BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY

Heterogeneous acidic catalysts for the tetrahydropyranylation of alcohols and phenols in green ethereal solvents

Ugo Azzena^{*}, Massimo Carraro, Gloria Modugno, Luisa Pisano and Luigi Urtis

Letter	Open Access
Address: Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 – Sassari, Italy	<i>Beilstein J. Org. Chem.</i> 2018, <i>14,</i> 1655–1659. doi:10.3762/bjoc.14.141
	Received: 30 April 2018
Email:	Accepted: 19 June 2018
Ugo Azzena [*] - ugo@uniss.it	Published: 03 July 2018
* Corresponding author	Associate Editor: L. Vaccaro
Keywords:	© 2018 Azzena et al.; licensee Beilstein-Institut.
green chemistry; green solvents; heterogeneous catalysts; multistep reactions; tetrahydropyranylation	License and terms: see end of document.

Abstract

The application of heterogeneous catalysis and green solvents to the set up of widely employed reactions is a challenge in contemporary organic chemistry. We applied such an approach to the synthesis and further conversion of tetrahydropyranyl ethers, an important class of compounds widely employed in multistep syntheses. Several alcohols and phenols were almost quantitatively converted into the corresponding tetrahydropyranyl ethers in cyclopentyl methyl ether or 2-methyltetrahydrofuran employing NH_4HSO_4 supported on SiO_2 as a recyclable acidic catalyst. Easy work up of the reaction mixtures and the versatility of the solvents allowed further conversion of the reaction products under one-pot reaction conditions.

Introduction

Due to their general stability to a wide range of reagents and ease of removal, tetrahydropyranyl (THP) ethers are widely employed in multistep organic synthesis for the protection of hydroxy derivatives [1,2]. In addition, they can be converted into a wealth of useful functional groups [2,3], and found employment as fragrances or pro-fragrances in everyday life [4-7]. Although a lot of work has been devoted to the search of low impact, heterogeneous and recyclable catalysts to promote THP ethers synthesis [2,8-14], to the best of our knowledge no attention was dedicated to their employment in low impact solvents.

From this point of view, it is worth noting that although ethers are the solvents of choice for reactions involving highly polar nucleophilic reagents such as organolithium and organomagnesium compounds or aluminium hydrides, tetrahydropyranylation reactions are usually run in hydrocarbons, chloroalkanes or dipolar aprotic solvents [1,2,8-15], thus affording a paradigmatic example of the ironic Murphy's Law of Solvents, recently stated by Jessop et al. [16]: "The best solvent for any process step is bad for the next step".

Starting from these premises and following our interest in the development of reaction procedures in low impact solvents [17,18], we report here on the tetrahydropyranylation of alcohols and phenols in cyclopentyl methyl ether (CPME) and 2-methyltetrahydrofuran (2-MeTHF) in the presence of heterogeneous acidic catalysts. Indeed, both CPME [19-22] and 2-MeTHF [21-25] are characterized by relatively high boiling points, a narrow explosion range, hydrophobicity, easy drying and recovery possibilities. Additionally, CPME is produced via a 100% atom economical reaction [19,20], whilst 2-MeTHF is accessible from renewable resources [21,23]. Finally, it is worth noting that besides being moderately irritant, both solvents are characterized by low toxicities and are considered negative for genotoxicity and mutagenicity [26-28]. Due to these environmentally friendly characteristics, CPME and 2-MeTHF appear as versatile green alternatives to ethereal solvents such as tetrahydrofuran, dioxane, diethyl ether or methyl tert-butyl ether.

Aiming to the development of a particularly practical and environmentally friendly procedure to the generation of THP ethers, we devoted our efforts to the employment of heterogeneous acidic catalysts [29,30] in order to set up conditions allowing easy processing of the reaction mixtures and, possibly, the recovery and recycling of the catalyst.

Results and Discussion

Taking 2-phenylethanol (1a) as a model compound, we investigated its conversion into the corresponding THP ether 3a by reacting 4 M solutions of this alcohol with a slight excess (1.1 equiv) of 3,4-dihydro-2*H*-pyran (**2**, DHP) in the presence of several acidic heterogeneous catalysts (Scheme 1 and Table 1). The recovered reaction mixtures were very simply elaborated by filtering the catalyst followed by evaporation of the solvent in vacuo.

No reaction occurred in both solvents in the absence of an acidic catalyst as well as in the presence of several ammonium salts, i.e., NH₄Cl, NH₄Br and NH₄H₂PO₄ (Table 1, entries 1–4). On the other hand, inorganic salts with a relatively higher acidity, i.e., NH₄HSO₄, NaHSO₄ and KHSO₄ [31], as well as Amberlyst 15 and Montmorillonite K10, efficiently promoted practically quantitative conversion of the starting material into the corresponding tetrahydropyranyl ether **3a** within a few hours in both solvents (Table 1, entries 5–9).

Good results were also obtained with a 25 wt % dispersion of NH₄HSO₄ over SiO₂ (NH₄HSO₄@SiO₂, Table 1, entries 10 and 11). Additionally, the supported catalyst, which can be stored in a desiccator for several months with no detrimental effects, is particularly easy to recover and was recycled up to 4 times with no evident loss of activity (Table 1, entry 10). Its robustness was further assessed by the good qualitative matching between the IR spectra of the fresh and recycled cata-

Table 1: Synthesis of 2-(2-phenylethoxy)tetrahydro-2H-pyran (3a).					
entry	solvent	catalyst (%)	3a/1a (%) ^b		
1	CPME or 2-MeTHF	none	<5:>95		
2	CPME or 2-MeTHF	NH ₄ Cl	<5:>95		
3	CPME or 2-MeTHF	NH ₄ Br	<5:>95		
4	CPME or 2-MeTHF	NH ₄ H ₂ PO ₄	<5:>95		
5	CPME or 2-MeTHF	NH ₄ HSO ₄	94:6		
6	CPME	NaHSO ₄	93:7		
7	CPME	KHSO ₄	93:7		
8	2-MeTHF	Amberlyst 15	>95:<5		
9	CPME or 2-MeTHF	Montmorillonite K10 ^c	>95:<5		
10	CPME	NH ₄ HSO ₄ @SiO ₂ ^{d,e}	>95:<5		
11	2-MeTHF	NH ₄ HSO ₄ @SiO ₂	>95:<5		
12	CPME	NH ₄ HSO ₄ @SiO ₂ ^f	93:7		

^aAll reactions were run at rt during 4 h in the presence of the catalyst (3 mol % of **1a**, unless otherwise indicated). ^bAs determined by ¹H NMR analyses of crude reaction mixtures; no other product was detected besides **1a**. ^c**1a**/catalyst = 3 wt %. ^dComparable results were obtained after 4 times recycling of the catalyst. ^eNo reaction was observed in the presence of a comparable amount of carefully dried SiO₂. ^f3 mol ‰ of **1a**.

lysts (see Supporting Information File 1, Figure S1). Additionally, it is worth noting that a comparable result was obtained by reducing the amount of catalyst to one tenth (3 mol ‰ of 1a, Table 1, entry 12).

Finally, both CPME and 2-MeTHF proved stable towards such an acidic supported catalyst, as established by the absence of any decomposition product within the reaction mixtures, as determined by ¹H, ¹³C NMR and gas-liquid chromatography analyses [32].

Due to the ease of the preparation from particularly cheap starting materials, the ease of handling and its high activity, we further investigated the ability of NH₄HSO₄@SiO₂ to catalyze the synthesis of different THP ethers in low impact ethereal solvents. Accordingly, the reactions were performed in the presence of 3 mol ‰ of the catalyst and were successfully applied

to the synthesis of a series of THP ethers of functionalized and non-functionalized alcohols and phenols, including some known fragrances (3g-j and 3l) [4-7], as illustrated in Scheme 2.

Conversions exceeding 95% were achieved under the mild conditions illustrated in Scheme 2 with primary aliphatic and benzylic alcohols **1b–h**. A notable exception is the low conversion of 4-bromobenzyl alcohol **1e** in CMPE, most probably due to the low solubility of the starting material in this solvent. This disadvantage was easily overcome by performing the reaction in 2-MeTHF.

More demanding conditions (2.0 equiv of **2**) were required to obtain good conversions of a secondary alcohol, i.e, (1R,2S,5R)-2-isopropyl-5-methylcyclohexanol ((–)-menthol, **1i**). The reaction afforded an almost 1:1 mixture of only two diastereoiso-

mers as determined by ¹H and ¹³C NMR analysis of the crude reaction mixture, thus suggesting that it occurs with no epimerization at C1.

This result was confirmed by submitting compound 3i to acidcatalyzed deprotection with H₂SO₄@SiO₂ (25 wt % [33] as depicted in Scheme 3). Alcohol 1i, was recovered as a single stereoisomer, identical to the commercially available starting material, as determined by ¹H and ¹³C NMR analysis of the crude reaction mixture (see Supporting Information File 1).

Scheme 3: Deprotection of THP ether 3i.

Finally, the tetrahydropyranylation of a tertiary alcohol 1i as well as of phenols 1k and 1l required, besides the employment of 2.0 equiv of DHP, relatively longer reaction times and higher temperatures. It is worth noting that under our mild reaction conditions we did not observe any isomerisation of the acidsensitive allylic alcohol 1j [34].

To stress the usefulness of a tetrahydropyranylation reaction performed in a green ethereal solvent and in the presence of a heterogeneous acidic catalyst, we realized two one-pot procedures employing either 2-MeTHF or CPME as a solvent.

Accordingly, the mixture obtained by reacting 1f with 1.1 equiv of 2 and 3 mol ‰ of NH₄HSO₄@SiO₂ in 2-MeTHF under dry Ar was filtered and dropwise added to a vigorously stirred freshly prepared solution of EtMgBr in the same solvent at rt. Aqueous work-up and flash chromatography afforded the desired tertiary alcohol 4fa in 78% yield (Scheme 4).

Under similar conditions, protection of 1f in CPME, followed by filtration and dropwise addition of the resulting solution to a suspension of LiAlH₄ in the same solvent, afforded the monoprotected diol 4fb in almost quantitative yield (Scheme 5).

Conclusion

The above reported results show that several heterogeneous acidic catalysts efficiently promote the tetrahydropyranylation of an alcoholic model compound in low impact ethereal solvents under mild conditions. Further investigations show that NH₄HSO₄@SiO₂, easily prepared from inexpensive starting materials, successfully catalyzes the protection of a variety of functionalized and non-functionalized alcohols and phenols, including an optically pure alcohol with no detrimental effects on its stereochemistry. Due to a particularly simple work-up procedure, NH₄HSO₄@SiO₂ can be easily recovered and recycled several times. The easy removal of the acidic catalyst from the reaction mixtures and the versatility of the employed solvents allowed the successful further conversion of the reaction products with strong nucleophiles under one-pot conditions.

Supporting Information

Supporting Information File 1

Full experimental details, copies of IR spectra of fresh and recycled NH₄HSO₄@SiO₂ and copies of ¹H and ¹³C NMR spectra.

[https://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-14-141-S1.pdf]

ORCID[®] iDs

Ugo Azzena - https://orcid.org/0000-0002-7154-7308 Massimo Carraro - https://orcid.org/0000-0003-2712-6132 Luisa Pisano - https://orcid.org/0000-0003-2782-5400 Luigi Urtis - https://orcid.org/0000-0002-6804-7185

References

- Green, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; Wiley-VCH: New York, 1999; pp 49–54.
- Kumar, B.; Aga, M. A.; Rouf, A.; Shah, B. A.; Taneja, S. C. RSC Adv. 2014, 4, 21121–21130. doi:10.1039/c4ra02093f
- Bergueiro, J.; Montenegro, J.; Saá, C.; López, S. RSC Adv. 2014, 4, 14475–14479. doi:10.1039/c4ra00655k
- Hermann, A. Profragrances and Properfumes. In The Chemistry and Biology of Volatiles; Hermann, A., Ed.; Wiley: Chichester, 2010; pp 333–362.
- Anselmi, C.; Centini, M.; Mariani, M.; Sega, A.; Pelosi, P. J. Agric. Food Chem. 1992, 40, 853–856. doi:10.1021/jf00017a030
- Sivik, M. R. Profragrance cyclic acetals. WO Patent WO 99/00377, Jan 7, 1999.
- Lamberti, V.; Winnegrad, R. R. Detergent Composition Containing the Ethers and Esters of Tetrahydrofuran and Tetrahydropyran. U.S. Patent US3668134, June 6, 1972.
- Jeppesen, A.; Nielsen, B. E.; Larsen, D.; Akselsen, O. M.; Sølling, T. I.; Brock-Nannestad, T.; Pittelkow, M. Org. Biomol. Chem. 2017, 15, 2784–2790. doi:10.1039/c7ob00441a
- Crites, C.-O. L.; Lima, F. M.; Marin, M. L.; Netto-Ferreira, J. C.; Impellizzeri, S.; Hallett-Tapley, G. L.; Scaiano, J. C. *Can. J. Chem.* 2016, 94, 712–714. doi:10.1139/cjc-2015-0538
- Shin, H. S.; Opanasenko, M.; Cabello, C. P.; Ryoo, R.; Čejka, J. Appl. Catal., A 2017, 537, 24–32. doi:10.1016/j.apcata.2017.02.019
- 11. Yadegari, M.; Moghadam, M. *Appl. Organomet. Chem.* **2016**, *30*, 872–875. doi:10.1002/aoc.3515
- 12. Azizi, N.; Abdoli-Senejani, M.; Abbasi, F. Tetrahedron Lett. 2016, 57, 5009–5011. doi:10.1016/j.tetlet.2016.09.099
- Sartori, G.; Maggi, R. *Chem. Rev.* 2010, *110*, PR1–PR54. doi:10.1021/cr900316t and references therein.
- 14. Williams, D. B. G.; Simelane, S. B.; Lawton, M.; Kinfe, H. H. *Tetrahedron* **2010**, *66*, 4573–4576. doi:10.1016/j.tet.2010.04.053
- Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Gharaati, S. J. Mol. Catal. A: Chem. 2011, 337, 95–101. doi:10.1016/j.molcata.2011.01.023
- 16. Jessop, P. G. *Green Chem.* **2016**, *18*, 2577–2578. doi:10.1039/c6gc90039a
- 17. Azzena, U.; Kondrot, F.; Pisano, L.; Pittalis, M. Appl. Organomet. Chem. **2012**, *26*, 180–184. doi:10.1002/aoc.2834
- Azzena, U.; Carraro, M.; Mamuye, A. D.; Murgia, I.; Pisano, L.; Zedde, G. *Green Chem.* **2015**, *17*, 3281–3284. doi:10.1039/c5gc00465a
- Watanabe, K.; Yamagiwa, N.; Torisawa, Y. Org. Process Res. Dev. 2007, 11, 251–258. doi:10.1021/op0680136
- 20. Sakamoto, S. Chim. Oggi 2013, 31, 24-27.
- Calvo-Flores, F. G.; Monteagudo-Arrebola, M. J.; Dobado, J. A.; Isac-García, J. *Top. Curr. Chem.* **2018**, *376*, 18. doi:10.1007/s41061-018-0191-6

- 22. Scott, J. L.; Sneddon, H. F. Green Solvents. In Green Techniques for Organic Synthesis and Medicinal Chemistry, 2nd ed.; Zhang, W.; Cue, B. W., Eds.; Wiley-VCH: Weinheim, 2018; pp 21–42. doi:10.1002/9781119288152.ch2
- 23. Aycock, D. F. *Org. Process Res. Dev.* **2007**, *11*, 156–159. doi:10.1021/op060155c and references therein.
- 24. Pace, V.; Hoyos, P.; Castoldi, L.; Domínguez de María, P.; Alcántara, A. R. ChemSusChem 2012, 5, 1369–1379. doi:10.1002/cssc.201100780 and references therein.
- Clarke, C. J.; Tu, W.-C.; Levers, O.; Bröhl, A.; Hallett, J. P. Chem. Rev. 2018, 118, 747–800. doi:10.1021/acs.chemrev.7b00571
- Watanabe, K. *Molecules* 2013, *18*, 3183–3194. doi:10.3390/molecules18033183
- 27. Antonucci, V.; Coleman, J.; Ferry, J. B.; Johnson, N.; Mathe, M.; Scott, J. P.; Xu, J. Org. Process Res. Dev. 2011, 15, 939–941. doi:10.1021/op100303c
- 28. Parris, P.; Duncan, J. N.; Fleetwood, A.; Beierschmitt, W. P. *Regul. Toxicol. Pharmacol.* **2017**, 87, 54–63. doi:10.1016/j.yrtph.2017.04.012
- Gupta, P.; Paul, S. Catal. Today 2014, 236, 153–170. doi:10.1016/j.cattod.2014.04.010
- 30. Kaur, M.; Sharma, S.; Bedi, P. M. S. Chin. J. Catal. 2015, 36, 520–549. doi:10.1016/S1872-2067(14)60299-0
- 31. pKa (in H₂O): NH₄⁺ = 9.25, H₂PO₄⁻ = 7.198, and HSO₄⁻ = 1.99. Dean, J. A. *Lange's Handbook of Chemistry*, McGraw-Hill: New York, 15th edn., 1999, Table 8.7.
- 32. As a note of caution it is worth noting that reactions run in 2-MeTHF under more demanding conditions (40 °C, 8 h), led to the formation of minor amounts of peroxides (<5 mg/L) as semiquantitatively evaluated with a commercially available kit (Quantofix[®], measuring range 0.5–25 mg·L⁻¹ H₂O₂). Accordingly, such reactions were safely run under an inert atmosphere.
- 33. Reaction of 3i with CH₃OH in the presence of 3 mol % of NH₄HSO₄@SiO₂ during 12 h led to a relatively low conversion of the starting material (3i/1i = 55:45).
- 34. Miyashita, M.; Yoshikoshi, A.; Grieco, P. A. *J. Org. Chem.* **1977**, *42*, 3772–3774. doi:10.1021/jo00443a038

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License

(<u>http://creativecommons.org/licenses/by/4.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the *Beilstein Journal of Organic Chemistry* terms and conditions: (https://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.14.141