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Abstract: 

Described herein is a regioselective ortho-amination of 2-naphthol and its analogues 

with substituted hydrazines. It provides a direct methodology for the synthesis of 

N-arylaminated naphthol derivatives without the formation of related 

1,1'-biaryl-2,2'-diamine or carbazole byproducts. Specifically, using N,N-disubstituted 

hydrazine precursors, N-unsubstituted ortho-aminated derivatives and related 
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secondary amines can be formed in ethylene glycol in moderate to excellent yields. 

Variation of substrates to N,N'-diarylhydrazines and N-methyl-N,N'-diarylhydrazines 

led to N-aryl-1-amino-2-naphthol compounds. It is noted that biologically interesting 

indazole motifs can be facilely created by the reaction of N,N'-dialkylhydrazines with 

2-naphthols. These ortho-amination reactions have the advantage of one-pot operation 

without the use of transition metal catalysts. 

Introduction 

Aromatic amines are found in a wide range of materials, natural products and 

biologically active compounds, which usually serve as fundamental units for the 

buildup of pharmaceuticals.
1
 Various methods for the creation of arylamine motifs 

have been developed, typically mediated by traditional transition metal-catalyzed 

carbon-nitrogen cross-coupling reactions with aromatic electrophiles such as aryl 

halides and triflates.
1c, 2

 The direct amination of aromatic hydrocarbons provides a 

valuable alternative to these traditional strategies and recently has attracted great 

attention,
3-5

 which is typically effected by oxidative C-H/N-H coupling,
3
 by 

electrophilic attack,
4
 or through nitrogen radical intermediates.

5
 These reactions 

generally do not need to pre-functionalize aromatics and enable the formation of C–N 

bonds by a single operation step. 

Aminophenols occur in many dyes,
6
 pharmaceuticals,

7
 and biological compounds.

8 

These compounds are commonly formed by multi-step reactions such as 

nitration/reduction, N-alkylation and/or N-arylation in low overall yields.
9
 When 

compared with other aromatics, naturally abundant phenols have rarely been utilized 
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as precursors for direct amination reactions, which often suffer from a prominent 

selectivity issue because of the existence of multiple reactive sites of phenols and ease 

of concomitant homocoupling.
10

 Recently, Li and co-workers reported the amination 

of phenols by ipso-substitution to produce arylamine.
11

 The groups of Patureau and 

Xia independently reported the cross-dehydrogenative coupling (CDC) amination of 

phenols with phenothiazines, phenoxazines and acyclic diarylamines in the presence 

of oxidants (Eq 1, Scheme 1).
12

 We recently showed that the use of 

O-benzoyl-N-alkylhydroxylamines and benzoyl aldehyde oximes as aminating agents 

allowed realizing the iron-catalyzed synthesis of alkylaminophenols and benzoxazoles 

(Eq 2, Scheme 1).
13a,b

 Bella and Jørgenson disclosed an organocatalytic amination of 

2-naphthols using diazodicarboxylate as aminating reagent in the formation of 

substituted hydrazines (Eq 3, Scheme 1).
13d

 Phenols were reported to react with 

amines via cyclohexa-3,5-diene-1,2-dione intermediates in the presence of copper 

catalyst and oxidants to form various ortho-aminated products such as benzoxazole, 

benzoxazinone, aminophenol and N-arylpyrrolidine (Eq 4, Scheme 1).
14a-f

 Moreover, 

Lumb and co-workers also found when the amines were replaced with hydrazine or 

hydrazide, ortho-azophenols were produced (Eq 5, Scheme 1).
14g

 With 

N,N-disubstituted hydrazines, we found that the reaction of 2-naphthols formed 

aminonaphthols under neat conditions (Eq 6, Scheme 1).
15a,b

 However, only 

N-unsubstituted products containing NH2 moiety can be accessed by this protocol. 

The use of other types of substituted hydrazines as precursors to react with naphthols 

has not been explored yet. Herein, we demonstrate a detail study on the direct 
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ortho-selective arylamination and cyclization of 2-naphthol and its analogues with 

respect to the reaction scope and limitation by the use of different types of substituted 

hydrazines. It provides a new strategy for the synthesis of N-aryl-substituted 

1-amino-2-naphthols and indazole compounds (Eq 7, Scheme 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Direct ortho-amination reactions of phenols 
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Results and Discussion 

Ortho-amination of 2-naphthol and its analogues with N,N-disubstituted 

hydrazines 

In our preliminary study, the reaction of 2-naphthol and its analogues with 

N,N-disubstituted hydrazines was performed under solvent-free conditions.
15a

 

However, the amination suffered from harsh conditions and must be conducted at 

high temperature for some substrates, which facilitated the melt of reactants and 

resulted in a homogeneous reaction. We questioned whether it’s possible to carry out 

the ortho-amination at lower temperature in organic solvent. We then sought to study 

the effect of solvents on the transformation. As shown in Table 1, the use of THF, 

CHCl3, EtOAc, MeOH and EtOH as solvents did not largely promote the 

ortho-amination reaction (entries 1–6). By contrast, the formation of the 

1-amino-2-naphthol (3a) in preparatively useful yield was observed when performing 

the amination in ethylene glycol at 80 
o
C. Ethylene glycol as a highly polar solvent 

could be in favor of the dissociation of 2-naphthol to form naphthalen-2-olate anion 

and protonated hydrazine, so that facilitated the reaction, which was in accordance 

with the reaction mechanism proposed by using the density functional theory.
15b

  

 

Table 1. Studying the effect of solvent on the ortho-amination of 2-naphthol with 

N-methyl-N-phenylhydrazine
[a]

 

OH

+

N
NH2

CH3

solvent
OH

NH2

+

H
N
CH3

1a 2a 3a 4a

reflux
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Entry Solvent Time / h Yield of 3a
[b]

 

1 THF 17 41 

2 chloroform 15 36 

3 EtOAc 19 27 

4
[c]

 methanol 15 35 

5 methanol 10 47 

6 ethanol 10 53 

7
[d]

 ethylene glycol 4 88 

[a]
Reaction conditions: 2-naphthol (1a, 2 mmol), N-methyl-N-phenylhydrazine (2a, 2 mmol), 

argon atmosphere, solvent (1 mL), monitored by TLC. 
[b]

Isolated yields. 
[c]

25 
o
C. 

[d]
80 

o
C. 

 

The substrate scope of 2-naphthol derivatives (1) was next explored by the 

treatment with N-methyl-N-phenylhydrazine (2a) (Table 2). 2-Naphthols containing 

electron-donating groups such as methoxy, methyl, tert-butyl and hydroxyl reacted 

with N-methyl-N-phenylhydrazine smoothly in ethylene glycol to form the 

ortho-aminated products in excellent yields (3b–3f). Functionalities of bromide, ester 

and cyano were tolerated by the reaction system, and the related products 3g, 3h and 

3i can be facilely prepared by this method. Whereas 1-naphthol and phenol did not 

react with 2a. It was noteworthy that the amination with 6-, 7-, or 8-hydroxyquinoline 

in ethylene glycol proceeded fast to give the corresponding ortho-aminated 

hydroxyquinolines (3l, 3m and 3n) in better yields than that under solvent-free 

conditions at high temperature.
15a
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Table 2. Regioselective ortho-amination of 2-naphthol and its analogues with 

N-methyl-N-phenylhydrazine
[a]

 

 

 

[a]
Reaction conditions: naphthol (1, 5 mmol), N-methyl-N-phenylhydrazine (2a, 5 mmol), argon 

atmosphere, ethylene glycol (2.5 mL). 
[b]

2 equivalents of hydrazine were used. 

 

The scope of N,N-disubstituted hydrazines (2) was then probed through the 

reactions with 2-naphthol (1a) (Table 3). 1-Amino-2-naphthol (3a) and the 

corresponding amines were obtained in moderate to excellent yields in ethylene 

glycol. It was noted that in ethylene glycol at 80 °C, the reaction of 

N-benzyl-N-phenylhydrazine (2c) and N,N-diphenylhydrazine (2d) with 2-naphthol 

furnished 1-amino-2-naphthol (3a) in 85% and 86% yield, respectively (entry 3 and 4). 

 
 

NH2
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NH2
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Under neat conditions, however, the amination reaction did not occur at a temperature 

lower than 100 °C.
15a

 

 

Table 3. Regioselective ortho-amination of 2-naphthol and its analogues with 

N,N-disubstituted hydrazines 
[a]

 

 

Entry Hydrazine 2 Yield of 3a Yield of 4 

1 

 

88% 

 

2 

 

87% 

 

3 

 

85% 

 

4 

 

86% 

 

5 

 

89% 

 

6 

 

86% 

 

7 

 

91% 

 

8 

 

73% 

 

[a]
Reaction conditions: 2-naphthol (1a, 5 mmol), N,N-disubstituted hydrazine (2, 5 mmol), argon 

atmosphere, ethylene glycol (2.5 mL). 
[b]

The yield was not measured. 
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The reaction of N-monosubstituted hydrazines and hydrazine hydrate with 

2-naphthol 

The reactions between N-monosubstituted hydrazines and hydrazine hydrate with 

2-naphthol usually resulted in the substitution of the phenolic hydroxyl group of 

2-naphthol by hydrazine residue, and then followed by benzidine rearrangement to 

produce the corresponding 1,1'-biaryl-2,2'-diamines or carbazoles in the case of 

N-arylhydrazines.
16

 In contrast to those results, we found that in ethylene glycol, the 

reaction of 2-naphthol with N-phenylhydrazine and N-(2-napththyl)hydrazine led to 

the ortho-aminated product of 1-amino-2-naphthol (3a) in good yield without the 

formation of related 1,1'-biaryl-2,2'-diamine or carbazole compounds (Table 4, entries 

1 and 2). Interestingly, the reaction of hydrazine hydrate with 2-naphthol in ethylene 

glycol also furnished 1-amino-2-naphthol (3a) in 42% yield along with 45% of 

2-napththylamine (Table 4, entry 3). 1,1'-Binaphthyl-2,2'-diamine was not detected. In 

the process, the reaction of hydrazine hydrate with 2-naphthol firstly produced 

2-naphthylhydrazine
16 

which could be detected from TLC analysis and isolated, and 

then the resulting 2-naphthylhydrazine reacted with the residual 2-naphthol as shown 

in entry 2 to give 3a and 2-naphthylamine. Notably, the reaction of 

tert-butylhydrazine with 2-naphthol did not form the ortho-aminated compound 3a, 

but 1-(tert-butyl)-2-(naphthalen-2-yl)diazene was obtained in 41% yield. The azo 

compound might be formed by air oxidation of 

1-(tert-butyl)-2-(naphthalene-2-yl)hydrazine which was derived from the substitution 

of the phenolic hydroxyl group of 2-naphthol with hydrazine residue.
16
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Table 4. Ortho-amination of 2-naphthol with mono-substituted hydrazine and 

hydrazine in ethylene glycol
[a]

 

 

Entry Hydrazine Yield of 3a RNH2 

1 

 

72% 

 

2 
 

66% 

 

3  42% 

 

4 
 

0%
[b]

 0% 

[a]
Reaction conditions: 2-naphthol (1a, 5 mmol), hydrazine (5 mmol), argon atmosphere, ethylene 

glycol, (2.5 mL). 
[b]

1-(Tert-butyl)-2-(naphthalen-2-yl)diazene was obtained in 41% yield. 

 

The reaction of N,N'-disubstituted hydrazines with 2-naphthol and its analogues 

N,N'-Diarylhydrazines are appealing substrates for the ortho-amination with 

2-naphthol, which may provide a new entry to the synthesis of arylamino-containing 

derivatives. However, because of the ease of benzidine rearrangement and 

dismutation into anilines and azobenzenes under thermal conditions, especially in 

hydroxylic solvents,
17

 the ortho-amination by the use of N,N'-diarylhydrazines 

remains a great challenge. By the treatment of N,N'-diphenylhydrazine with 1a, we 

found that the related anilines and azobenzenes were produced as major compounds 

through dismutation reaction. Then, we turned our attention to explore the reaction of 
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N,N'-diphenylhydrazine (5a) with 2-naphthol (1a) under neat conditions. When 

performing the reaction at 120 °C, we were pleased to find that 

1-phenylamino-2-naphthol (6a) was formed in 61% yield (Table 5). This finding 

provides an unprecedent and effective method for direct introduction of an arylamino 

group to the α-position of 2-naphthol. The substrate scope of 2-naphthol derivatives 

was examined by treating with N,N'-diphenylhydrazine. 2-Naphthols bearing 

electron-donating groups such as methoxy, hydroxyl and methyl were amenable to the 

transformation, giving the 1-phenylamino-2-naphthol products 6b–6e in moderate 

yields. Importantly, sensitive functionality of bromide was well retained in the 

reaction to give the product 6f in 62% yield. Whereas the arylamination of ethyl 

6-hydroxy-2-naphthoate with 5a did not occur. The phenylaminated 

hydroxyquinolines (6h and 6i) were prepared from the reaction of 

N,N'-diphenylhydrazine with 6- and 7-hydroxyquinoline in 37% and 32% yield, 

respectively. 

The arylamination of 2-naphthol with diverse substituted N,N'-diarylhydrazines 

was conducted. As expected, diarylhydrazines bearing both electron-donating and 

electron-withdrawing groups reacted with 1a smoothly to form the desired products 

6j-6o. The retained substituents of chloride and fluoride in the products may open 

upon an opportunity for late-stage functionalization. Only moderate yields were 

obtained, which was largely due to the incomplete conversion of phenols and some 

dismutation of N,N'-diarylhydrazine. The structure of product 6m was further verified 

by X-ray single-crystal diffraction analysis (see the Supporting Information).  
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Table 5. Ortho-arylamination of N,N'-diarylhydrazines with 2-naphthol and its 

analogues
[a]

 

 

 

H3CO

NH

OH

6b, 53%     

     

     

[a]
Reaction conditions: naphthol (1, 5 mmol), N,N'-diarylhydrazines (5, 7.5 mmol), argon 

atmosphere. 

Inspired by the results of ortho-arylamination of 2-naphthols, we next probed the 

possibility of incorporation of an alkylamino group onto the α-position of 2-naphthols 

by using N,N'-dialkylhydrazine. Our initial efforts focused on studying the reaction of 

2-naphthol (1a) with N,N'-dibutylhydrazine (7a). Surprisingly, performing the 

reaction at 120 °C under neat conditions, we found that 1a was completely consumed 

and an unexpected cyclization product 3-butyl-1-propyl-3H-benzo[e]indazole (8a) 

was formed in 75% yield instead of the anticipatory α-aminated product (Table 6). It 

was worthy to note that this demonstrated the first example of the synthesis of 

biologically interesting indazole compounds
18

 by the reaction of hydrazines with 

2-naphthols. 
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Subsequently, we examined the scope of 2-naphthols by the treatment with 

N,N'-dibutylhydrazine (7a) for the preparation of functionalized indazole motifs. The 

incorporation of electron-donating groups such as methoxy, hydroxyl and tert-butyl 

into the backbones of 2-naphthols had no effect on the transformation, forming the 

desired 3-butyl-1-propyl-3H-benzo[e]indazoles (8b-8e) in good yields. The 

cyclization reaction tolerated bromide function (8f). In addition, octyl-substituted 

indazole 8h could also be prepared by this protocol. The reactivity of 

N-alkyl-N'-arylhydrazine in the cyclization was examined, whereas the 

ortho-aminated compound or indazole was not detected in this case. 

 

Table 6. Cyclization for the synthesis of functionalized indazole motifs
[a]

 

 

    

    

[a]
Reaction conditions: 2-naphthol (1, 2 mmol), N,N'-dialkylhydrazine (7, 6 mmol), argon 

atmosphere, 120 
o
C. 

 

Ortho-arylamination of 2-naphthol and its analogues by the reaction with 

trisubstituted hydrazines 
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After the realization of the ortho-arylamination of 2-naphthols with 

N,N'-disubstituted hydrazines, the use of trisubstituted hydrazines as reactants for the 

transformation was investigated. As shown in Table 7, the reaction between 

N-methyl-N,N'-diphenylhydrazine with 2-naphthol (1a) occurred in high selectivity, 

giving the N-phenyl-1-amino-2-naphthol 6a as the sole aminated product in good 

yield both in ethylene glycol and neat system (entry 1). Notably, the 

N-methyl-N-phenyl-1-amino-2-naphthol was not formed in the reaction. We also 

noticed that the arylamination proceeded faster in ethylene glycol than in solvent-free 

system. 2-Naphthols bearing methoxy, methyl and bromide function were suitable 

substrates, providing related 1-phenylamino-2-naphthol products (6b-e) in good 

yields. 

Table 7. Ortho-arylamination by the use of N-methyl-N,N'-diphenylhydrazine
[a]

 

 

Entry Naphthol 1 Amination product 6 

1 
 

6a, 89% (85%)
[b]

 

2 
 

6b, 83% 

3 
 

6d, 82% 

4 
 

6e, 83% 

5 
 

6f, 81% 

[a]
Reaction conditions: 2-naphthol (1, 5 mmol), N-methyl-N,N'-diaryhydrazine (9a, 5 mmol), 

argon atmosphere, ethylene glycol (2.5 mL). 
[b]

No solvent. 
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Variation of the aryl groups in trisubstituted hydrazines allowed the synthesis of 

diverse substituted arylaminated products. The preparation of methyl, fluoro and 

chloro-containing 1-phenylamino-2-naphthols (6j-n) by this method was successful 

(Table 8, entries 1-5). When 2-naphthol (1a) was treated with 

N-methyl-N-phenyl-N'-arylhydrazines which have two different aryl groups, the 

related aryl group rather than phenyl was incorporated into the scaffold of 

aminonaphthols to form methyl-, fluoro- and chloro-containing products in over 80% 

yield (entries 6-10). Unsurprisingly, by the treatment of 

N-methyl-N-aryl-N'-phenylhydrazine with 2-naphthol (1a), 

1-phenylamino-2-naphthol (6a) was produced in good yield (entries 11-15). However, 

the reactions of 2-naphthol (1a) with other types of tri- or tetra-substituted hydrazines 

such as N,N'-dibutyl-N-methylhydrazine, N,N'-dibutyl-N-phenylhydrazine, 

N-anilino-piperidine and N,N'-dimethyl-N,N'-diphenylhydrazine did not give the 

aminated products. 

 

Table 8. Ortho-amination of 2-naphthol with N-methyl-N,N'-diarylhydrazine
[a]

 

OH

+

N
N
HR6

R7

ethylene glycol

OH

NH

R7

+

H
N

R6

1a 9

6

4

120 oC

 

Entry Hydrazine 9 Product 6 

1 9b, R
6
 = R

7
 = 4-Me 6j, 84% 

2 9c, R
6
 = R

7
 = 3-Me 6k, 83% 

3 9d, R
6
 = R

7
 = 4-F 6l, 82% 
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4 9e, R
6
 = R

7
 = 4-Cl 6m, 79% 

5 9f, R
6
 = R

7
 = 3-Cl 6n, 74% 

6 9g, R
6
 = H, R

7
 = 4-Me 6j, 84% 

7 9h, R
6
 = H, R

7
 = 3-Me 6k, 85% 

8 9i, R
6
 = H, R

7 
= 4-F 6l, 85% 

9 9j, R
6 

= H, R
7
 = 4-Cl 6m, 81% 

10 9k, R
6
 = H, R

7
 = 3-Cl 6n, 89% 

11 9l, R
6
 = 4-Me, R

7
 = H 6a, 83% 

12 9m, R
6
 = 3-Me, R

7
 = H 6a, 85% 

13 9n, R
6
 = 4-F, R

7
 = H 6a, 86% 

14 9o, R
6
 = 4-Cl, R

7
 = H 6a, 82% 

15 9p, R
6
 = 3-Cl, R

7
 = H 6a, 81% 

[a]
Reaction conditions: 2-naphthol (1, 5 mmol), N-methyl-N,N'-diaryhydrazine (9, 5 mmol), argon 

atmosphere, ethylene glycol (2.5 mL). 

 

Conclusion 

In summary, we have developed the direct ortho-arylamination and cyclization of 

2-naphthol and its analogues by the use of aryl- or alkyl-substituted hydrazines as 

amino sources. This transition metal-free protocol can be used to introduce arylamino 

scaffolds onto the ortho position of 2-naphthols, thus providing a novel entry to the 

synthesis of ortho-arylaminated products that usually can not be directly prepared by 

previous methodology. In particular, biologically appealing indazole compounds can 
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be facilely prepared by the reaction of 2-naphthols with N,N'-dialkylhydrazines, 

which do not form the related ortho-amination compounds. The advantages of simple 

operation, transition metal-free conditions of the present protocol make it attractive 

for future applications in organic synthesis. 

 

Experimental Section 

General methods 

NMR spectra were obtained on a Bruker 400 (400 MHz for 
1
H NMR; 100 MHz for 

13
C NMR). 

1
H NMR chemical shifts are reported in parts per million (ppm) relative to 

TMS, with the residual solvent peak used as an internal reference. Multiplicities are 

reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), triplet 

of doublets (td), quartet (q), multiplet (m), and broad resonance (br). HRMS analyses 

were made on a Bruker Daltonics Bio TOF-Q Mass Spectrometer using ESI or 

MALDI-TOF ionization. Column chromatography was performed with silica gel 

(200-300 mesh). Thin layer chromatography was carried out using Merck silica gel 

GF254 plates. Commercially available reagents were used without further 

purification. 

6-Tert-butyl-2-naphthol, 7-methoxy-2-naphthol, 6-methyl-2-naphthol and ethyl 

6-hydroxy-2-naphthoate were prepared following the procedures previously 

reported.
19

 N-Alkyl-arylhydrazines were prepared from the corresponding 

arylhydrazines, while N,N-diarylhydrazines and N,N-dialkylhydrazines were prepared 

from the appropriate secondary amines.
20

 N,N'-diarylhydrazines were prepared from 
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reduction of the corresponding azo compounds.
21

 N,N'-dialkylhydrazines and 

monoalkylhydrazines were prepared from the alkylation of 

di-tert-butylhydrazine-1,2-dicarboxylate followed by hydrolysis.
22

 

N-Methyl-N,N'-diarylhydrazines were prepared from the methylation of 

N,N'-diarylhydrazines or the reaction of N-hydroxyl-N-arylacetamide with 

N-methyl-arylamine.
23

 

 

General procedure for the reaction of N,N-disubstituted hydrazines with 

2-naphthol and its analogues in ethylene glycol 

Under argon atmosphere, N-methyl-N-arylhydrazine (2, 5 mmol) was added to a 

mixture of 2-naphthols (1, 5 mmol) and ethylene glycol (2.5 mL). The mixture was 

heated in an oil bath at 80 °C for 4-10 h (tracked by TLC). After cooled down, water 

(20 mL) was introduced and the residue was extracted with ethyl acetate. The 

combined extracts were washed with saturated brine and dried with anhydrous sodium 

sulfate. The solvent was removed in vacuum and the residue was purified by flash 

column chromatography on silica gel (gradient elution: hexane to hexane/ethyl acetate 

(1:1)) to afford products 3 and 4. 

1-Amino-2-naphthol (3a): Yield: 88% (0.70 g); gray solid; m.p.> 142 °C (decomp.); 

1
H NMR (400 MHz, DMSO-d6) δ 9.15 (br s, 1H), 7.93 (d, J = 8.5 Hz, 1H), 7.65 (d, J 

= 8.0 Hz, 1H), 7.29 (t, J = 7.0 Hz, 1H), 7.20 (t, J = 7.1 Hz, 1H), 7.07 (s, 2H), 4.96 (br 

s, 2H); 
13

C NMR (100 MHz, DMSO-d6) δ 139.4, 129.3, 129.0, 128.3, 124.22, 124.18, 
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122.7, 121.9, 118.0, 116.5; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for C10H10NO 

160.0757; Found 160.0742. 

7-Methoxy-1-amino-2-naphthol (3b): Yield: 86% (0.82 g); white solid; m.p. 

120~121 °C; 
1
H NMR (400 MHz, DMSO-d6) δ 9.13 (br s, 1H), 7.56 (d, J = 9.2 Hz, 

1H), 7.28 (d, J = 1.6 Hz, 1H), 7.00 (d, J = 8.8 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 6.86 

(dd, J = 8.8 Hz, 2.0 Hz, 1H), 4.82 (br s, 2H), 3.86 (s, 3H); 
13

C NMR (100 MHz, 

DMSO-d6) δ 156.7, 140.0, 129.8, 128.4, 125.2, 124.4, 116.6, 115.5, 115.2, 100.8, 

55.4; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for C11H12NO2 190.0863; Found 

190.0859. 

1-Amino-2,7-naphthalenediol (3c): Yield: 87% (0.76 g); gray solid; m.p.> 200 °C 

(decomp.); 
1
H NMR (400 MHz, DMSO-d6) δ 9.36 (s, 1H), 9.07 (br s. 1H), 7.51 (d, J 

= 8.8 Hz, 1H), 7.10 (s, 1H), 6.98 (d, J = 8.8 Hz, 1H), 6.86 (d, J = 8.8 Hz, 1H), 6.82 (d, 

J = 8.8 Hz, 1H), 4.45 (br s, 2H); 
13

C NMR (100 MHz, DMSO-d6) δ 154.6, 139.9, 

129.8, 127.3, 126.2, 123.8, 117.2, 115.5, 115.0, 103.6; HRMS (ESI-TOF) m/z: 

[M+H]
+
 Calcd for C10H10NO2 176.0706; Found 176.0711.  

1-Amino-6-methoxy-2-naphthol (3d): Yield: 85% (0.80 g); gray solid; m.p. 

123~125 °C; 
1
H NMR (400 MHz, DMSO-d6) δ 8.89 (br s, 1H), 7.86 (d, J = 9.2 Hz, 

1H), 6.94-7.06 (m, 4H), 4.91 (br s, 2H), 3.80 (s, 3H); 
13

C NMR (100 MHz, 

DMSO-d6) δ 155.2, 137.9, 130.0, 129.8, 123.6, 119.6, 118.5, 116.6, 115.1, 106.4, 

55.3; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for C11H12NO2 190.0863; Found 

190.0868. 
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1-Amino-6-methyl-2-naphthol (3e): Yield: 88% (0.76 g); gray solid; m.p. 

144~146 °C; 
1
H NMR (400 MHz, DMSO-d6) δ 9.01 (br s, 1H), 7.84 (d, J = 8.6 Hz, 

1H), 7.41 (s, 1H), 7.13 (dd, J = 8.6 Hz, 1.2 Hz, 1H), 7.02 (d, J = 8.6 Hz, 1H), 6.95 (d, 

J = 8.6 Hz, 1H), 4.88 (br s, 2H), 2.38 (s, 3H); 
13

C NMR (100 MHz, DMSO-d6) δ 

138.8, 131.4, 129.3, 129.2, 127.1, 126.4, 122.5, 121.9, 118.1, 115.7, 21.4; HRMS 

(ESI-TOF) m/z: [M+H]
+
 Calcd for C11H12NO 174.0913; Found 174.0919. 

6-(Tert-butyl)-1-amino-2-naphthol (3f): Yield: 88% (0.95 g); white solid; m.p. 

154~156 °C; 
1
H NMR (400 MHz, DMSO-d6) δ 8.87 (br s. 1H), 7.85 (d, J = 8.8 Hz, 

1H), 7.56 (s, 1H), 7.38 (d, J = 8.8 Hz, 1H), 7.04 (s, 2H), 4.85 (br s. 2H), 1.34 (s, 9H); 

13
C NMR (100 MHz, DMSO-d6) δ 144.6, 138.9, 129.1, 128.9, 123.0, 122.9, 122.5, 

121.8, 118.0, 116.5, 34.7, 31.6; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for C14H18NO 

216.1383; Found 216.1381. 

6-Bromo-1-amino-2-naphthol (3g): Yield: 89% (1.05 g); gray solid; m.p.> 162 °C 

(decomp.); 
1
H NMR (400 MHz, DMSO-d6) δ 9.35 (br s, 1H), 7.93 (d, J = 9.2 Hz, 1H), 

7.90 (d, J = 2.0 Hz, 1H), 7.38 (dd, J = 8.8 Hz, 2.0 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 

7.05 (d, J = 8.4 Hz, 1H), 5.08 (br s, 2H); 
13

C NMR (100 MHz, DMSO-d6) δ 139.9, 

130.2, 130.0, 129.9, 126.8, 124.6, 122.4, 119.0, 115.8, 115.6; HRMS (ESI-TOF) m/z: 

[M+H]
+
 Calcd for C10H9BrNO 237.9862; Found 237.9857. 

Ethyl 5-amino-6-hydroxy-2-naphthoate (3h): Yield: 85% (0.98 g); gray solid; m.p. 

131~133 °C; 
1
H NMR (400 MHz, DMSO-d6) δ 9.58 (br s. 1H), 8.40 (d, J = 1.6 Hz, 

1H), 8.07 (d, J = 8.8 Hz, 1H), 7.78 (dd, J = 9.2 Hz, 2.0 Hz, 1H), 7.31 (d, J = 8.4 Hz, 

1H), 7.20 (d, J = 8.4 Hz, 1H), 5.12 (br s. 2H), 4.35 (q, J = 7.2 Hz, 2H), 1.36 (t, J = 7.2 
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Hz, 3H); 
13

C NMR (100 MHz, DMSO-d6) δ 166.7, 142.0, 131.4, 129.7, 127.7, 125.7, 

123.9, 122.9, 122.5, 118.7, 118.5, 60.9, 14.8; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd 

for C13H14NO3 232.0968; Found 232.0973. 

5-Amino-6-hydroxy-2-naphthonitrile (3i): Yield: 82% (0.75 g); gray solid; m.p.> 

156 °C (decomp.); 
1
H NMR (400 MHz, DMSO-d6) δ 9.79 (br s, 1H), 8.29 (d, J = 1.4 

Hz, 1H), 8.12 (d, J = 8.9 Hz, 1H), 7.51 (dd, J = 8.8 Hz, 1.6 Hz, 1H), 7.23 (s, 2H), 5.22 

(br s, 2H); 
13

C NMR (100 MHz, DMSO-d6) δ 142.4, 135.0, 130.1, 127.6, 124.6, 124.0, 

123.6, 120.4, 119.2, 117.5, 104.7; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for 

C11H9N2O 185.0709; Found 185.0705. 

5-Amino-6-hydroxylquinoline (3l): Yield: 75% (0.60 g); gray solid; m.p. 

165-168°C; 
1
H NMR (400 MHz, DMSO-d6) δ 9.41 (br s, 1H), 8.60 (dd, J = 4.0 Hz, 

1.2 Hz, 1H), 8.43 (d, J = 8.0 Hz, 1H), 7.31-7.27 (m, 2H), 7.20 (d, J = 8.8 Hz, 1H), 

5.15 (br s, 2H); 
13

C NMR (100 MHz, DMSO-d6) δ 147.2, 143.8, 139.4, 130.4, 129.6, 

120.9, 119.1, 118.8, 117.1; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for C9H9N2O 

161.0709; Found 161.0711. 

8-Amino-7-hydroxylquinoline (3m): Yield: 73% (0.58 g); gray solid; m.p. 

168-170 °C; 
1
H NMR (400 MHz, DMSO-d6) δ 9.42 (br s, 1H), 8.68 (dd, J = 4.0 Hz, 

1.6 Hz, 1H), 8.11 (dd, J = 8.4 Hz, 1.6 Hz,1H), 7.26 (q, J = 4.0 Hz, 1H), 7.17 (d, J = 

8.4 Hz, 1H), 7.07 (d, J = 8.8 Hz, 1H), 5.06 (br s, 2H); 
13

C NMR (100 MHz, 

DMSO-d6) δ 147.9, 141.7, 138.5, 136.2, 130.3, 123.2, 118.8, 118.7, 114.8; HRMS 

(ESI-TOF) m/z: [M+H]
+
 Calcd for C9H9N2O 161.0709; Found 161.0707. 
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7-Amino-8-hydroxyquinoline (3n): Yield: 77% (0.62 g); colourless oil; 
1
H NMR 

(400 MHz, DMSO-d6) δ 9.08 (br s, 1H), 8.66 (dd, J = 4.0 Hz, 1.2 Hz, 1H), 8.08 (dd, J 

= 8.0 Hz, 1.6 Hz, 1H), 7.23 (d, J = 8.8 Hz, 1H), 7.16 (q, J = 4.0 Hz, 1H), 7.12 (d, J = 

8.8 Hz, 1H), 5.09 (br s, 2H); 
13

C NMR (100 MHz, DMSO-d6) δ 148.5, 138.9, 136.2, 

135.8, 134.8, 121.4, 119.3, 118.4, 117.3; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for 

C9H9N2O 161.0709; Found 161.0713. 

General procedure for the reaction of hydrazine hydrate and mono-substituted 

hydrazine with 2-naphthol in ethylene glycol 

Under argon atmosphere, hydrazine hydrate or mono-substituted hydrazine (5 mmol) 

was added to a mixture of 2-naphthol (1a, 5 mmol) and ethylene glycol (2.5 mL). The 

mixture was heated in an oil bath at 90 °C for 15~21 h (tracked by TLC). After cooled 

down, water (20 mL) was introduced and the residue was extracted with ethyl acetate. 

The combined extracts were washed with saturated brine and dried with anhydrous 

sodium sulfate. The solvent was removed in vacuum and the residue was purified by 

flash column chromatography on silica gel (gradient elution: hexane to hexane/ethyl 

acetate (1:1)) to provide 1-amino-2-naphthol (3a) and mono-substituted amine. 

General procedure for the reaction of N,N'-diarylhydrazines with 2-naphthol 

and its analogues 

Under argon atmosphere, a mixture of 2-naphthol (1, 5.0 mmol) and 

N,N'-diarylhydrazine (5, 7.5 mmol) was heated in an oil bath at 120 °C for 5~10 h 

(tracked by TLC). After cooled down, dichloromethane (50 mL) was introduced and 

the residue was decolorized by activated carbon. After filtration, the solvent was 
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removed in vacuum and the residue was purified by flash column chromatography on 

silica gel (gradient elution: hexane to hexane/ethyl acetate (10:1)) to provide 

arylamine and 1-arylamino-2-naphthol (6). 

1-Phenylamino-2-naphthol (6a): Yield: 61% (0.72 g); gray solid; m.p. 155-156 °C; 

1
H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 8.9 Hz, 1H), 7.66 

(d, J = 8.3 Hz, 1H), 7.38 (td, J = 6.8 Hz, 1.2 Hz, 1H), 7.30-7.34 (m, 2H), 7.18 (t, J = 

7.5 Hz, 2H), 6.83 (t, J = 7.4 Hz, 1H), 6.65 (d, J = 7.9 Hz, 2H), 6.54 (br s, 1H), 5.27 

(br s, 1H); 
13

C NMR (100 MHz, CDCl3) δ 152.1, 146.7, 132.1, 129.6, 129.1, 128.7, 

127.0, 123.5, 121.5, 119.8, 118.6, 116.9, 114.2; HRMS (ESI-TOF) m/z: [M+H]
+
 

Calcd for C16H14NO 236.1070; Found 236.1075. 

7-Methoxy-1-phenylamino-2-naphthol (6b): Yield: 53% (0.70 g); gray solid; m.p. 

128-130 °C; 
1
H NMR (400 MHz, CDCl3) δ 7.68-7.72 (m, 2H), 7.14-7.20 (m, 3H), 

6.92-6.98 (m, 2H), 6.83 (t, J = 7.3 Hz, 1H), 6.67 (d, J = 7.6 Hz, 2H), 6.56 (br s, 1H), 

5.17 (br s, 1H), 3.71 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 158.7, 152.7, 146.5, 

133.4, 130.3, 129.6, 128.8, 124.9, 119.8, 118.0, 115.5, 114.3, 114.2, 100.7, 55.2; 

HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for C17H16NO2 266.1176; Found 266.1179. 

1-Phenylamino-2,7-naphthalendiol (6c): Yield: 45% (0.57 g); gray solid; m.p. 

167-169 °C; 
1
H NMR (400 MHz, CDCl3) δ 7.71 (t, J = 7.8 Hz, 2H), 7.14-7.20 (m, 

3H), 6.90-6.93 (m, 2H), 6.84 (t, J = 7.4 Hz, 1H), 6.64 (d, J = 7.6 Hz, 2H), 6.55 (br s, 

1H), 5.11 (br s, 2H); 
13

C NMR (100 MHz, DMSO-d6) δ 155.7, 151.4, 148.1, 134.2, 

129.7, 128.6, 126.6, 123.2, 118.6, 116.4, 115.2, 115.1, 113.2, 104.2; HRMS 

(ESI-TOF) m/z: [M+H]
+
 Calcd for C16H14NO2 252.1019; Found 252.1021. 
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6-Methoxy-1-phenylamino-2-naphthol (6d): Yield: 61% (0.81 g); gray solid; m.p. 

132-134 °C; 
1
H NMR (400 MHz, DMSO-d6) δ 9.17 (s, 1H), 7.58-7.63 (m, 2H), 7.34 

(s, 1H), 7.20-7.24 (m, 2H), 7.01-7.05 (m, 3H), 6.58 (t, J = 7.1 Hz, 1H), 6.47 (d, J = 

7.7 Hz, 2H), 3.82 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 156.0, 150.4, 146.7, 130.5, 

129.6, 127.7, 127.3, 123.1, 119.7, 119.5, 118.9, 117.4, 114.2, 107.0, 55.4; HRMS 

(ESI-TOF) m/z: [M+H]
+
 Calcd for C17H16NO2 266.1176; Found 266.1178. 

6-Methyl-1-phenylamino-2-naphthol (6e): Yield: 63% (0.79 g); gray solid; m.p. 

142-144 °C; 
1
H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 8.8 Hz, 1H), 7.56-7.59 (m, 

2H), 7.16-7.29 (m, 4H), 6.83 (t, J = 7.3 Hz, 1H), 6.65 (d, J = 8.0 Hz, 2H), 6.44 (br s, 

1H), 5.23 (br s, 1H), 2.45 (s, 3H); 
13

C NMR (100 MHz, DMSO-d6) δ 150.0, 147.9, 

131.5, 130.3, 128.8, 128.6, 128.0, 126.9, 125.7, 122.5, 120.1, 118.7, 116.6, 113.4, 

20.8; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for C17H16NO 250.1226; Found 

250.1229. 

6-Bromo-1-phenylamino-2-naphthol (6f): Yield: 62% (0.97 g); gray solid; m.p. 

134-136 °C; 
1
H NMR (400 MHz, DMSO-d6) δ 9.69 (s, 1H), 8.10 (d, J = 2.0 Hz, 1H), 

7.69 (d, J = 8.9 Hz, 1H), 7.65 (d, J = 9.0 Hz, 1H), 7.45-7.49 (m, 2H), 7.31 (d, J = 8.8 

Hz, 1H), 7.04 (t, J = 7.5Hz, 2H), 6.60 (t, J = 7.2 Hz, 1H), 6.46 (d, J = 7.7 Hz, 2H); 
13

C 

NMR (100 MHz, DMSO-d6) δ 151.2, 147.6, 130.7, 129.7, 128.70, 128.66, 125.7, 

125.0, 120.5, 120.1, 116.9, 115.6, 113.4; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for 

C16H13BrNO 314.0175; Found 314.0172. 

5-Phenylamino-6-hydroxyquinoline (6h): Yield: 37% (0.44 g); gray solid; m.p. 

230-232 °C; 
1
H NMR (400 MHz, DMSO-d6) δ 9.78 (s, 1H), 8.67 (dd, J = 4.0 Hz, 
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1.4Hz, 1H), 8.08 (d, J = 8.4Hz, 1H), 7.81 (d, J = 9.1 Hz, 1H), 7.49-7.51 (m, 2H), 7.38 

(dd, J = 8.5 Hz, 4.1 Hz, 1H), 7.07 (t, J = 8.2 Hz, 2H), 6.61 (t, J = 7.3 Hz, 1H), 6.48 (d, 

J = 7.7 Hz, 2H); 
13

C NMR (100 MHz, DMSO-d6) δ 150.8, 147.6, 147.0, 143.6, 130.7, 

128.7, 127.4, 127.0, 122.0, 120.9, 119.8, 117.0, 113.4; HRMS (ESI-TOF) m/z: 

[M+H]
+
 Calcd for C15H13N2O 237.1022; Found 237.1025. 

8-Phenylamino-7-hydroxyquinoline (6i): Yield: 32% (0.38 g); gray solid; m.p. 

227-229 °C; 
1
H NMR (400 MHz, DMSO-d6) δ 9.84 (s, 1H), 8.72 (dd, J = 4.2 Hz, 1.6 

Hz, 1H), 8.22 (dd, J = 8.2 Hz, 1.5 Hz, 1H), 7.59-7.61 (m, 2H), 7.29-7.32 (m, 2H), 

7.06 (t, J = 8.2 Hz, 2H), 6.61-6.68 (m, 3H); 
13

C NMR (100 MHz, DMSO-d6) δ 150.9, 

149.6, 146.4, 144.6, 136.5, 128.6, 123.9, 123.3, 122.7, 120.0, 119.1, 118.1, 115.7; 

HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for C15H13N2O 237.1022; found 237.1024. 

1-(p-Tolylamino)-2-naphthol (6j): Yield: 52% (0.65 g); gray solid; m.p. 134-136 °C; 

1
H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 8.9 Hz, 1H), 7.66 

(d, J = 8.3 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.29-7.32 (m, 2H), 6.98 (d, J = 8.2 Hz, 

2H), 6.55-6.58 (m, 3H), 5.15 (br s, 1H), 2.24 (s, 3H); 
13

C NMR (100 MHz, 

DMSO-d6) δ 150.5, 145.5, 132.0, 129.0, 128.6, 128.0, 126.2, 125.7, 125.2, 122.6, 

120.6, 118.7, 113.6, 20.1; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for C17H16NO 

250.1226; Found 250.1229. 

1-(m-Tolylamino)-2-naphthol (6k): Yield: 51% (0.63 g); gray solid, m.p. 

100-101 °C; 
1
H NMR (400 MHz, CDCl3) δ 7.75-7.81 (m, 2H), 7.65 (d, J = 8.3 Hz, 

1H), 7.35-7.39 (m, 1H), 7.29-7.33 (m, 2H), 7.05 (t, J = 8.1 Hz, 1H), 6.64 (d, J = 7.5 

Hz, 1H), 6.54 (s, 1H), 6.42-6.44 (m, 2H), 5.12 (br s, 1H), 2.21 (s, 3H); 
13

C NMR (100 
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MHz, DMSO-d6) δ 150.8, 147.9, 137.6, 132.2, 128.54, 128.49, 128.0, 126.5, 125.8, 

122.7, 122.5, 120.2, 118.7, 117.6, 114.0, 110.7, 21.3; HRMS (ESI-TOF) m/z: [M+H]
+
 

Calcd for C17H16NO 250.1226; Found 250.1228. 

1-(4-Fluorophenylamino)-2-naphthol (6l): Yield: 53% (0.67 g); gray solid, m.p. 

132-134 °C; 
1
H NMR (400 MHz, CDCl3) δ 7.76-7.82 (m, 2H), 7.61 (d, J = 8.4 Hz, 

1H), 7.38 (t, J = 7.1 Hz, 1H), 7.31 (t, J = 8.1 Hz, 2H), 6.84-6.88 (m, 2H), 6.54-6.57 

(m, 3H), 5.13 (br s, 1H); 
13

C NMR (100 MHz, DMSO-d6) δ 150.6, 144.4, 132.0, 

128.6, 128.0, 126.5, 125.9, 122.7, 122.3, 120.4, 118.7, 115.1, 114.9, 114.2, 114.1; 

HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for C16H13FNO 254.0976; Found: 254.0978. 

1-(4-Chlorophenylamino)-2-naphthol (6m): Yield: 47% (0.63 g); gray solid, m.p. 

100-102 °C; 
1
H NMR (400 MHz, CDCl3) δ 7.77-7.83 (m, 2H), 7.61 (d, J = 8.3 Hz, 

1H), 7.40 (t, J = 7.1 Hz, 1H), 7.29-7.35 (m, 2H), 7.12 (d, J = 8.7 Hz, 2H), 6.57 (d, J = 

8.7 Hz, 2H), 6.44 (br s, 1H), 5.23 (br s, 1H); 
13

C NMR (100 MHz, CDCl3) δ 152.0, 

145.3, 131.8,129.9, 129.6, 129.5, 129.4, 128.7, 127.2, 123.6, 121.3, 118.2, 117.8, 

116.9, 115.4; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for C16H13ClNO 270.0680; 

Found 270.0683. 

1-(3-Chlorophenylamino)-2-naphthol (6n): Yield: 43% (0.58 g); gray solid, m.p. 

99-101 °C; 
1
H NMR (400 MHz, CDCl3) δ 7.77-7.82 (m, 2H), 7.60 (d, J = 8.3 Hz, 1H), 

7.39 (t, J = 7.2 Hz, 1H), 7.29-7.35 (m, 2H), 7.07 (t, J = 7.6 Hz, 1H), 6.78 (dd, J = 7.9 

Hz, 1.0 Hz, 1H), 6.59 (t, J = 1.8 Hz, 1H), 6.48 (dd, J = 8.1 Hz, 1.8 Hz, 1H), 6.41 (s, 

1H), 5.22 (br s, 1H); 
13

C NMR (100 MHz, CDCl3) δ 152.0, 148.0, 135.4, 131.8, 130.6, 
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129.6, 129.5, 128.7, 127.2, 123.7, 121.2, 119.9, 117.8, 117.0, 114.2, 112.4; HRMS 

(ESI) m/z: [M+H]
+
 Calcd for C16H13ClNO 270.0680; Found 270.0682. 

1-(4-(Trifluoromethyl)phenylamino)-2-naphthol (6o): Yield: 34% (0.52 g); gray 

solid, m.p. 110-112 °C; 
1
H NMR (400 MHz, CDCl3) δ 7.83 (t, J = 8.1 Hz, 2H), 7.61 

(d, J = 8.3 Hz, 1H), 7.40-7.43 (m, 3H), 7.31-7.37 (m, 2H), 6.68 (d, J = 8.4 Hz, 2H), 

6.27 (s, 1H), 5.49 (s, 1H); 
13

C NMR (100 MHz, CDCl3) δ 159.9, 149.5, 131.8, 129.72, 

129.66, 128.8, 127.3, 127.0 (q, J = 3.8 Hz), 123.8, 121.2, 117.4, 117.1, 113.7; HRMS 

(ESI-TOF) m/z: [M+H]
+
 Calcd for C17H13F3NO 304.0944; Found 304.0947. 

General procedure for the reaction of N,N'-dialkylhydrazines with 2-naphthol 

and its analogues 

Under an argon atmosphere, a mixture of 2-naphthol (1, 2 mmol) and 

N,N'-dialkylhydrazine (7, 6 mmol) was heated in an oil bath at 120 °C for 20~24 h 

(tracked by TLC). After cooled down, dichloromethane (50 mL) was introduced and 

the residue was decolorized by activated carbon. After filtration, the solvent was 

removed in vacuum and the residue was purified by flash column chromatography on 

silica gel (gradient elution: hexane to hexane/ethyl acetate (10:1)) to afford product 8. 

3-Butyl-1-propyl-3H-benzo[e]indazole (8a): Yield: 75% (0.40 g); colorless oil; 
1
H 

NMR (400 MHz, CDCl3) δ 8.27 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.69 (d, 

J = 9.0 Hz, 1H), 7.63 (t, J = 7.8 Hz, 1H), 7.46 (m, 2H), 4.39 (t, J = 7.1 Hz, 2H), 3.24 

(t, J = 7.6 Hz, 2H), 1.97 (m, 4H), 1.38 (m, 2H), 1.10 (t, J = 7.3 Hz, 3H), 0.93 (t, J = 

7.3 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 146.3, 138.9, 129.4, 129.0, 128.5, 128.0, 
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127.3, 123.7, 122.9, 115.9, 110.4, 48.6, 32.4, 31.6, 22.1, 20.1, 14.2, 13.8; HRMS 

(ESI-TOF) m/z: [M+H]
+
 Calcd for C18H23N2 267.1856; Found 267.1861. 

3-Butyl-8-methoxy-1-propyl-3H-benzo[e]indazole (8b): Yield: 65% (0.39 g); 

colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.8 Hz, 1H), 7.66 (d, J = 2.4 

Hz, 1H), 7.62 (d, J = 9.0 Hz, 1H), 7.28 (d, J = 9,0 Hz, 1H), 7.09 (dd, J = 8.8 Hz, 2.5 

Hz, 1H), 4.37 (t, J = 7.1 Hz, 2H), 3.98 (s, 3H), 3.23 (t, J = 7.6 Hz, 2H), 1.87-1.98 (m, 

4H), 1.30-1.39 (m, 2H), 1.11 (t, J = 7.4 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H); 
13

C NMR 

(100 MHz, CDCl3) δ 159.0, 146.2, 139.3, 130.4, 129.8, 127.8, 124.1, 115.7, 114.0, 

107.8, 104.0, 55.3, 48.6, 32.3, 31.6, 22.3, 20.1, 14.2, 13.7; HRMS (ESI-TOF) m/z: 

[M+H]
+
 Calcd for C19H25N2O 297.1961; Found 297.1965. 

3-Butyl-1-propyl-3H-benzo[e]indazol-8-ol (8c): Yield: 71% (0.40 g); gray solid; 

m.p. 144-146 °C; 
1
H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8.7 Hz, 1H), 7.65 (d, J = 

8.8 Hz, 2H), 7.26-7.28 (m, 1H), 7.04 (d, J = 8.8 Hz, 1H), 5.68 (br s, 1H), 4.41 (t, J = 

7.0 Hz, 2H), 3.21 (t, J = 7.4 Hz, 2H), 1.89-1.94 (m, 4H), 1.29-1.39 (m, 2H), 1.07 (t, J 

= 7.4 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H); 
13

C NMR (100 MHz, DMSO-d6) δ 156.8, 

145.1, 139.0, 130.5, 129.3, 127.5, 122.8, 114.44, 114.38, 107.4, 105.9, 47.5, 31.8, 

30.7, 21.5, 19.3, 13.9, 13.5; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for C18H23N2O 

283.1805; Found 283.1808. 

3-Butyl-7-methoxy-1-propyl-3H-benzo[e]indazole (8d): Yield: 68% (0.40 g); gray 

solid; m.p. 67-69 °C. 
1
H NMR (400 MHz, CDCl3) δ 8.18 (d, J = 8.6 Hz, 1H), 7.63 (d, 

J = 9.0 Hz, 1H), 7.43 (d, J = 9.0 Hz, 1H), 7.28-7.31 (m, 2H), 4.39 (t, J = 7.1 Hz, 2H), 

3.94 (s, 3H), 3.22 (t, J = 7.6 Hz, 2H), 1.87-1.94 (m, 4H), 1.30-1.39 (m, 2H), 1.09 (t, J 
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= 7.3 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 156.0, 145.6, 

138.1, 130.6, 127.2, 124.2, 123.0, 118.0, 116.1, 110.8, 109.1, 55.4, 48.6, 32.4, 31.5, 

22.1, 20.1, 14.2, 13.8; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd for C19H25N2O 

297.1961; Found 297.1964. 

7-(tert-Butyl)-3-butyl-1-propyl-3H-benzo[e]indazole (8e): Yield: 61% (0.39 g); 

colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 8.22 (d, J = 8.7 Hz, 1H), 7.87 (d, J = 2.0 

Hz, 1H), 7.72 (dd, J = 8.6 Hz, 2.1 Hz, 1H), 7.68 (d, J = 9.1 Hz, 1H), 7.42 (d, J = 9.0 

Hz, 1H), 4.39 (t, J = 7.1 Hz, 2H), 3.23 (t, J = 7.6 Hz, 2H), 1.87-1.97 (m, 4H), 

1.30-1.47 (m, 11H), 1.09 (t, J = 7.3 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H); 
13

C NMR (100 

MHz, CDCl3) δ 146.5, 146.1, 138.8, 129.3, 128.4, 126.3, 125.7, 124.6, 122.6, 115.8, 

110.2, 48.6, 34.6, 32.4, 31.5, 22.2, 20.1, 14.1, 13.7; HRMS (ESI-TOF) m/z: [M+H]
+ 

Calcd for C22H31N2 323.2482; Found: 323.2486. 

7-Bromo-3-butyl-1-propyl-3H-benzo[e]indazole (8f): Yield: 61% (0.42 g); white 

solid; m.p. 45-46 °C; 
1
H NMR (400 MHz, CDCl3) δ 8.13 (d, J = 8.8 Hz, 1H), 8.05 (d, 

J = 1.7 Hz, 1H), 7.70 (dd, J = 8.8 Hz, 1.9 Hz, 1H), 7.59 (d, J = 9.0 Hz, 1H), 7.47 (d, J 

= 9.0 Hz, 1H), 4.39 (t, J = 7.2 Hz, 2H), 3.20 (t, J = 7.6 Hz, 2H), 1.85-1.95 (m, 4H), 

1.30-1.39 (m, 2H), 1.09 (t, J = 7.4 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H); 
13

C NMR (100 

MHz, CDCl3) δ 146.2, 138.8, 131.0, 130.8, 130.3, 127.0, 126.9, 124.5, 117.0, 115.7, 

111.5, 48.7, 32.4, 31.5, 22.0, 20.1, 14.1, 13.7; HRMS (ESI-TOF) m/z: [M+H]
+
 Calcd 

for C18H22BrN2 345.0961; Found 345.0965. 

1-Heptyl-3-octyl-3H-benzo[e]indazole (8h): Yield: 71% (0.54 g); colorless oil; 
1
H 

NMR (400 MHz, CDCl3) δ 8.28 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.70 (d, 
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J = 9.0 Hz, 1H), 7.63 (t, J = 8.1 Hz, 1H), 7.43-7.47 (m, 2H), 4.39 (t, J = 7.1 Hz, 2H), 

3.26 (t, J = 7.7 Hz, 2H), 1.85-1.94 (m, 4H), 1.47-1.53 (m, 2H), 1.35-1.42 (m, 2H), 

1.23-1.30 (m, 14H), 0.83-0.89 (m, 6H); 
13

C NMR (100 MHz, CDCl3) δ 146.5, 138.9, 

129.4, 129.0, 128.5, 128.0, 127.3, 123.7, 122.9, 115.9, 110.4, 48.9, 31.9, 31.8, 30.4, 

29.7, 29.6, 29.23, 29.17, 28.9, 26.9, 22.7, 22.6, 14.13, 14.08; HRMS (ESI-TOF) m/z: 

[M+H]
+
 Calcd for C26H39N2 379.3108; Found 379.3111. 

General procedure for the reaction of N-methyl-N,N'-diarylhydrazines with 

2-naphthol and its analogues in ethylene glycol 

Under argon atmosphere, N-methyl-N,N'-diarylhydrazine (9, 5 mmol) was added to a 

mixture of 2-naphthol (1, 5mmol) and ethylene glycol (2.5 mL). The mixture was 

heated in an oil bath at 120 °C for 8~15 h (tracked by TLC). After cooled down, water 

(20 mL) was introduced and the residue was extracted with ethyl acetate. The 

combined extracts were washed with saturated brine and dried with anhydrous sodium 

sulfate. The solvent was removed in vacuum and the residue was purified by flash 

column chromatography on silica gel (gradient elution: hexane to hexane/ethyl acetate 

(10:1)) to afford products 4 and 6. 
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Characterization data (including 
1
H and 

13
C NMR spectra) of products 3, 6 and 8, 

single crystal data of product 6m. This material is available free of charge via the 

internet at http://pubs.acs.org. 
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