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Arylation of pyridine N-oxides via a ligand-free Suzuki reaction in
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A B S T R A C T

We report a practical and highly efficient protocol for the arylation of pyridine N-oxides with arylboronic

acid through palladium-catalyzed Suzuki reaction in water. This ligand-free Suzuki reaction is

performed in the presence of diisopropylamine and gives 2- or 3-arylated pyridyl N-oxide derivatives in

good to excellent yields within 1 h.
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1. Introduction

Given the importance of pyridine N-oxide derivatives in
medical chemistry as well as their easy deoxygenation to the
more important pyridine derivatives, methods for the synthesis of
pyridine N-oxide derivatives continue to attract considerable
interest in organic synthesis [1–5]. Fagnou et al. reported the
palladium-catalyzed regioselective direct arylation of pyridine N-
oxides with aryl bromides, which was used for the preparation of
substituted pyridines and other heterocycles [6,7]. Recently, the C–
H bond activation approach using pyridine N-oxides was served as
an attractive platform for the 2-functionalization of pyridine
species [8–14]. However, these methods require harsh conditions
and long reaction time.

In 1999, Lohse et al. reported a catalytic system of DME/H2O/
K2CO3/5%Pd(PPh3)4 for the Suzuki cross-coupling reaction be-
tween 2- or 4-chloropyridine N-oxide and arylboronic acid,
affording 65%–70% isolated yield of the desired products, which
provided an alternative for the synthesis of aryl-substituted
pyridine N-oxide derivatives [15]. To the best of our knowledge,
this is the only example of the arylation of pyridine N-oxides via

the Suzuki reaction. The palladium-catalyzed Suzuki reaction of
aryl halides with arylboronic acids is one of the most versatile and
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powerful tools to form biaryls, which has been extensively used in
the synthesis of pharmaceuticals, herbicides, natural products and
advanced functional materials [16,17]. However, N-heteroaryl
halides are generally inactive substrates for the Suzuki reaction
due to the potential coordination of the nitrogen to the active
palladium species [18]. So far, a lot of achievements have been
made to activate these substrates, including the development of
ligand-promoted protocols as Lohse et al. did [15]. Our group has
reported ligand-free approaches to activate 2-bromopyridine
derivatives successfully in ethylene glycol or EtOH/H2O
[19,20]. At the moment, we are interested in activating 2-
bromopyridine derivatives for the palladium-catalyzed Suzuki
reaction in water without any additional ligand.

The use of water as sole reaction medium has several advantages,
such as abundance, non-toxic, non-corrosiveness and improved
safety [21–25]. Developing organic reaction in pure water is one
of the latest challenges for modern chemists. Herein, we report
an efficient method for the Pd(OAc)2-catalyzed Suzuki reaction of
2- or 3-bromopyridine N-oxides in pure water without any ligand.

2. Experimental

Aryl halides and arylboronic acids were purchased from Alfa
Aesar. Other chemicals were obtained commercially and used
without purification. 1H NMR spectra were recorded on a Bruker
AvanceII 400 spectrometer using TMS as internal standard. 13C
NMR spectra were recorded at 100 MHz using TMS as internal
nd Institute of Materia Medica, Chinese Academy of Medical Sciences. All rights reserved.
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Table 1
Effects of bases on the Suzuki cross-coupling reaction of 2-bromopyridine N-oxide

with phenylboronic acid.a

Entry Base Yield (%)b

1 K3PO4�3H2O 86

2 NaOH 88

3 K2CO3 90

4 i-PrNH2 Trace

5 (i-Pr)2NH 94

6 Et3N 90

7 (i-Pr)2NEt 57

8 DABCO 92

9 Morpholine 45

10 Dicyclohexylamine 47

11 Piperazine 13

a Reaction conditions: 2-Bromopyridine N-oxide (0.5 mmol), phenylboronic acid

(0.75 mmol), 0.25 mol% Pd(OAc)2, base (1.0 mmol), H2O (1.0 mL), 100 8C, 30 min,

in air.
b Isolated yield.

Table 2
Effects of palladium species on the cross-coupling of 2-bromopyridine N-oxide with

phenylboronic acid.a

Entry [Pd] Yield (%)b

1 Pd(OAc)2 92

2 PdCl2 89

3 PdCl2(CH3CN)2 47

4 Pd2(dba)3 91

5 Pd/C Trace

a Reaction conditions: 2-Bromopyridine N-oxide (0.5 mmol), phenylboronic acid

(0.75 mmol), 0.25 mol% [Pd], (i-Pr)2NH (1.0 mmol), H2O (1.0 mL), 100 8C, 10 min,

in air.
b Isolated yield.
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standard. All products were isolated by short chromatography on a
silica gel (200–300 mesh) column using petroleum ether (60–
90 8C), unless otherwise noted.

For this study, pyridine N-oxides were synthesized according to
the following general procedures: pyridyl halides (1.0 equiv.) and
m-chloroperoxybenzoic acid (1.1 equiv.) are dissolved in dry
methylene dichloride. The reaction is allowed to stir at room
Table 3
The Suzuki reaction of bromopyridine N-oxides with arylboronic acids.a

Entry N-oxide Product Yield (%)b E

1 96 

2 92 

3 61 

4 57 1

5 85 1

6 95 1

a Reaction conditions: 2-Bromopyridine N-oxide (0.5 mmol), arylboronic acid (0.75 m
b Isolated yield.
temperature overnight. The solvent is then evaporated under
reduced pressure and the crude reaction mixture is purified by
column chromatography on silica gel with CH2Cl2 or CH2Cl2/MeOH
mixtures.

All Suzuki reactions were carried out under air atmosphere. A
mixture of bromopyridine N-oxide (0.5 mmol), arylboronic acid
(0.75 mmol), (i-Pr)2NH (1.0 mmol), Pd(OAc)2 (0.25 mol%), H2O
(1.0 mL) was allowed to react at 100 8C. The reaction mixture was
added to brine (10 mL) and extracted with CH2Cl2 (3 � 10 mL). The
solvent was concentrated under vacuum and the product was
isolated by short chromatography on a silica gel (200–300 mesh)
column.
ntry N-oxide Product Yield (%)b

7 67

8 90

9 93

0 96

1 35

2 35

mol), 0.25 mol% Pd(OAc)2, (i-Pr)2NH (1.0 mmol), H2O (1.0 mL), 100 8C, 1 h, in air.
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The characterization and spectra of all products are available in
the Supporting information.

3. Results and discussion

Initially, the cross-coupling of 2-bromopyridine N-oxide with
phenylboronic acid was chosen as a model reaction for screening
bases. The experimental data presented in Table 1.

Water-soluble inorganic bases gave comparative yields
(Table 1, entries 1–3), which were better than the results of
cross-coupling of 4-bromoanisole with arylboronic acid as we
reported [26]. The reason for this is supposed due to the highly
solubility of 2-bromopyridine N-oxide in water. Several organic
bases were examined and (i-Pr)2NH, Et3N, DABCO (1,4-diazabicy-
clo[2.2.2]octane) (Table 1, entries 5, 6 and 8) provided relatively
high yields compared to the other bases. The results show that (i-
Pr)2NH (Table 1, entry 5) is the best choice, which provided a 94%
isolated yield in 30 min.

The palladium source employed in the Suzuki reaction is also
important to the catalytic efficiency. As shown in Table 2, the
palladium sources have dramatic effects on the reaction activity
under the present conditions. The results indicated that Pd(OAc)2,
Pd2(dba)3 and PdCl2 exhibited high catalytic activity.
PdCl2(CH3CN)2 gave relatively low yields. Pd/C just provided trace
yield in 10 min. It is supposed that PdCl2(CH3CN)2 and Pd/C might
have a long activation period in the present catalytic system. We
chose Pd(OAc)2 as the catalyst for the following study.

We further investigated the scope of direct arylation of
bromopyridine N-oxides under the conditions of 0.25 mol%
Pd(OAc)2 and two equivalents of (i-Pr)2NH at 100 8C in water.
The results are shown in Table 3. The cross-coupling of 2-
bromopyridine N-oxide with phenylboronic acid or 4-methyl-
phenlyboronic acid could afford above 92% isolated yields in 1 h
(Table 3, entries 1 and 2), which were more efficient than the
previous report that 2-tolylpyridine N-oxide was obtained in 91%
isolated yield overnight from the reaction between pyridine N-
oxide and 4-bromotoluene [7]. The reaction between 2-bromo-
pyridine N-oxide and 4-methoxylphenylboronic acid or 4-hydro-
xyphenylboronic acid provided a lower isolated yield of 61% and
57% in 1 h (Table 3, entries 3 and 4). Methylpyridine N-oxides could
be activated by this catalytic system, affording 67%–95% isolated
yield (Table 3, entries 5–7). The cross-coupling of 2,6-dibromo-
pyridine N-oxide with phenylboronic acid performed efficiently,
providing a 90% isolated yield in 1 h (Table 3, entry 8). The
arylation of 3-bromopyridine N-oxide or 2-methoxyl-5-bromo-
pyridine N-oxide proceeded very quickly with the yields of 93% and
96%, respectively (Table 3, entries 9 and 10). However, the cross-
coupling of 2-bromo-5-(trifluoromethyl)-pyridine N-oxide or 2-
chloropyridine N-oxide with phenylboronic acid was carried out
slowly than that of 2-bromopyridine N-oxide (Table 3, entries
11 and 12).

4. Conclusion

In summary, we have developed an efficient protocol for the
arylation of pyridine N-oxides with arylboronic acid. In view of the
importance of pyridine N-oxide derivatives in medical chemistry,
the Suzuki reaction will find a broad use in organic synthesis.
Extending the scope of Suzuki reaction to other heterocyclic N-
oxides is in progress in our laboratory.
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