yl)cyclopentan-1-ol (28). A colorless liquid 

after purification by flash column chromatography (petroleum ether/ethyl acetate = 

1/1, 36.2 mg, 78%). 1H NMR (400 MHz, CDCl3) δ 7.48 – 7.44 (m, 2H), 7.33 (t, J = 

7.6 Hz, 2H), 7.26 – 7.22 (m, 1H), 6.05 (d, J = 15.6 Hz, 1H), 5.88 (d, J = 15.6 Hz, 1H), 

1.87 – 1.84 (m, 2H), 1.67 (s, 8H), 1.66 (s, 3H). 13C{1H} NMR (75 MHz, CDCl3) δ 

146.8, 134.2, 133.8, 128.2, 126.9, 125.1, 81.7, 74.2, 40.6, 40.5, 30.0, 23.6. HRMS 

(ESI, m/z): Calculated for C15H21O2 (M+H)+ 233.1536, found 233.1535. 

(E)-5-phenylhex-3-ene-1,2,5-triol (29). A colorless liquid after purification by 

flash column chromatography (ethyl acetate, 10.4 mg, 25%). 1H NMR (400 MHz, 

CDCl3) δ 7.45 (d, J = 7.6 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.25 (t, J = 7.2 Hz, 1H), 

6.12 (d, J = 15.6 Hz, 1H), 5.74 (ddd, J = 15.6, 12.0, 6.0 Hz, 1H), 4.28 (s, 1H), 3.66 

(dd, J = 7.2, 4.0 Hz, 1H), 3.51 (dd, J = 17.2, 9.2 Hz, 1H), 2.77 (br, 2H), 1.88 (s, 1H), 
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1.66 (d, J = 2.8 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ146.3, 139.4, 128.3, 

127.1, 126.7, 125.1, 74.2, 72.4, 66.3, 29.7. HRMS (ESI, m/z): Calculated for 

C12H17O3 (M+H)+ 209.1172, found 209.1175.

(E)-1,1-diphenylpent-2-ene-1,4-diol (30).A colorless liquid after purification by 

flash column chromatography (petroleum ether/ethyl acetate = 2/1, 1.04 g, 87%). 1H 

NMR (300 MHz, CDCl3) δ 7.39 – 7.19 (m, 10H), 6.28 (dd, J = 15.6, 1.2 Hz, 1H), 5.75 

(dd, J = 15.6, 6.0 Hz, 1H), 4.42 – 4.26 (m, 1H), 3.02 (s, 2H), 1.25 (d, J = 6.4 Hz, 3H). 

13C{1H} NMR (75 MHz, CDCl3) δ 145.9, 135.2, 133.6, 128.1, 127.2, 126.8, 78.6, 

68.2, 23.3.HRMS (ESI, m/z): Calculated for C17H19O2 (M+H)+ 255.1380, found 

255.1382

 (E)-4-phenylpent-2-ene-1,1,3-d3-1,4-diol-d (31). A colorless liquid after 

purification by flash column chromatography (petroleum ether/ethyl acetate = 1/1, 16 

mg, 44%). 1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 7.2 Hz, 2H), 7.35 (t, J = 7.2 Hz, 

2H), 7.30 – 7.22 (m, 1H), 5.87 (s, 1H), 1.68 (s, 3H), 1.59 (s, 1H). 13C{1H} NMR (101 

MHz, CDCl3) δ 146.5, 138.2, 128.3, 127.2, 127.0, 125.1, 74.2, 63.0, 29.7. HRMS 

(ESI, m/z): Calculated for C11H10D4O2Na (M+Na)+ 205.1137, found 205.1139. 
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