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1,4-Benzoxazin-3-one is a scaffold which is found in a variety of 

biologically active molecules. Because of its unique structure and 

drug-like activities, 1,4-benzoxazin-3-ones have been widely used 

in drug discovery. However, just a few methods have been 

developed to access these molecules by catalytic asymmetric 

synthesis. We report herein the phase-transfer-catalysed 

asymmetric alkylation of 2-aryl-1,4-benzoxazin-3-ones as a new 

way for the highly enantioselective synthesis of 2,2-disubstituted 

1,4-benzoxazin-3-ones. 

1,4-Benzoxazin-3-ones are a class of compounds which appear 

in a variety of biologically active molecules as represented by a 

renin inhibitor developed by Pfizer (Fig. 1).1,2 The structure is 

wide-spread not only within synthetic compounds but also 

within natural products such as rifamorpholine A, which was 

recently isolated and exhibited activity as potential antibiotic.3  
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Fig. 1 Biologically active 2,2-disubstituted 1,4-benzoxazin-3-ones. 

 Because of these interesting properties, synthetic methods 

to construct 1,4-benzoxazin-3-ones have been well studied.
4,5

 

However, despite the existence of a stable stereocenter at the 

2-position in form of a 2,2-disubstituted 1,4-benzoxazin-3-one, 

only a few catalytic methods to forge this stereogenic center in 

an enantiomerically enriched way have been developed to 

date.
6-9

 Building on the acidity of the hydrogen atom at the 2-

position of 2-mono-substituted benzoxazinones, we surmised 

that the ability of a phase-transfer catalyst which enables an 

enantioselective alkylation under basic conditions is suitable 

for the realisation of such a transformation (Fig. 2).
10
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Fig. 2 Synthesis of 2,2-disubstituted 1,4-benzoxazin-3-ones by phase-transfer 
catalysis. 

 We report herein the chiral phase-transfer-catalysed 

alkylation of a range of 1,4-benzoxazin-3-ones to give enantio-

enriched 2,2-disubstituted 1,4-benzoxazin-3-ones. The 

alkylation worked efficiently with 2-aryl substituted 

benzoxazinones by the use of a binaphthyl-based phase-

transfer catalyst bearing N,N-diisopentyl groups as a distinctive 

feature. 

 The initial optimisation was commenced with the 

identification of a proper N-protecting group for 2-phenyl 

benzoxazinone, which would affect the reactivity and 

selectivity of the reaction, using phase-transfer catalyst 1a, 

benzyl bromide and powdered KOH as base in toluene (Table 

1). Attachment of a Boc protecting group (4a) was found to be 

promising and the benzylated product 5aa could be isolated in 

89% yield with 83% ee at 0 °C (entry 1). Benzoxazinone with a 

N-Cbz group was converted to the corresponding product with 

lower enantioselectivity (entry 2). The stability of the substrate 

under strongly basic conditions must be taken into 

consideration, as evidenced by the N-benzoyl substrate, with 

which facile hydrolysis of the C-N bond was observed (entry 3). 

On the other hand, N-benzyl 1,4-benzoxazin-3-one gave only 

trace amount of the product (entry 4), underlying the necessity 

of an electron-withdrawing N-protecting group. In addition, 
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use of solvents more polar than toluene resulted in rapid 

decomposition of the substrate and lower enantioselectivity 

even with the N-Boc substrate (data not shown). 

 We then turned our attention to the optimisation of the 

catalyst structure. Varying the 3,3’-aryl moieties of catalyst 1a 

revealed that most of the screened aryl groups had no positive 

effect on the selectivity (data not shown) except for 1b with 

which a slight increase in selectivity was observed (entry 5). 

Attempts to achieve a higher enantioselectivity by use of more 

complex chiral phase-transfer catalysts bearing two binaphthyl 

units such as 2 also failed (entry 6). Further catalyst 

optimisations at a lower temperature led us to the adjustment 

of the N-alkyl chain, in which the N,N-diisopentyl quaternary 

ammonium salt 3 was found to be the most effective catalyst 

yielding the product in 96% ee at –25 °C (entries 7-9). The 

increased yield at lower temperature is presumably due to the 

suppression of the substrate decomposition.  

Table 1. Optimisation of the reaction conditionsa 

 

entry Pg PTC temp. (°C) % yieldb % eec 

1 Boc (4a) 1a 0 87 (5aa) 83 

2 Cbz 1a 0 <50 53 

3 Bz 1a 0 - - 

4 Bn 1a 0 8 25 

5 Boc 1b 0 83 84 

6 Boc 2 0 57 69 

7d Boc 1b –20 68 86 

8d Boc 3 –20 58 89 

9d,e Boc 3 –25 79 96 

a
 Performed with 2-phenyl benzoxazinone (0.10 mmol), benzyl bromide 

(0.50 mmol), PTC (2 mol%) and KOH (0.15 mmol) in toluene (1 mL). b Isolated 

yield. c Ee determined by chiral HPLC. d Performed with KOH (0.20 mmol). e 

Performed with benzyl bromide (0.25 mmol). 

 With the optimised reaction conditions in hand, we 

examined the scope of this transformation using a variety of 

benzylic and allylic bromides (Table 2). As for benzylic 

bromides, the reaction proceeded with high 

enantioselectivities regardless of the substitution pattern and 

electronic properties (5aa-5ad). In the case of 2,6-

dichlorobenzyl bromide, the reaction became sluggish while 

the enantioselectivity remained very high (5ae). In addition, 2-

naphthylmethyl bromide was also a viable reactant with which 

compound 5af was obtained in 95% ee. In addition to benzylic 

bromides, allyl bromide and 2-methylallyl bromide were 

applied as representative allylic bromides and in both cases 

the products 5ag and 5ah were obtained with high 

enantioselectivities. The reaction with propargyl bromide 

resulted in a slightly lower yield and enantioselectivity (5ai). 

Table 2. Alkyl bromide substrate scopea-c 

 

a
 Performed with 4a (0.10 mmol), alkyl bromide (0.25 mmol), 3 (2 mol%) 

and KOH (0.20 mmol) in toluene (1 mL). b Isolated yield. c Ee determined by 

chiral HPLC.  

 We then shifted the focus to the substrate scope with 

respect to the benzoxazinone template (Table 3). Expectedly, 

the 2-aryl moiety of benzoxazinone affected the reactivity 

substantially. For instance, 4-methoxyphenyl substituted 

benzoxazinone showed lower reactivity likely due to the 

attenuated acidity of the substrate while the high 

enantioselectivity was sustained (5ba). On the contrary, 

substrates with a halogenated aromatic ring were well 

tolerated, giving the products 5ca-5fa in good yields and 

enantioselectivities. Attachment of an ortho-substituent to the 

aromatic ring completely shut down the alkylation because of 

steric hindrance around the reaction site (data not shown). 

The absolute configuration of alkylation product was 

established to be (R) by X-ray analysis of compound 5ha.
11

  

 Afterwards, in consideration that the 6-substituent of 

benzoxazinones is important for biological activities in many 

cases,
1,2

 we examined substrates bearing a substituent at the 

6-position of the heterocycle core. Methyl, methoxy, bromo 

and fluoro substituted benzoxazinones all reacted smoothly 

and the corresponding 2,2-disubstituted benzoxazinones 5ia-

5la were obtained in good yields and high enantioselectivities. 

It should be noted that, in the case of 5ia, 5ka and 5la, the 

instability of the substrates under strong basic conditions led 
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us to implement the reactions using K3PO4 as a weaker base 

and mesitylene as a less polar solvent.  

 The asymmetric alkylation was also applicable to a sulphur 

analogue, benzothiazinone, with which compound 5ma was 

obtained in a comparable yield and enantioselectivity using a 

slightly higher catalyst loading and mesitylene as solvent.  

 With respect to the renin inhibitor developed by Pfizer (Fig. 

1), we attempted to incorporate a methyl group by use of 

dimethyl sulfate as electrophile. The reaction with 6-methoxy 

benzoxazinone resulted in a modest result of 49% yield and 

49% ee (5jj). The major issue of this methylation, other than 

the enantioselectivity, is the O-alkylation of the substrate 

which deterred the yield of the desired product.
12

 It should be 

noted that the use of less reactive alkyl halides resulted in 

traces of product under our reaction conditions.  

Table 3. Benzoxazinone substrate scopea-c  

 

a
 Performed with 4 (0.10 mmol), benzyl bromide (0.25 mmol), 3 (2 mol%) 

and KOH (0.20 mmol) in toluene (1 mL). b Isolated yield. c Ee determined by 

chiral HPLC. d –35 °C e Benzyl bromide (0.40 mmol), 3 (2 mol%) and K3PO4 

(1.00 mmol) in mesitylene (1 mL). f 3 (5 mol%) in mesitylene (1 mL) at –

10 °C. g 3 (5 mol%) and Me2SO4 (3.00 mmol). 

 Deprotection of the Boc group was achieved by treating 

the product with trifluoroacetic acid in dichloromethane in 

quantitative yield and without loss of the enantioselectivity 

(Scheme 1).  

 

Scheme 1. Deprotection of the N-Boc group. 

 In conclusion, we developed the catalytic asymmetric 

synthesis of 2,2-disubstituted 1,4-benzoxazin-3-ones by use of 

chiral phase-transfer catalysis. The reaction was applicable to a 

variety of 2-aryl substituted 1,4-benzoxazin-3-ones with 

benzylic, allylic and propargylic bromides serving as 

electrophiles. While further optimisation is needed, 

methylation could also be achieved in one example.  
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Our optimized catalyst 3 not just gave the best 
enantioselectivities but also minimised the amount of O-
alkylation product to less than 5% in most cases.     
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The phase-transfer-catalysed alkylation of 2-aryl-1,4-benzoxazin-3-ones was developed 

as a way for the synthesis of enantioenriched 2,2-disubstituted 1,4-benzoxazin-3-ones. 
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