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Abstract—New dimethylamino truncated squalene ether derivatives containing a different aromatic moiety (phenyl, naphthyl, and
biphenyl) or a simple alkyl (n-hexylic) group were synthesized as inhibitors of the oxidosqualene cyclase (OSC) and of the sterol
biosynthetic pathway. The activity against human OSC was compared with the activity against the OSCs of pathogenic organisms
such as Pneumocystis carinii and Trypanosoma cruzi. The phenyl derivative was the most potent inhibitor of T. cruzi OSC.
� 2006 Elsevier Ltd. All rights reserved.
Lanosterol synthase (E.C. 5.4.99.7, oxidosqualene cy-
clase, OSC) plays a pivotal role in the life of most
eukaryotic organisms.1 This enzyme catalyzes the cycli-
zation of 2,3-oxidosqualene (OS) to lanosterol.2 In this
reaction four rings and six bonds are created in a tan-
dem fashion with an impressive stereochemical control
to give only one of the 28 possible isomers. Lanosterol
is then converted into biologically important sterols.3

OSC has therefore become a fundamental target in
medicinal chemistry research and cholesterol-lowering
and antifungal compounds acting on this enzymes have
been designed and synthesized.4 This enzyme could be a
more advantageous target than the other enzymes of this
synthetic pathway. For example, the inhibition of en-
zymes upstream of OSC should be avoided since it can
affect other important biochemical pathways, such as
protein prenylation and ubiquinone synthesis.5 The inhi-
bition of enzymes involved in the downstream steps
should also be avoided as toxicity of accumulated inter-
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mediates cannot be excluded.6 Recently a series of OSC
inhibitors has been tested against pathogenic protozoa
with the aim of developing new antiparasitic agents.7

The diseases caused by protozoan parasites are becom-
ing an urgent research topic, not only in tropical re-
gions, but also in once safer countries.8 These diseases
cause high rates of mortality and morbidity, and few
drugs are currently available to treat these diseases,9

therefore the identification of new derivatives endowed
with a selective action on protozoan OSC is a hot topic
in medicinal chemistry. We focused our attention on the
OSC of T. cruzi, the protozoan responsible for Chagas’
disease.10 The protein sequence of the T. cruzi OSC is
known and has important differences compared to hu-
man OSC11 in some amino acids involved in the active
site. For example, at position 540 a tyrosine replaces a
threonine and this residue appears to be important for
cyclization.11 These differences could therefore be
exploited to obtain selective inhibitors.7,12 In a previous
work, we tested different types of squalene derivatives,
known to be OSC inhibitors, on the T. cruzi OSC. We
showed that some phenylthio truncated oxide squalene
derivatives were selective for the T. cruzi OSC with re-
spect to analogues devoid of a phenyl substituent.13

The most active and selective phenylthio derivative is
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shown in Figure 1. In order to verify the effect of the
aromatic group on the selectivity for T. cruzi OSC, we
designed a series of novel truncated dimethylamino
squalene ether derivatives containing one of three differ-
ent aromatic rings (phenyl, naphthyl, and biphenyl) or a
simple n-hexylic alkyl group (Fig. 1). The new deriva-
tives contain a dimethylamino group, often present in
OSC inhibitors, as it is well known that at physiological
pH, tertiary amines are protonated and can mimic the
carbocationic intermediate at the first steps of OSC
cyclization.14

The practical synthesis of these new derivatives and their
inhibition of OSC and sterol biosynthesis in different
biological systems are the subject of the present letter.

The synthesis of the key intermediate 6 and of the final
compounds 7–10 is summarized in Scheme 1. It was rec-
ognized that geraniol 1 could be used as a starting mate-
rial as it contains two double bonds at the appropriate
positions, one of which bears the correct, substrate-like
configuration (i.e., E configuration). Our first attempt to
prepare the intermediate 5, through a previously estab-
lished synthetic pathway,15 by protecting the hydroxyl
group with tert-butyldimethylsilyl chloride followed by
an allylic hydroxylation using catalytic selenium dioxide
in the presence of tert-butylhydroperoxide and subse-
quently a conversion to a bromide, failed as it was not
possible to brominate the allylic alcohol without an
extensive decomposition of the starting material. For
this reason, we replaced the silyl-protecting group with
an acetate. Geraniol reacts smoothly with Ac2O yielding
the product 2 which was subsequently submitted to an
allylic hydroxylation.16 The expected E allylic alcohol
3 was obtained with a yield of 48%. This result was
not surprising, since it has been reported that geraniol
esters react with selenium dioxide, giving the adduct in
higher yields compared to the typical procedure because
the ester can participate in the stabilization of the six-
membered ring transition state.17 The allylic alcohol
was then brominated using the PPh3/NBS protocol giv-
ing the desired adduct 4 with a 75% yield. The insertion
of the dimethylaminoethyl group was accomplished
using Rathke’s salt18 with the allylic bromide. The reac-
tion was sluggish and a range of conditions (tempera-
ture, base, and solvent) were tested in order to
establish the best synthetic protocol. The optimal proce-
dure required the use of 2 equiv of N,N-dimethylaceta-
mide, 2 equiv of lithium bis(trimethylsilyl)amide in dry
THF at room temperature. Two main products were ob-
tained, the desired protected adduct and the hydrolyzed
O
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Figure 1. The selective inhibitor of the T. cruzi OSC phenylthio truncated o

squalene ether derivatives (right).
form 5. For this reason, the mixture was not separated
but, after the work-up procedure, was transesterified
to give the intermediate 5, with an overall yield of
36%. The amide was reduced with LiAlH4 to give 6.19

From this compound, we synthesized the desired final
products 7–10 through a Williamson reaction (35–
40%).20 Finally, in order to confirm the important role
of the protonatable tertiary amine in the interaction
with the OSC, the amide analogue 11 was synthesized
starting from 5.

The inhibition of OSC activity by compounds 6–11 was
tested in cell-free homogenates of OSC-defective
Saccharomyces cerevisiae strains expressing the OSC en-
zymes, respectively, of T. cruzi, Pneumocystis carinii,
and S. cerevisiae21 (Table 1). The inhibition of human
OSC was tested in cell-free homogenates of Pichia pastoris
cells expressing the human OSC enzyme.22,23 The results
showed that the truncated squalene ether derivative 7,
bearing an aromatic phenyl ring, was very active against
all the OSCs tested, and was the most active compound
against the T. cruzi OSC. Comparison of 7 with 10, the
analogue lacking the aromatic moiety, showed that the
phenyl ring improves fivefold the inhibition of T. cruzi
OSC, but does not affect the inhibition of both human
and P. carinii OSC. When the aromatic substituent is a
naphthyl ring (compound 8) the inhibitory activity at
10 lM fell to almost undetectable levels, except for the
P. carinii OSC, while with the more flexible biphenyl ring
of 9 a moderate activity was detected. The inhibition of
the P. carinii OSC by compounds 7–10 was generally
higher than the inhibition of the other OSCs tested and
about three times higher than that of the human OSC.
The higher inhibition of the P. carinii OSC has already
been noted with a series of umbelliferone aminoalkyl
derivatives.24 The presence of the tertiary amine was
essential for the activity of these truncated squalene ether
derivatives since the amide analogue 11 was poorly active
at 10 lM against both T. cruzi and human OSCs. A tertia-
ry amine is a common moiety of most effective OSC inhib-
itors4 possibly because of the interaction with the active
site catalytic aspartate, as recently demonstrated in the
structure of human OSC crystallized in the presence of
the very effective inhibitor Ro48-8071.25

The IC50 of Table 1 are in agreement with the inhibition
of sterol biosynthesis observed in 3T3 fibroblast cell
cultures after incubation of [2-14C]acetate either in pres-
ence or in absence of the truncated squalene ether deriv-
atives. The incorporation of label into cholesterol and
biosynthetic intermediates squalene, 2,3-oxidosqualene
R=

xide squalene derivative (left)13 and the new truncated dimethylamino
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Scheme 1. Reagents and conditions: (a) Ac2O, TEA, DCM, rt; (b) 70% t-BuOOH, SeO2, DCM, rt; (c) PPh3, NBS, DCM, �30 �C; (d) N,N-

dimethylacetamide, LHMDS, THF, rt; (e) K2CO3, MeOH, rt; (f) LiAlH4, THF, rt; (g), (h), (i), (j) 1-bromo-3-phenylpropane, 1-(3-

bromopropyl)naphthalene, 4-(3-bromopropyl)biphenyl, 1-bromohexane, respectively, NaH, DMF, rt.

Table 1. Inhibition of Trypanosoma cruzi, Pneumocystis carinii,

Saccharomyces cerevisiae,21 and human OSCs23 by compounds 6–11

Compound IC50
a (lM)

T. cruzi

OSC

P. carinii

OSC

S. cerevisiae

OSC

Human

OSC

6 >10b >10b nac >10b

7 0.47 0.33 0.45 1.10

8 >10b 10.00 nac >10b

9 7.40 1.70 >10b 4.50

10 2.70 0.36 1.78 0.85

11 >10b >10b NTd >10b

a Values are means of two separate experiments, each with duplicate

incubations. The maximum deviation from the mean was less than

10%.
b IC50 not determined as, at the higher concentration tested (10 lM),

the inhibition was 620%.
c Not active at the higher concentration tested (10 lM).
d Not tested.
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(OS), 2,3-24,25-dioxidosqualene (DOS), and lanosterol
is reported in Table 2, as % of the total radioactivity
incorporated.26 A decrease in cholesterol biosynthesis
accompanied by the accumulation of the intermediates
OS and DOS, both substrates of OSC, is the typical bio-
synthetic pattern observed following OSC inhibition.4d

In the presence of compounds 7 and 10 at a concentra-
tion 1 lM, the labeling of cholesterol was reduced by
more than fifty percent, while the labeling of DOS and
OS was increased by more than 10 and 5 times, respec-
tively. At the same concentration the biphenyl-substitut-
ed compound 9 was still able to decrease the labeling of
cholesterol by 35% and increase by 10 and 3 times,
respectively, the labeling of DOS and OS. As expected,
the naphthyl-substituted 8, the amide 11, and the gera-
nyl derivative 6 were inactive at 1 lM; When tested at
a higher concentration (50 lM), only compound 11
was able to decrease the labeling of cholesterol by more



Table 2. Incorporation of radioactivity in cholesterol and biosynthetic intermediates after incubation of cultured 3T3 fibroblasts with [2-14C]acetate

in the presence of 1 lM concentrations of compounds 6–1126

Inhibitor (1 lM) % of total radioactivity incorporated in sterolsa

Cholesterol Lanosterol DOS OS Squalene

Control in absence of inhibitors 83.3 ± 12.8 29.0 ± 1.5 1.90 ± 0.9 5.70 ± 1.9 6.3 ± 0.9

6 88.2 ± 6.40 2.5 ± 1.8 1.3 ± 0.4 3.90 ± 2.2 4.1 ± 1.9

7 31.3 ± 7.10 5.5 ± 1.6 30.4 ± 7.8 27.9 ± 3.7 5.5 ± 1.7

8 72.7 ± 3.70 5.0 ± 0.4 3.20 ± 0.5 12.5 ± 0.8 6.6 ± 2.0

9 53.2 ± 12.2 6.4 ± 2.3 18.0 ± 6.2 17.5 ± 5.7 4.9 ± 3.2

10 35.5 ± 2.20 7.9 ± 0.8 22.3 ± 2.4 29.6 ± 1.2 4.6 ± 2.5

11 84.6 ± 4.10 3.2 ± 1.2 2.8 ± 0.3 4.60 ± 2.2 4.8 ± 0.4

a Values are means ± SD of two separate experiments, each with duplicate incubations.
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than 50%, while 6 and 8 reduced the labeling by about
30%.

In summary, we have synthesized, by a simple procedure,
new truncated dimethylamino squalene ether derivatives,
containing a phenyl, a naphthyl, and a biphenyl aromatic
ring. By comparing their inhibition of T. cruzi, P. carinii,
S. cerevisiae, and human OSCs with that of a n-hexylic
derivative, we have shown that the phenyl derivative,
differently from the naphthyl and biphenyl, is a more
effective inhibitor of the T. cruzi OSC.

The new class of compounds and the synthetic strategy
adopted could be a good starting point for exploring
the effect of substituents in both the phenyl ring and
the aminoalkyl moiety, in order to design novel effective
inhibitors of T. cruzi OSC.
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