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Abstract Arylsilanes bearing a bulky alkoxy group on the silicon were
synthesized from aryl chlorides and dialkoxydisilanes under reaction
conditions utilizing SingaCycle-A3 as a palladium precatalyst and lithi-
um benzoate in wet DMA. This report proposes the first direct and cat-
alytic method for introducing tert-butoxy- or 1-adamantyloxysilyl
groups onto various aryl moieties through the silylation reaction.
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Due to their unique chemical reactivity and potential
synthetic utility, organosilicon compounds have frequently
been the target of synthetic studies.1 In the current frame-
work of organic synthesis, silicon functional groups should
become more balanced in terms of stability and ease of ac-
tivation. Some are rather too stable for facile transforma-
tions; others are too labile to manage during standard syn-
thetic manipulations. Therefore, prompting better balances
between stability and ease of activation would widen the
possibility of using silyl groups as alternative key functional
groups in organic synthesis. One of the promising solutions
to this dilemma is the use of bulky alkoxy substituents to
balance them.2 Our research focus has thus turned to a
tBuOMe2Si3,4 group, as a candidate for such a balanced func-
tional group. The special feature of this silyl group is its ex-
ceptional stability against water or bases in contrast to oth-
er labile primary or secondary alkoxy silyl groups. This silyl
group is therefore expected to serve as a reliable functional
group that can survive during multistep synthetic transfor-
mations. We accordingly focused on the development of a
general method to introduce a tBuOMe2Si group via silyla-
tion of aryl halides. Typical silylation reagents for aryl ha-
lides include hydrosilanes,5 silylboranes,6 and disilanes.5d,7

We chose to employ the corresponding disilane 5 as the sil-

icon source for our cross-coupling-type silylation reaction.
Compound 5 can be easily prepared in one step,3b and this
reagent is now commercially available. Among the previ-
ously reported conditions for silylation between an aryl ha-
lide and a dialkoxydisilane5d,7g,7i–l, Denmark’s seminal work
was the first and only method to introduce an alkoxysilyl
group (Scheme 1, eq. 1) wherein aryl bromide 1 reacted
with diethoxydisilane 2 using a PdCl2/JohnPhos catalytic
system to give arylsilane 3.5d As such, introduction of a silyl
group with a more bulky tertiary alkoxy group such as tBuO
has yet to be reported. Herein, we report our research on a
palladium-catalyzed method for introducing a tBuOMe2Si
group through the silylation of aryl chloride with the corre-
sponding disilane 5 (Scheme 1, eq. 2).

Scheme 1  Catalytic alkoxysilylation of aryl halide with dialkoxydisilane

As a result of our optimization of palladium-catalyzed
silylation of ethyl p-chlorobenzoate (4a) with disilane 5, we
eventually devised the standard conditions for the reaction:
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4a (0.17 M), 1.5 equiv disilane 5, 3 mol% SingaCycle-A38, 1.5
equiv LiOBz , 5 mol% H2O, DMA, 100 °C, 12 h.9 Table 1 shows
results associated with differences based on the deviations
listed. Under the standard conditions, arylsilane 6a was ob-
tained in 75% NMR yield (75% isolated yield) along with the
formation of the corresponding homocoupling product, di-
ethyl 1,1′-biphenyl-4,4′-dicarboxylate, in 4% yield. Pd-
PEPPSI-IPr10 was also applicable albeit with a slower reac-
tion rate (entry 2). When the ligand was changed to tBu-
DavePhos or CyJohnPhos, the reaction became even more

sluggish (entries 3, 4). With JohnPhos that gave a good re-
sult in Denmark’s report,5d a low conversion was observed
(entry 5).

The amount of the base heavily affected the reaction
outcome. With 0.1 equiv of LiOBz, the minimum necessary
amount for activating SingaCycle-A3, only a 13% yield of the
product was obtained (Table 1, entry 6). This is in contrast
with our previous report on the base-free silylation of aryl
chloride with silylsilatrane,7m in which we proposed the re-
action proceeds through the four-membered transition

Table 1  Optimization of Silylation Conditions

Entry Deviations from the standard conditions Yield (%)a

4a 6a Biaryl

 1 none  0 75 (75b)  4

 2 Pd-PEPPSI-IPr instead of SingaCycle-A3  7 65  2

 3 3.0 mol% tBuDavePhos, 1.5 mol% Pd2(dba)3 instead of SingaCycle-A3 20 48  3

 4 3.0 mol% CyJohnPhos, 1.5 mol% Pd2(dba)3 instead of SingaCycle-A3 12 49  6

 5 3.0 mol% JohnPhos, 1.5 mol% Pd2(dba)3 instead of SingaCycle-A3 57 17 <1

 6 0.1 equiv instead of 1.5 equiv LiOBz 59 13  0

 7 Et3N instead of LiOBz 84  3  0

 8 LiOAc instead of LiOBz 12 55  1

 9 LiOPiv instead of LiOBz  5 53  1

10 Li2CO3 instead of LiOBz 68 12  0

11 NaOBz instead of LiOBz  0 54 11

12 KOBz instead of LiOBz  0 31 43

13 NMP instead of DMA  0 71 <1

14 DMF instead of DMA 29 50  3

15 1,4-dioxane instead of DMA 90  0  0

a Determined by 1H NMR analysis using 1,3,5-trimethoxybenzene or mesitylene as an internal standard.
b Isolated yield.
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state. The screening of bases disclosed Et3N to be ineffective
in the current transformation (entry 7). Lithium acetate or
pivalate showed a lower efficiency compared to benzoate
(entries 8, 9). A much lower yield was observed with lithi-
um carbonate, indicating the importance of carboxylate
bases (entry 10). Sodium and potassium benzoates did not
give better yields than lithium benzoate (entries 11, 12).
Other solvents were also examined. The reaction efficiency
is similar in NMP (entry 13), and a slower reaction was ob-
served in DMF (entry 14). The reaction completely stopped
in 1,4-dioxane (entry 15). Under strictly dehydrated condi-
tions, the reduced conversion rate was observed to indicate
the importance of water for the reproducible results in the

current transformation, though the exact reason is unclear.
Thus, the conditions in Table 1, entry 1 were confirmed to
be optimal.

Scheme 2 shows the substrate scope under the opti-
mized conditions. Silylation products were obtained in
good yields when the para position was substituted with
electron-withdrawing groups such as acetyl (6b11), cyano
(6c12), benzoyl (6d), CF3 (6e), and formyl (6f). A naphthyl
substituent was also applicable (6g). It is intriguing that the
Bpin substituent in 6h survived the reaction conditions al-
though some decomposition, probably at the boron unit,
was observed during purification on silica gel. Fluoro-sub-
stituted product 6i was obtained albeit with a loss of the
material and was obtained in only a 24% yield. With a nitro
group, none of product 6j was observed while most of the
aryl chloride starting material was recovered. With an elec-
tron-donating methyl (6d) or methoxy (6h) substituents,
conversion was very sluggish. Product bearing m-ethoxy-
carbonyl group (6n) or m-cyano group (6o) was obtained in
moderate yield. The ortho substitution seems to be retard-
ing the silylation, and no ethoxycarbonyl product 6p was
observed. Heteroaromatic substrate (2-chloroquinoline) or
alkenyl chloride (4-tert-butyl-1-chlorocyclohex-1-ene)
gave no corresponding silylated product.

Scheme 2  Scope of reaction with respect to aryl chloride. Reagents and 
conditions: 4 (0.5 mmol, 0.17 M), 5 (1.5 equiv), SingaCycle-A3 (3 mol%), 
LiOBz (1.5 equiv), H2O (5 mol%), DMA, 100 °C, 12–60 h. Isolated yields 
are given. a Determined by 1H NMR analysis using 1,3,5-trimethoxyben-
zene or mesitylene as an internal standard. b SingaCycle-A3 (6 mol%).
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Other dialkoxydisilanes could also be used for this si-
lylation reaction (Scheme 3). 1,2-Diethoxy-1,1,2,2-te-
tramethyldisilane (2), which was reactive under Denmark’s
conditions,5d reacted similarly under our optimized condi-
tions. However, product 3 was not stable enough for chro-
matographic purification, and the yield (61%) was deter-
mined by gas chromatography. Also, we have synthesized
1,2-bis(adamantan-1-yloxy)-1,1,2,2-tetramethyldisilane (7)
as a crystalline dialkoxydisilane.13 Under the standard con-
ditions, 7 could also be applied to the silylation reaction of
4a to afford 8 in 46% yield.

Bromides and iodides were examined for our silylation
reaction (Table 2). Under the standard conditions for aryl
chloride, bromide 9 and iodide 10 were converted into the
corresponding arylsilane 6a only in 27% and 3% respective
yields (entries 1, 2). In the presence of additional LiCl, yields
were slightly improved (27% to 48% for bromide 9 and 3% to
21% for iodide 10; entries 3 and 4). The reason for the im-
portance of chloride ion is not clear in the current state.

A plausible reaction mechanism for the silylation is
shown in Scheme 4. Pd(0) species 11 generated from the
precatalyst would be subjected to oxidative addition to
yield 12. Maji reported a mechanistic investigation by DFT
calculations for his palladium-catalyzed C–H silylation with
hexamethyldisilane, in which the chloride substituent on
Pd(II) was replaced with a carboxylate to facilitate the acti-
vation of the disilane to give a Pd(IV) intermediate.14 Keep-
ing in mind that carboxylate bases were indispensable for
the current silylation, the reaction of 12 with disilane 5
would similarly form Pd(IV) carboxylate species 13 and re-
ductive elimination to generate arylsilane 6.15 Finally, re-
ductive elimination from 14 would generate silyl carboxyl-
ate 15 and Pd(0) species 11 to close the catalytic cycle.

In conclusion, conditions for palladium-catalyzed silyla-
tion reaction between aryl chlorides and bulky dialkoxydis-
ilanes were developed. These NHC-Pd-catalyzed conditions
newly allowed the introduction of bulky tert-alkoxysilyl
groups to arenes bearing electron-neutral or electron-with-
drawing substituents.
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