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Abstract: Herein we describe the synthesis of organoselanyl and organotellanyl alkynes by
the addition of lithium alkynylchalcogenolate (Se and Te) to tosyl solketal, easily obtained
from glycerol. The alkynylchalcogenolate anions were generated in situ and added to tosyl
solketal in short reaction times, furnishing in all cases the respective products of substitution
in good yields. Some of the prepared compounds were deprotected using an acidic resin
to afford new water-soluble 3-organotellanylpropane-1,2-diols. The synthetic versatility of
the new chalcogenyl alkynes was demonstrated in the iodocyclization of 2,2-dimethyl-1,3-
dioxolanylmethyl(2-methoxyphenylethynyl)selane 3f, which afforded 3-iodo-2-(2,2-dimethyl-1,3-
dioxolanylmethyl) selenanylbenzo[b]furan in 85% yield, opening a new way to access water-soluble
Se-functionalized benzo[b]furanes.
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1. Introduction

Organochalcogen chemistry is considered a very broad field due to the increasing research
on the synthesis [1–5] and applications [2,6–9] of this class of compounds. Besides, organoselanyl
and organotellanyl alkynes have become extensively studied due their pharmacological and
biological activities [10–13] and their use as starting material in organic synthesis [2,14–16].
For example, organotellanyl alkynes exhibited antidepressive-like activity [17], while alkyne-derived
organotellanyl alkenes showed in vitro antioxidant activity with slight toxicity [18,19]. Additionally,
chalcogenyl alkynes are useful in electrophilic cyclization reactions to prepare benzo[b]furans [20],
in [4 + 2]-cycloadditions to produce the corresponding 2-chalcogenyl-1-halonaphthalenes [21], and in
the synthesis of bis-phenylchalcogen alkenes [22,23]. Despite all the advances in this area, most of the
papers are restricted to the synthesis of chalcogenyl alkynes starting mainly from aromatic terminal
alkynes [24–30], with only a few methods to prepare aliphatic alkynylselenides and tellurides with
different chalcogen substitution patterns.

On the other hand, with the increasing overproduction of glycerol [31], solketal has become a
useful intermediate in chemical transformations using glycerol as a raw material. It is well accepted
that tosyl solketal plays an important role in a vast array of applications [32–36]; standing out is its use
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as a building block in organic synthesis. Recently, tosyl solketal was used as starting material for the
synthesis of several biologically active compounds [36,37]. The synthesis of a series of organochalcogen
glycerol derivatives was described, including chalcogen ethers [38,39] with antioxidant activity [38],
as well as enantiomerically pure selenides and diselenides [40].

In a previous paper [41], we described a convenient procedure for the synthesis of new vinyl
chalcogenides by the reaction of glycerol-derived dichalcogenides with terminal alkynes in the presence
of NaBH4, using PEG-400 as the solvent. Chalcogenyl alkynes were selectively prepared from the
same starting materials, when ethanol was the solvent. However, reaction times were in the range
of 5 to 26 h, and the scope of the reaction was limited to organoselanyl alkynes, since the synthesis
of only one organotellanyl alkyne in 55% yield was reported [41]. Trying to solve these limitations,
and in continuation of our studies on the synthesis and reactivity of chalcogenyl alkynes, herein we
describe a general and efficient synthesis of a new glycerol-derived organoselanyl and organotellanyl
alkyne 3 via the nucleophilic substitution of lithium alkynylchalcogenolate 1′ (Se and Te) with tosyl
solketal 2 (Scheme 1).
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2. Results and Discussion

The first step of the reaction is the preparation of the nucleophilic species 1′a–i, which were
prepared in situ using a butyllithium solution and THF as the solvent. Phenylacetylene 1a (1.0 mmol)
and elemental selenium (1.0 mmol) were used as standard reagents to optimize the preparation of the
respective alkynylselenolate 1′a (R = C6H5; Y = Se) at 0 ◦C under N2 atmosphere. After stirring for
20 min at 0 ◦C, racemic tosyl solketal 2 (1.2 mmol) was added and the mixture was stirred at room
temperature for an additional 1 h, giving 2,2-dimethyl-1,3-dioxolanylmethyl(phenylethynyl)selane 3a
in 20% yield. When the reaction time was extended to 3 h, the yield was increased to 30%, but side
products were also observed. Next, the amount of tosyl solketal 2 was reduced to 1.0 mmol (1 equiv.
related to the alkynylselenolate anion 1′a) and after 3 h at r.t., 3a was isolated in 50% yield. However,
the best performance of this reaction was achieved when the amount of tosyl solketal 2 was decreased
to 0.5 mmol (0.5 equiv. related to 1′a), affording 3a in 80% yield after 3 h. By using 0.7 equiv. of tosyl
solketal 2, a decrease in the yield of product 3a was observed (42%). These findings indicate that a
large excess of chalcogenolate anion is mandatory for the reaction.

After determining the best conditions to prepare 3a, the protocol was extended to the differently
substituted aliphatic and aromatic terminal alkynes 1b–h (Table 1, entries 2–8). As shown in Table 1,
a number of selenanyl alkynes were prepared in good yields. Starting from aliphatic hex-1-yne 1b,
2,2-dimethyl-1,3-dioxolanylmethyl(hex-1-yn-1-yl)selane 3b was obtained in 63% yield. This is a good
outcome, considering that an aliphatic alkyne was used as the starting material (Table 1, entry 2).
In principle, the presence of substituents in the aromatic ring of alkynes 1c–g seems to negatively
impact the reactivity, since all the respective products were obtained in lower yields. Experiments
have shown that the overall result is similar in both situations; i.e., the yields of products 3c–g are
reduced to 60%–70% (Table 1, entries 3–7). Ethynylcyclohex-1-ene 1h afforded the respective selenanyl
alkyne 3h in 52% yield, showing that the reaction can be successfully applied to conjugated enynes
(Table 1, entry 8).

The optimized protocol was employed using tellurium instead selenium, in order to prepare
organotellanyl alkynes 3i–m. However, by reacting phenylacetylene 1a with elemental tellurium
under the same reaction conditions employed for the selenium derivatives, the respective
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2,2-dimethyl-1,3-dioxolanylmethyl(phenylethynyl)tellane 3i was obtained in only 30% yield after
3 h. Trying to improve the yield of 3i, the same procedure was repeated, but the tosyl solketal 2 was
added at 0 ◦C and the temperature maintained at 0 ◦C for an additional 3 h. In this case, the desired
product 3h was obtained only in trace amounts, with a large amount of the bis(phenylethynyl)tellane as
side product. Then, an additional test was performed: after addition of the solketal 2 to the previously
formed alkynyltellurolate 1′ at 0 ◦C, the ice bath was replaced by an oil bath and the reaction mixture
was stirred under reflux for 1.5 h. To our delight, this reaction afforded the desired tellanyl alkyne 3i
in 85% yield (Table 1, entry 9). Under the new conditions, the reaction scope could be expanded to
other alkynes and the respective tellanyl alkynes were obtained in good yields, similar to the selanyl
alkynes analogues (Table 1, entries 10–13).

Table 1. Scope of the synthesis of organoselanyl 3a–h and organotellanyl alkynes 3i–m a.
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conduced in CH2Cl2 at r.t. for 1 h, delivering 85% yield of the densely functionalized 3-iodo-2-(2,2- 
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hexanes; 1.0 mmol) at 0 ◦C in THF (5.0 mL) under N2 atmosphere. Then, tosyl solketal 2 (0.5 mmol) in THF (2.0 mL)
was added at r.t. and the mixture stirred for additional 3 h (3a–h) or under reflux for 1.5 h (3i–m); b Yields are given
for isolated products.

Due to our interest in the synthetic applications of organochalcogen compounds, as well as
in studying new possibilities in their biological activities, we performed the synthesis of new
3-organotellanylpropane-1,2-diols 4 (Table 2). Starting from the organotellanyl alkynes 3i, 3l, and
3m, the 3-tellanylpropane-1,2-diols 4a–c were obtained in moderate yields by treatment with Dowex
50WX8 (H+ form) in methanol, after 5 h (Table 2, entries 1–3). These new compounds generally showed
a good solubility in water, which will facilitate biological tests where aqueous medium is required
(Table 2).

Selanyl alkynes with an appropriate substitution pattern are attractive intermediates in organic
synthesis [20]. For example, the intramolecular electrophilic cyclization of 3f with iodine was
easily conduced in CH2Cl2 at r.t. for 1 h, delivering 85% yield of the densely functionalized
3-iodo-2-(2,2-dimethyl-1,3-dioxolanylmethyl)selenanylbenzo[b]furan 5 (Scheme 2). The combination
of a selenium group with the benzo[b]furan scaffold could be an interesting strategy in the prospection
of new drug candidates.
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3m, the 3-tellanylpropane-1,2-diols 4a–c were obtained in moderate yields by treatment with Dowex 
50WX8 (H+ form) in methanol, after 5 h (Table 2, entries 1–3). These new compounds generally showed 
a good solubility in water, which will facilitate biological tests where aqueous medium is required 
(Table 2). 

Table 2. Synthesis of new 3-organotellanylpropane-1,2-diols 4a–c a. 

 
Entry Tellanyl Alkyne 3 Diol 4 Solubility (mg/mL) b Yield (%) c

1 
  

2.3 50 

2 
  

2.8 50 

3 

  

1.5 47 

a Reaction was performed using 1.0 mmol of 3, 1.112 g of Dowex® in 2.5 mL of MeOH at r.t. for 5 h;  
b Solubility measured in water; c Yields are given for isolated products. 

Selanyl alkynes with an appropriate substitution pattern are attractive intermediates in organic 
synthesis [20]. For example, the intramolecular electrophilic cyclization of 3f with iodine was easily 
conduced in CH2Cl2 at r.t. for 1 h, delivering 85% yield of the densely functionalized 3-iodo-2-(2,2- 
dimethyl-1,3-dioxolanylmethyl)selenanylbenzo[b]furan 5 (Scheme 2). The combination of a selenium 
group with the benzo[b]furan scaffold could be an interesting strategy in the prospection of new 
drug candidates. 
  

1.5 47

a Reaction was performed using 1.0 mmol of 3, 1.112 g of Dowex® in 2.5 mL of MeOH at r.t. for 5 h; b Solubility
measured in water; c Yields are given for isolated products.
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Scheme 2. Synthesis of 3-iodo-2-(2,2-dimethyl-1,3-dioxolanylmethyl)selenanylbenzo[b]furan 5.

3. Experimental Section

3.1. General Information

The reactions were monitored by thin layer chromatography (TLC) carried out on Merck (Merck,
Darmstadt, Germany) silica gel (60 F254) by using UV light as visualizing agent and 5% vanillin in 10%
H2SO4 and heat as developing agent. NMR spectra were recorded with Bruker spectrometer (Bruker,
Billerica, MA, USA) DPX 300, DPX 400, and DPX 500 (300, 400, and 500 MHz, respectively) instruments
using CDCl3 as solvent and calibrated using tetramethylsilane (TMS) as internal standard. Chemical
shifts (δ) are reported in ppm, coupling constants (J) are reported in Hertz. The NMR spectra are
found in the Supplementary Materials. Low-resolution mass spectra were obtained with a Shimadzu
GC-MS-QP2010 mass spectrometer (Shimadzu Corporation, Kyoto, Japan) and molecular ion values
are reported according the exact mass. High-resolution mass spectra (HMRS) were recorded on a
Shimadzu LC-MS-IT-TOF spectrometer (Shimadzu Corporation). Melting points were determined
using a Marte PFD III melting point instrument (Marte Científica, Minas Gerais, Brazil).

3.2. General Procedure for Synthesis of Organoselanyl Alkynes 3a–h

To a solution of alkyne 1 (1.0 mmol) in THF (5.0 mL) under N2 atmosphere, BuLi (1.6 mol/L
in hexanes; 1.0 mmol) was added at 0 ◦C. After 20 min, the temperature was increased to room
temperature, and elemental selenium (Se0, 1.0 mmol) was added. The stirring at room temperature
was maintained until all selenium was consumed, and then a solution of racemic tosyl solketal 2
(0.5 mmol) in THF (2.0 mL) was added. After stirring for 3 h, the reaction mixture was quenched with
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water (15.0 mL) and extracted with ethyl acetate (3 × 15.0 mL). The organic phase was separated, dried
over MgSO4, and the solvent was evaporated under reduced pressure. The product was isolated by
column chromatography using hexanes/ethyl acetate as eluent.

Analytical Data of Products 3a–h

2,2-Dimethyl-1,3-dioxolanylmethyl(phenylethynyl)selane 3a (Table 1, entry 1) [41]: Yield: 0.118 g (80%);
yellow oil. 1H-NMR (CDCl3, 300 MHz); δ (ppm): 7.38–7.42 (m, 2H, Ar-H), 7.27–7.32 (m, 3H, Ar-H),
4.46–4.54 (m, 1H, O-CH), 4.21 (dd, J = 8.6 and 6.0 Hz, 1H, O-HCH), 3.88 (dd, J = 8.6 and 5.8 Hz, 1H,
O-HCH), 3.07 (dd, J = 12.1 and 5.2 Hz, 1H, Se-HCH), 2.94 (dd, J = 12.1 and 7.7 Hz, 1H, Se-HCH), 1.45
(d, J = 0.5 Hz, 3H, C-CH3), 1.37 (d, J = 0.5 Hz, C-CH3). 13C-NMR (CDCl3, 75 MHz); δ (ppm): 131.5,
128.3 (3C), 123.2, 109.7, 99.4, 75.3, 69.3, 68.9, 31.8, 27.0, 25.5. MS: m/z (rel. int.) 296 (M+, 8.7), 181 (43.8),
115 (25.9), 102 (26.4), 43 (100.0).

2,2-Dimethyl-1,3-dioxolanylmethyl(hex-1-yn-1-yl)selane 3b (Table 1, entry 2) [41]: Yield: 0.087 g (63%);
yellow oil. MS: m/z (rel. int.) 276 (M+, 8.5), 101 (39.1), 79 (22.4), 57 (31.0), 43 (100.0).

2,2-Dimethyl-1,3-dioxolanylmethyl(4-methylphenylethynyl)selane 3c (Table 1, entry 3) [41]: Yield: 0.101 g
(65%); yellow solid. m.p. 45–47 ◦C. MS: m/z (rel. int.) 310 (M+, 23.7), 195 (66.0), 115 (87.0), 57 (66.0),
43 (100.0).

2,2-Dimethyl-1,3-dioxolanylmethyl(2-methylphenylethynyl)selane 3d (Table 1, entry 4) [41]: Yield: 0.109 g
(70%); yellow oil. MS: m/z (rel. int.) 310 (M+, 9.3), 195 (12.4), 115 (100.0), 101 (10.0), 43 (39.7).

2,2-Dimethyl-1,3-dioxolanylmethyl(4-methoxyphenylethynyl)selane 3e (Table 1, entry 5) [41]: Yield: 0.098 g
(60%); yellow solid; m.p. 39–41 ◦C. 1H-NMR (CDCl3, 400 MHz); δ (ppm): 7.27 (d, J = 8.9 Hz, 2H, Ar-H),
6.74 (d, J = 8.9 Hz, 2H, Ar-H), 4.37–4.43 (m, 1H, O-CH), 4.12 (dd, J = 8.5 and 6.0 Hz, 1H, O-HCH), 3.79
(dd, J = 8.5 and 5.9 Hz, 1H, O-HCH), 3.71 (s, 3H, Ar-OCH3), 2.98 (dd, J = 12.1 and 5.1 Hz, 1H, Se-HCH),
2.84 (dd, J = 12.1 and 7.7 Hz, 1H, Se-HCH), 1.37 (s, 3H, C-CH3), 1.29 (s, 3H, C-CH3). 13C-NMR (CDCl3,
100 MHz); δ (ppm): 159.8, 133.3, 115.5, 113.9, 109.7, 99.3, 75.4, 69.0, 67.3, 55.2, 31.8, 27.0, 25.5. MS: m/z
(rel. int.) 326 (M+, 3.4), 211 (39.3), 196 (20.2), 132 (57.1), 43 (100.0).

2,2-Dimethyl-1,3-dioxolanylmethyl(2-methoxyphenylethynyl)selane 3f (Table 1, entry 6): Yield: 0.098 g
(60%); yellow oil. 1H-NMR (CDCl3, 400 MHz); δ (ppm): 7.35–7.37 (m, 1H, Ar-H), 7.24–7.28 (m, 1H,
Ar-H), 6.84–6.90 (m, 2H, Ar-H), 4.50–4.56 (m, 1H, O-CH), 4.21–4.25 (m, 1H, O-HCH), 3.93 (dd, J = 7.7
and 6.1 Hz, 1H, O-HCH), 3.86 (s, 3H, Ar-OCH3), 3.08 (dd, J = 12.0 and 4.0 Hz, 1H, Se-HCH), 2.93
(dd, J = 12.0 and 8.0 Hz, 1H, Se-HCH), 1.45 (s, 3H, C-CH3), 1.37 (s, 3H, C-CH3). 13C-NMR (CDCl3,
100 MHz); δ (ppm): 160.1, 133.3, 129.6, 120.3, 112.4, 110.5, 109.5, 95.7, 75.5, 73.0, 69.0, 55.6, 31.7, 26.9,
25.5. MS: m/z (rel. int.) 326 (M+, 29.4), 131 (100.0), 119 (51.2), 57 (71.9), 43 (91.4). HRMS: Calculated
mass to C15H18O3Se: [M]+ 326.0421, found: 326.0439.

2,2-Dimethyl-1,3-dioxolanylmethyl(4-fluorophenylethynyl)selane 3g (Table 1, entry 7) [41]: Yield: 0.105 g
(67%); yellow solid; m.p. 37–39 ◦C. MS: m/z (rel. int.) 314 (M+, 0.3), 199 (32.2), 120 (27.1), 107 (90.6),
43 (100.0).

2,2-Dimethyl-1,3-dioxolanylmethyl(cyclohex-1-en-1-ylethynyl)selane 3h (Table 1, entry 8): Yield: 0.078 g
(52%); yellow oil. 1H-NMR (CDCl3, 400 MHz); δ (ppm): 6.07–6.09 (m, 1H, C=CH), 4.41–4.45 (m, 1H,
O-CH), 4.18 (dd, J = 8.5 and 6.0 Hz, 1H, O-HCH), 3.83 (dd, J = 8.5 and 5.9 Hz, 1H, O-HCH), 2.99
(dd, J = 12.1 and 5.0 Hz, 1H, Se-HCH), 2.84 (dd, J = 12.1 and 8.0 Hz, 1H, Se-HCH), 2.09–2.10 (m, 4H),
1.55–1.65 (m, 4H), 1.43 (s, 3H, C-CH3), 1.36 (s, 3H, C-CH3). 13C-NMR (CDCl3, 100 MHz); δ (ppm): 135.3,
121.0, 109.6, 101.5, 75.5, 69.0, 65.7, 31.6, 29.1, 27.0, 25.61, 25.56, 22.3, 21.4. MS: m/z (rel. int.) 300 (M+, 6.0),
185 (6.7), 104 (35.1), 91 (19.9), 43 (100.0). HRMS: Calculated mass to C14H20O2Se: [M + H]+ 301.0707,
found: 301.0690.
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3.3. General Procedure for the Synthesis of Organotellanyl Alkynes 3i–m

To a solution of alkyne 1 (1.0 mmol) in THF (5.0 mL) under N2 atmosphere, BuLi (1.6 mol/L
in hexanes; 1.0 mmol) was added at 0 ◦C. After 20 min, the temperature was increased to room
temperature and elemental tellurium (Te0, 1.0 mmol) was added. The stirring at room temperature
was maintained until all tellurium has been consumed and then a solution of racemic tosyl solketal
2 (0.5 mmol) in THF (2.0 mL) was added and the mixture was stirred under reflux for additional
1.5 h. After, the reaction mixture was quenched with water (15.0 mL) and extracted with ethyl acetate
(3 × 15.0 mL). The organic phase was separated, dried over MgSO4, and the solvent was evaporated
under reduced pressure. The product was isolated by column chromatography using hexanes/ethyl
acetate as eluent.

Analytical Data of Products 3i–m

2,2-Dimethyl-1,3-dioxolanylmethyl(phenylethynyl)tellane 3i (Table 1, entry 9) [41]: Yield: 0.147 g (85%); red
oil. 1H-NMR (CDCl3, 400 MHz); δ (ppm): 7.31–7.34 (m, 2H, Ar-H), 7.18–7.25 (m, 3H, Ar-H), 4.38–4.44
(m, 1H, O-CH), 4.12 (dd, J = 8.4 and 6.1 Hz, 1H, O-HCH), 3.73 (dd, J = 8.4 and 6.1 Hz, 1H, O-HCH),
3.00–3.08 (m, 2H, Te-CH2), 1.37 (s, 3H, C-CH3), 1.28 (s, 3H, C-CH3). 13C-NMR (CDCl3, 100 MHz); δ
(ppm): 131.7, 128.3, 128.2, 123.4, 111.3, 109.7, 75.9, 70.0, 44.2, 27.0, 25.6, 13.6. MS: m/z (rel. int.) 346 (M+,
32.7), 231 (58.2), 101 (75.7), 57 (100.0), 43 (77.0).

2,2-Dimethyl-1,3-dioxolanylmethyl(hex-1-yn-1-yl)tellane 3j (Table 1, entry 10): Yield: 0.103 g (63%); red
oil. 1H-NMR (CDCl3, 500 MHz); δ (ppm): 4.41–4.46 (m, 1H, O-CH), 4.18 (dd, J = 8.4 and 6.0 Hz, 1H,
O-HCH), 3.77 (dd, J = 8.4 and 6.4 Hz, 1H, O-HCH), 3.02 (dd, J = 11.7 and 5.2 Hz, 1H, Te-HCH), 2.97
(dd, J = 11.7 and 7.6 Hz, 1H, Te-HCH), 2.48 (t, J = 7.0 Hz, 2H, CH2Csp), 1.47–1.53 (m, 2H), 1.43 (s, 3H,
C-CH3), 1.37–1.43 (m, 2H), 1.35 (s, 3H, C-CH3), 0.91 (t, J = 7.3 Hz, 3H). 13C-NMR (CDCl3, 125 MHz); δ
(ppm): 112.8, 109.7, 76.2, 70.0, 31.0, 27.0, 25.6, 21.9, 20.6, 13.5, 12.4. MS: m/z (rel. int.) 326 (M+, 21.5), 115
(63.0), 81 (79.9), 57 (100.0), 43 (77.2). HRMS: Calculated mass for C12H20O2Te: [M + OH]+ 343.0553,
found: 343.0533.

2,2-Dimethyl-1,3-dioxolanylmethyl(4-methylphenylethynyl)tellane 3k (Table 1, entry 11): Yield: 0.099 g
(55%); red oil. 1H-NMR (CDCl3, 500 MHz); δ (ppm): 7.29 (d, J = 8.1 Hz, 2H, Ar-H), 7.10 (d, J = 8.1 Hz,
2H, Ar-H), 4.45–4.50 (m, 1H, O-CH), 4.20 (dd, J = 8.4 and 6.0 Hz, 1H, O-HCH), 3.81 (dd, J = 8.4 and
6.4 Hz, 1H, O-HCH), 3.10–3.11 (m, 2H, Te-CH2), 2.35 (s, 3H, Ar-CH3), 1.45 (s, 3H, C-CH3), 1.35 (s, 3H,
C-CH3). 13C-NMR (CDCl3, 125 MHz); δ (ppm): 138.6, 131.7, 128.9, 120.4, 111.4, 109.7, 76.0, 70.0, 42.9,
27.0, 25.6, 21.4, 13.5. MS: m/z (rel. int.) 360 (M+, 12.8), 245 (27.8), 115 (100.0), 57 (78.9), 43 (75.2). HRMS:
Calculated mass for C15H18O2Te: [M + H]+ 361.0447, found: 361.0469.

2,2-Dimethyl-1,3-dioxolanylmethyl(cyclohex-1-en-1-ylethynyl)tellane 3l (Table 1, entry 12): Yield: 0.107 g
(61%); yellow oil; 1H-NMR (CDCl3, 500 MHz); δ (ppm): 6.06–6.09 (m, 1H, C=CH), 4.42–4.47 (m,
1H, O-CH), 4.19 (dd, J = 8.4 and 5.9 Hz, 1H, O-HCH ), 3.78 (dd, J = 8.4 and 6.4 Hz, 1H, O-HCH),
3.02–3.03 (m, 2H, Te-CH2), 2.08–2.16 (m, 4H), 1.54–1.65 (m, 4H), 1.44 (s, 3H, C-CH3), 1.35 (s, 3H, C-CH3).
13C-NMR (CDCl3, 125 MHz); δ (ppm): 135.9, 121.1, 113.5, 109.7, 76.2, 70.0, 39.9, 29.2, 27.0, 25.6, 25.5,
22.2, 21.4, 13.2. MS: m/z (rel. int.) 350 (M+, 40.3), 115 (31.8), 105 (100.0), 57 (92.9), 43 (73.8). HRMS:
Calculated mass for C14H20O2Te: [M + H]+ 351.0604, found: 351.0597.

2,2-Dimethyl-1,3-dioxolanylmethyl(4-tert-buthylphenylethynyl)tellane 3m (Table 1, entry 13): Yield: 0.127 g
(63%); red oil. 1H NMR (CDCl3, 500 MHz); δ (ppm): 7.31–7.35 (m, 4H, Ar-H), 4.46–4.51 (m, 1H, O-CH),
4.21 (dd, J = 8.4 and 6.0 Hz, 1H, O-HCH ), 3.81 (dd, J = 8.4 and 6.4 Hz, 1H, O-HCH), 3.10–3.11 (m, 2H,
Te-CH2), 1.45 (s, 3H, C-CH3), 1.35 (s, 3H, C-CH3), 1.30 (s, 9H, C-CH3). 13C NMR (CDCl3, 125 MHz); δ
(ppm): 151.7, 131.6, 125.2, 120.4, 111.5, 109.7, 76.1, 70.0, 42.9, 34.7, 31.1, 27.0, 25.6, 13.5. MS: m/z (rel.
int.) 402 (M+, 26.2), 287 (19.6), 143 (66.4), 57 (99.7), 43 (100.0). HRMS: Calculated mass for C18H24O2Te:
[M + H]+ 403.0917, found: 403.0908.
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3.4. General Procedure for the Synthesis of 3-(Organotellanyl)propane-1,2-diol 4a–c

To a solution of the respective organotellanyl alkyne 3 (1.0 mmol) in MeOH (2.5 mL) Dowex®

acidic ion-exchange resin (50WX8 20–50 mesh; 1.122 g) was added at room temperature. The reaction
mixture was stirred for 5 h at room temperature and then it was filtered and washed with MeOH. The
filtrate was concentrated and chromatographed (50% EtOAc/hexanes).

Analytical Data of Products 4a–c

3-(Phenylethynyltellanyl)propane-1,2-diol 4a (Table 2, entry 1): Yield: 0.153 g (50%); red oil. 1H-NMR
(CDCl3, 400 MHz); δ (ppm): 7.39–7.41 (m, 2H, Ar-H), 7.26–7.32 (m, 3H, Ar-H), 4.04–4.09 (m, 1H, O-CH),
3.81 (dd, J = 11.3 and 3.1 Hz, 1H, O-HCH), 3.66 (dd, J = 11.3 and 6.1 Hz, 1H, O-HCH), 2.81–3.07 (m,
4H, Te-CH2 and 2 O-H). 13C-NMR (CDCl3, 100 MHz); δ (ppm): 131.8, 128.4, 128.2, 123.4, 111.2, 71.5,
66.6, 45.1, 14.8. MS: m/z (rel. int.) 306 (M+, 7.9), 231 (11.7), 155 (44.9), 102 (43.7), 91 (100.0). HRMS:
Calculated mass for C11H12O2Te: [M + H]+ 306.9978, found: 306.9903.

3-(Cyclohex-1-en-1-ylethynyltellanyl)propane-1,2-diol 4b (Table 2, entry 2): Yield: 0.155 g (50%); yellow
oil. 1H-NMR (CDCl3, 400 MHz); δ (ppm): 6.07–6.10 (m, 1H, C=CH), 4.0–4.06 (m, 1H, O-CH), 3.79 (dd,
J = 11.3 and 3.4 Hz, 1H, O-HCH ), 3.65 (dd, J = 11.3 and 6.1 Hz, 1H, O-HCH), 2.76–3.0 (m, 4H, Te-CH2

and 2 O-H), 2.07–2.17 (m, 4H), 1.54–1.65 (m, 4H). 13C-NMR (CDCl3,100 MHz); δ (ppm): 136.1, 121.1,
113.5, 71.7, 66.5, 40.7, 29.3, 25.5, 22.2, 21.4, 14.5. MS: m/z (rel. int.) 310 (M+, 20.6), 235 (6.8), 105 (100.0),
91 (43.0), 79 (54.0). HRMS: Calculated mass for C11H16O2Te: [M + H]+ 311.0291, found: 311.0273.

3-(4-tert-Buthylphenylethynyltellanyl)propane-1,2-diol 4c (Table 2, entry 3): Yield: 0.170 g (47%); red oil.
1H-NMR (CDCl3, 400 MHz); δ (ppm): 7.29–7.35 (m, 4H, Ar-H), 4.03–4.09 (m, 1H, O-CH), 3.80 (dd,
J = 11.4 and 3.1 Hz, 1H, O-HCH), 3.64 (dd, J = 11.4 and 6.2 Hz, 1H, O-HCH), 3.03–3.30 (m, 4H, Te-CH2

and 2 O-H), 1.28 (s, 9H, C-CH3). 13C-NMR (CDCl3, 100 MHz); δ (ppm): 151.8, 131.6, 125.2, 120.4, 111.3,
71.6, 66.5, 44.3, 34.7, 31.1, 14.7. MS: m/z (rel. int.) 362 (M+, 20.2), 288 (11.4), 143 (100), 57 (98.2), 41 (44.1).
HRMS: Calculated mass for C15H20O2Te: [M + H]+ 363.0604, found: 363.0583.

3.5. Procedure for the Synthesis of the 3-Iodo-2-(2,2-dimethyl-1,3-dioxolanylmethyl)selenanylbenzo[b]furan 5

To a solution of 2,2-dimethyl-1,3-dioxolanylmethyl(2-methoxyphenylethynyl)selane 3f (0.25 mmol) in
CH2Cl2 (2.0 mL) a solution of I2 (0.28 mmol) in CH2Cl2 (3.0 mL) was added. The reaction mixture
was stirred for 1 h at room temperature. Then, saturated aqueous Na2S2O3 was added to remove the
excess of I2. The mixture was then extracted with ethyl acetate (3 × 10 mL) and the organic phase was
separated, dried over MgSO4 and concentrated under vacuum. The product was isolated by column
chromatography using hexanes/ethyl acetate as eluent.

Analytical Data of Product 5

3-Iodo-2-(2,2-dimethyl-1,3-dioxolanylmethyl)selenanylbenzo[b]furan 5 (Scheme 2): Yield: 0.093 g (85%);
yellow oil; 1H-NMR (CDCl3, 400 MHz); δ (ppm): 7.44–7.47 (m, 1H, Ar-H), 7.28–7.37 (m, 3H, Ar-H),
4.36–4.42 (m, 1H, O-CH), 4.18 (dd, J = 8.5 and 6.0 Hz, 1H, O-HCH), 3.79 (dd, J = 8.5 and 6.0 Hz, 1H,
O-HCH), 3.31 (dd, J = 12.3 and 5.2 Hz, 1H, Se-HCH), 3.11 (dd, J = 12.3 and 7.8 Hz, 1H, Se-HCH), 1.45 (s,
3H, C-CH3), 1.36 (s, 3H, C-CH3). 13C-NMR (CDCl3, 100 MHz); δ (ppm): 156.7, 146.6, 131.3, 125.6, 123.6,
121.2, 111.0; 109.8; 75.8, 75.4; 69.1; 30.8, 27.0; 25.5. MS: m/z (rel. int.) 438 (M+, 23.4), 168 (18.2), 115 (35.3),
101 (21.5), 57 (100.0). HRMS: Calculated mass for C14H15IO3Se: [M + NH4]+ 455.9575, found: 455.9577.

4. Conclusions

In summary, we developed a new and general protocol to prepare glycerol-derived organoselanyl
and organotellanyl alkynes using tosyl solketal. Eight organoselanyl and five organotellanyl alkynes
were obtained in good yields and short reaction times, when compared to previously described
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procedures. Some of the organotellanyl alkynes were deprotected using Dowex 50WX8-(H+) to give
new water-soluble 3-organotellanylpropane-1,2-diols.

Supplementary Materials: Supplementary materials are available at http://www.mdpi.com/1420-3049/22/3/
391/s1.
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