W Very Important Publication

DOI: 10.1002/adsc.201500639

Robust Silver(I) Catalyst for the Carboxylative Cyclization of Propargylic Alcohols with Carbon Dioxide under Ambient Conditions

Qing-Wen Song^a and Liang-Nian He^{a,*}

^a State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China Fax: (+86)-22-2350-3878; phone: (+86)-22-2350-3878; e-mail: heln@nankai.edu.cn

Received: July 3, 2015; Revised: November 11, 2015; Published online: December 17, 2015

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201500639.

Abstract: Inspired by the bulkier bis(triphenylphosphine)–silver cation-induced mechanism of propargylic alcohols and carbon dioxide through the alkyl carbonate intermediate, a robust dual-component catalytic system consisting of silver acetate and tetraheptylammonium bromide was rationally developed for the synthesis of α -methylene cyclic carbonates under ambient conditions without employing any additional organic base and ligand. This is one of the most effective catalysts reported to date for this conversion, with a very high turnover number of up to

Introduction

The chemical conversion of carbon dioxide (CO_2) has evoked great interest in the past decades.^[1] Compared with toxic phosgene and CO, CO₂ can be regarded as an abundant, easily available, environmentally friendly and renewable C₁ building block for organic synthesis. In this regard, great progress has been made in catalytic conversion of CO₂ with small-ring compounds, unsaturated compounds, hydrogen, amines and so on, resulting in the formation of C-C, C-O and C-N bonds.^[2] However, its inherent thermodynamic stability and kinetic inertness hinder the development of efficient catalysts for CO₂ functionalization. Generally, active organometallic reagents, and/or nucleophiles and high pressure/temperature are required for the incorporation of CO₂ into organic products.^[3] Although significant achievements have been made, chemical conversion of CO₂ at atmospheric pressure and room temperature remains a great challenge.

As is well-known, α -alkylidene cyclic carbonates are an important class of heterocyclic frameworks in natural products with potential bioactivities and also 6024, probably due to the synergistic effect of Lewis basic and Lewis acidic species for the activation of both propargylic alcohol and carbon dioxide by the formation of the alkyl carbonate with a bulkier counterion. Notably, this catalyst also worked well for the carboxylative cyclization of propargylic amines with carbon dioxide with the highest turnover number of 544.

Keywords: bulky cations; carbon dioxide; reaction mechanism; silver catalysis; synthetic methods

find wide applications in organic synthesis as shown in Scheme $1.^{[4]}$

In this aspect, the carboxylative cyclization of propargylic alcohols with CO_2 is one of the most promising and eco-friendly routes to α -alkylidene cyclic carbonates.^[5] However, most of the published methods pose some drawbacks, in particular, the requirement of higher CO_2 pressure and use of stoichiometric amounts of additional base. Accordingly, the development of an efficient catalyst for CO_2 conversion under mild reaction conditions could be still highly desirable in both industry and academia.^[6]

Only if we understand the underlying principles of the chemical transformation can highly effective catalytic systems be designed. The alkyl carbonate intermediate (**I**) was usually postulated in the two-component "metal-base"-catalyzed reaction of propargylic alcohols with CO₂ (Scheme 2, **I**).^[5a,d] In this context, we envisioned that higher CO₂ pressure and reaction temperature are still indispensable presumably because the strong interaction between the base-H⁺ and $HC \equiv CC(R^1R^2)OCO_2^-$ species reduces the nucleophilicity of alkyl carbonic anion (**I**). Most recently, we have successfully developed an efficient single-component catalyst, i.e., [(PPh₃)₂Ag]₂CO₃, which enables

 \sim

(i) Cyclic carbonate unit in natural products:

 (ii) α-Alkylidene cyclic carbonates as intermediates in organic synthesis:

Scheme 1. Applications of α -alkylidene cyclic carbonates.

Scheme 2. Activation modes involving a two-component "metal+base" catalytic system (base=tertiary amine) (**I**), a single-component bifunctional catalyst (**II**), and a bulkier $(n-C_7H_{15})_4N^+$ -inspired intermediate (**III**) in this work.

the reaction to perform smoothly under ambient conditions^[5k] through the formation of intermediate (**II**) (Scheme 2).

The bulkier cation $[(Ph_3P)_2Ag(I)]^+$ can stabilize the carbonic anion and enhance the nucleophilicity of alkyl carbonate intermediate in comparison with the base-H⁺ species. We hypothesized that an ideal catalytic system would be a kind of bifunctional one with both Lewis acidic and Lewis basic sites in combination with the bulkier cation. Herein we disclose a robust catalytic system consisting of $(n-C_7H_{15})_4NBr$ and AgOAc for the synthesis of α -alkylidene cyclic carbonates with a high turnover number (TON), pre-

sumably going through the proposed intermediate (III) (Scheme 2). This is a thermodynamically favourable step^[7] and thus provides an attractive access to various organic carbonates without utilization of any base and ligand under solvent-free conditions.

Results and Discussion

2-Methylbut-3-yn-2-ol (1a) was chosen as the model substrate to optimize the reaction conditions, as summarized in Table 1. Various silver(I) compounds capable of activating the carbon-carbon triple bond were investigated in combination with quaternary ammonium salts. Initially, several easily available salts such as KOAc, $(n-C_7H_{15})_4$ NBr, $(n-C_7H_{15})_4$ NOAc and AgOAc

Table 1. Optimization of the reaction conditions for the carboxylative cyclization of **1a** with CO₂.^[a]

1	H ₃ C OH + CO ₂ CH ₃ (balloc	n) 60 °C, 12 h	H ₃ C O H ₃ C O
	1a		2a
Entry	Catalyst	Co-Catalyst	Yield [%] ^[b]
1	KOAc	_	0
2	$(n-C_7H_{15})_4NBr$	-	0
3	$(n-C_7H_{15})_4NOAc$	-	0
4	AgOAc	-	0
5	Ag_2O	$(n-C_7H_{15})_4NBr$	45
6	Ag_2CO_3	$(n-C_7H_{15})_4NBr$	25
7	AgOAc	$(n-C_7H_{15})_4NBr$	89
8	AgNO ₃	$(n-C_7H_{15})_4NBr$	0
9	AgBr	$(n-C_7H_{15})_4NBr$	0
10	KOAc	$(n-C_7H_{15})_4NBr$	0
11	AgBr	$(n-C_7H_{15})_4NOAc$	<1
12	AgOAc	$(n-C_7H_{15})_4NOAc$	65
13	AgOAc	(CH ₃) ₄ NBr	6
14	AgOAc	$(C_2H_5)_4NBr$	22
15	AgOAc	$(n-C_4H_9)_4NBr$	85
16	AgOAc	$n-C_{16}H_{33}(CH_3)_3NB_3$	r 16
17	AgOAc	$PhCH_2(C_2H_5)_3NBr$	64
18	AgOAc	$(n-C_4H_9)_4NCl$	83
19	AgOAc	$(n-C_4H_9)_4PBr$	85
20 ^[c]	AgOAc	$(n-C_7H_{15})_4NBr$	96
$21^{[d]}$	AgOAc	$(n-C_7H_{15})_4NBr$	27
22 ^[e]	AgOAc	$(n-C_7H_{15})_4NBr$	98

^[a] Unless otherwise specified, all the reactions were performed with **1a** (0.421 g, 5 mmol), Cat. (1 mol%), Co-Cat. (1 mol%), neat, CO₂ balloon, 60 °C, 12 h.

^[b] Determined by ¹H NMR with 1,1,2,2-tetrachloroethane as the internal standard.

^[c] $(n-C_7H_{15})_4$ NBr (29.4 mg, 1.2 mol%).

- ^[d] AgOAc (24.8 mg, 3 mol%), $(n-C_7H_{15})_4NBr$ (88.2 mg, 3.6 mol%), 25 °C.
- ^[e] AgOAc (42 mg, 5 mol%), $(n-C_7H_{15})_4NBr$ (147 mg, 6 mol%), 25 °C.

were found to have no catalytic activity under neat conditions (Table 1, entries 1-4). Gratifyingly, a twocomponent system consisting of 1 mol% Ag₂O and $(n-C_7H_{15})_4$ NBr gave α -alkylidene cyclic carbonate **2a** in 45% yield (entry 5). Ag₂CO₃ displayed a lower activity than Ag₂O under otherwise identical conditions (entry 6 vs. 5). In previous studies, AgOAc in combination with a basic nitrogen ligand was highly effective for internal propargylic alcohols^[5e] but showed low activity for terminal propargylic alcohols.^[5k] Interestingly, AgOAc and $(n-C_7H_{15})_4$ NBr in this study displayed excellent activity, affording 2a in 89% yield (entry 7). However, an acidic silver salt, for example, $AgNO_3$ or AgBr, was ineffective (entries 8 and 9), suggesting a crucial role of the anion in proton transfer. It is also worth mentioning that KOAc instead of AgOAc showed no activity, indicating that activation of the carbon-carbon triple bond could be a prequisite for the reaction (entry 10 vs. 7). On the other hand, insoluble AgBr was inactive (entry 11). In contrast, soluble AgOAc performed well (entry 12).

Furthermore, several quaternary ammonium salts were investigated as co-catalysts (entries 13-18). As a result, the yield of 2a increased in the order $(CH_3)_4N^+ < (C_2H_5)_4N^+ < (n-C_4H_9)_4N^+ < (n-C_7H_{15})_4N^+$ (entries 13–15 and 7). In addition, the unsymmetrical tetraalkylammonium cation bearing one longer alkyl showed better performance than that with a less bulky cation evidently (entries 16, 17 vs. 13, 14). The bulkier tetraheptylammonium cation might form looser ion pairs with alkyl carbonic anion, as supported by a DFT study (see the Supporting Information, Figure S1), and thus can enhance the nucleophilicity of the alkyl carbonic anion, being in agreement with the published results.^[8] On the other hand, (n- C_4H_9)₄NCl and $(n-C_4H_9)_4$ PBr were found to have comparable activity with $(n-C_4H_9)_4$ NBr (entry 18, 19 vs. 7). A further improved result was obtained by using 1.2 mol% $(n-C_7H_{15})_4$ NBr (entry 20 vs. 7). Interestingly, the reaction could proceed smoothly even at room temperature. On further elevating the catalyst loading, 2a was obtained almost quantitatively (entries 21 and 22).

Having established the optimized reaction conditions, we next examined the substrate scope of this carboxylative cyclization as listed in Table 2. Terminal propargylic alcohols with both alkyl and aryl substituents at the propargylic position (**1a–1g**) underwent the reaction smoothly with CO₂ at atmospheric pressure to afford the corresponding α -alkylidene cyclic carbonates (**2a–2g**) in excellent yields. Herein, two procedures were employed as indicated in Table 2. As a result, both protocols (low catalytic loading or low temperature) were effective. Propargylic alcohols with *n*-C₆H₁₃, cyclohexyl, vinyl and phenyl substituents showed relatively poor reactivity especially at room temperature. Yet, such a problem could be sur
 Table 2. Substrate scope.^[a]

Entry	Substrate		Product		Yield [%] ^[b]	
1	≡-{он	1a	040	2a	A B	96 (95 ^[c]) 98
2	≡{Он Et	1b		2b	A B	99 98
3	≡{ОН <i>п</i> -С ₆ Н	1c 13	<i>n</i> -C ₆ H ₁₃	2c	A	90 _[q]
4	≡ 	1d	i-Bu	2d	A B	96 >99
5	₩O	1e	0000	2e	A B	88 98 ^[e]
6	≡{Он	1f	0000	2f	A B	90 91 ^[e]
7	≡ { ОН Рһ	1g	Ph 0	2g	A	67 ^[f]

- ^[a] Reaction conditions for protocol A: **1** (2.5 mmol), AgOAc (4.2 mg, 1 mol%), $(n-C_7H_{15})_4NBr$ (14.7 mg, 1.2 mol%) at 60°C; protocol B: **1** (2.5 mmol), AgOAc (21.0 mg, 5 mol%), $(n-C_7H_{15})_4NBr$ (73.5 mg, 6 mol%) at 25°C for 12 h.
- ^[b] NMR yield.
- ^[c] Isolated yield.
- ^[d] AgOAc (8.3 mg, 2 mol%), $(n-C_7H_{15})_4NBr$ (29.4 mg, 2.4 mol%), 48 h.
- ^[e] AgOAc (42 mg, 10 mol%), $(n-C_7H_{15})_4NBr$ (147 mg, 12 mol%), 24 h.

^[f] 36 h.

mounted by increasing the catalyst amount and prolonging the reaction time.

To further validate the efficaciousness of this methodology, a gram-scale experiment was performed with a lower catalyst amount as depicted in Scheme 3. To our delighted, over 60% **2a** yield was obtained with a high TON of up to 6024.

asc.wiley-vch.de

Scheme 3. Evaluation of the catalytic activity.

(1)

AgOAc (5 mol%) ethisterone (n-C₇H₁₅)₄NBr (6 mol%) + DMF, 60 °C, 16 h 94% yield CO_2 ACC-ethisterone (1 bar) (2) ACC-ethisterone catalyst-free CH₂Cl₂, r.t., 6 h Et₂NH 96% yield (2 equiv.) **OPC-ethisterone**

Scheme 4. Structure modifications of ethisterone.

Ethisterone is the first orally active progestin.^[9] The structural modification of ethisterone could be interesting due to its significance for pharmaceutical chemistry.^[10] The present AgOAc/ $(n-C_7H_{15})_4$ NBr-catalyzed carboxylative cyclization of propargylic alcohol with CO₂ was also applied to the synthesis of a complicated molecule with several functional groups such as ethisterone (Scheme 4, step 1) to afford the ACCethisterone (α -alkylene cyclic carbonate ethisterone) with retention of the configuration. The configuration of ACC-ethisterone was unambiguously confirmed by single-crystal X-ray analysis (Figure 1).^[11] In addition, β -oxopropylcarbamate-modified ethisterone (OPC-

Figure 1. X-ray crystal structure of ACC-ethisterone. Hydrogen atoms are omitted for clarity.

ethisterone) was also successfully prepared through a ring-opening amination (Scheme 4, step 2).

The catalytic role of AgOAc/ $(n-C_7H_{15})_4$ NBr was further elucidated. The interaction of propargylic alcohol **1a** with CO₂ was monitored by ¹H and ¹³C NMR techniques (Figure 2). The proton signal of the hydroxy group in **1a** became broad and was shifted from $\delta = 2.66$ to 5.93 ppm (Figure 2a and b), suggesting hydrogen bond formation between the acetic group and **1a**,^[12] resulting in activation of propargylic alcohol, and thus enhancement of the nucleophilicity of the hydroxy group. As seen in Figure 2c and d, changes in carbon peaks could be attributed to the interaction of the silver salt with the carbon-carbon triple bond, leading to the activation of propargylic alcohol.^[13]

A tentative mechanism for the AgOAc/ $(n-C_7H_{15})_4$ NBr-catalyzed fixation of atmospheric CO₂ with propargylic alcohols is illustrated in Scheme 5. Initially, the propargylic alcohol reacts with CO₂ to generate the propargylic carbonate intermediate in which CO₂ is activated by a hydroxy group^[6a] with the aid of AgOAc and $(n-C_7H_{15})_4$ NBr. Notably, the bulkier cation, i.e., $(nC_7H_{15})_4$ N⁺ plays a key role in stabilizing the carbonate intermediate. Then, an intramolecular nucleophilic cyclization proceeds at the silver(I)-activated C=C bond, followed by protonation with regeneration of the catalytic species.

The synthesis of oxazolidinones through the carboxylative cyclization of propargylic amines and CO₂ is one of the most attractive synthetic methods.^[14,6f] To futher display the effectiveness of the present catalytic system, the carboxylative cyclization of propargylic amines with CO₂ was further examined (Scheme 6). To our delight, the current protocol was efficiently performed to give oxazolidinones **4a–4c** with almost quantitative yields even at ambient conditions. In the case of **3c**, the TON reached up to 544 which is the highest among the reported results to date.

Conclusions

In summary, we have established an elegant protocol for expeditious chemical fixation of atmospheric CO₂ to generate various α -alkylidene cyclic carbonates or oxazolidinones under ambient conditions. On the basis of a mechanistic understanding of the bulkier cation [(Ph₃P)₂Ag(I)]⁺-catalyzed carboxylative cyclization of propargylic alcohols with CO₂, the robust dual-activation catalyst system, i.e., AgOAc/(*n*-C₇H₁₅)₄NBr, which could simultaneously activate CO₂, a carbon-carbon triple bond, and a nucleophile (alcohols, amines etc.), was successfully developed. Taking the carboxylative cyclization of 2-methylbut-3-yn-2-ol

Advanced > Synthesis & Catalysis

Figure 2. ¹H, ¹³C NMR spectroscopic study: a, c for propargylic alcohol **1a** and b, d for a mixture of **1a**/AgOAc/(n-C₇H₁₅)₄NBr: **1a** (0.1 mmol), AgOAc (1 equiv.), (n-C₇H₁₅)₄NBr (1 equiv.) in CDCl₃ (0.6 mL).

3a: R¹ = Ph, R² = Ph, R³ = H, R = *n*-Bu; 4a; 94% (12 h)
3b: R¹ = H, R² = CH₃, R³ = CH₃, R = Bn; 4b; 99% (6 h)
3c: R¹ = H, R² = H, R³ = H, R = Bn; 4c; 99% (3 h)
3c: (0.1 mol% cat., 1 atm CO₂, 60 °C, 48 h, 4c 54%, TON up to 544)

Scheme 6. AgOAc/ $(n-C_7H_{15})_4$ NBr-promoted chemical fixation of CO₂ with propargylic amines.

with CO_2 as an example, a TON of up to 6024 was achieved. This clean approach represents a promising strategy for the development of the highly efficient chemical conversion of CO_2 to produce valuable chemicals at atmospheric pressure.

Experimental Section

General Procedure for the Synthesis of α-Alkylidene Cyclic Carbonates

Taking the carboxylative cyclization of 2-methylbut-3-yn-2ol with CO₂ as an example: a 10-mL Schlenk tube equipped with a stirrer bar was charged with AgOAc (4.2 mg, 1 mol%), (n-C₇H₁₅)₄NBr (14.7 mg, 1.2 mol%), and **1a** (211 mg, 2.5 mmol) under neat conditions. Next, the Schlenk tube was attached to a balloon filled with CO₂ (99.99% purity). Then, the reaction mixture was stirred at 60 °C for 12 h [or protocol B: AgOAc (21 mg, 5 mol%), (n-C₇H₁₅)₄NBr (74 mg, 6 mol%), 25 °C]. On carefully releasing the CO₂ after the reaction, the mixture was washed with CHCl₃ (1 mL). The organic phase was analyzed by ¹H NMR

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

with 1,1,2,2-tetrachloroethane as the internal standard or concentrated under vacuum and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 100:1-20:1) to give the pure product. Note: 1 mmol ethisterone was used for the reaction in Scheme 4.

4,4-Dimethyl-5-methylene-1,3-dioxolan-2-one (2a): yield: 321 mg (95%); colourless oil; ¹H NMR (CDCl₃, 400 MHz): δ =4.75–4.31 (dd, *J*=4.0 Hz, 2 H, CH₂), 1.59 (s, 6 H, 2 CH₃); ¹³C NMR (CDCl₃, 100.6 MHz): δ =158.6, 151.2 (C=O), 85.2, 84.6, 27.5; MS (EI, 70 eV): *m/z* (%)=128.10 (2.81), 85.10 (6.49), 84.10 (100), 83.10 (3.54), 69.10 (48.16); IR (neat): ν = 3023, 2991, 1825, 1687, 1271, 1086, 1032, 856 cm⁻¹.

4-Ethyl-4-methyl-5-methylene-1,3-dioxolan-2-one (2b): yield: 354 mg (97%); colourless oil; ¹H NMR (CDCl₃, 400 MHz): $\delta = 4.80$ (d, J = 4.0 Hz, 1H), 4.26 (d, J = 4.0 Hz, 1H), 1.94–1.70 (m, 2H), 1.57 (s, 3H), 0.97 (t, 3H); ¹³C NMR (CDCl₃, 100.6 MHz): $\delta = 157.2$, 151.4, 87.5, 85.4, 33.1, 25.7, 7.1; GC-MS (EI, 70 eV): m/z (%)=143.10 (6), 113.05 (16), 98.10 (30), 83.05 (75), 70.10 (100).

4-Hexyl-4-methyl-5-methylene-1,3-dioxolan-2-one (2c): yield: 498 mg (90%); colourless oil; ¹H NMR (CDCl₃, 400 MHz): δ = 4.77 (d, *J* = 4.0 Hz, 1H), 4.26 (d, *J* = 4.0 Hz, 1H), 1.89–1.64 (m, 2H), 1.57 (s, 3H), 1.26–1.37 (m, 8H), 0.86 (t, 3H); ¹³C NMR (CDCl₃, 100.6 MHz): δ = 157.7, 151.5, 87.2, 85.4, 40.4, 31.4, 28.9, 26.3, 22.8, 22.4, 13.9; GC-MS (EI, 70 eV) *m*/*z* (%) = 199.15 ([M+H]⁺, 2), 139.2 (13), 112.15 (35), 111.15 (51), 97.10 (68), 85.10 (30), 84.10 (45), 83.10 (72), 82.10 (29), 72.10 (75), 70.15 (93), 69.10 (100).

4-Isobutyl-4-methyl-5-methylene-1,3-dioxolan-2-one (2d): yield: 428 mg (96%); colourless oil; ¹H NMR (CDCl₃, 400 MHz): δ = 4.79–4.26 (dd, 2H), 1.87–1.62 (m, 3H), 1.57 (s, 3H), 0.96 (6H); ¹³C NMR (CDCl₃, 100.6 MHz): δ = 158.1, 151.4, 87.3, 85.5, 48.3, 26.9, 24.2, 23.8, 23.5; GC-MS (EI, 70 eV) *m/z* (%) = 114.10 (8), 113.10 (8), 111.15 (19), 84.15 (37), 83.15 (15), 70.10 (10), 69.10 (100).

4-Methylene-1,3-dioxaspiro[4.5]decan-2-one (2e): yield: 423 mg (87%); colourless oil; ¹H NMR (CDCl₃, 400 MHz): δ =4.73 (d, *J*=4.0 Hz, 1H), 4.28 (d, *J*=4.0 Hz, 1H), 1.98– 1.95 (m, 2H), 1.70–1.59 (m, 7H), 1.34–1.20 (m, 1H); ¹³C NMR (CDCl₃, 100.6 MHz): δ =158.4, 151.2, 86.2, 85.3, 36.2, 24.0, 21.4; GC-MS (EI, 70 eV): *m/z* (%)=124.10 (9), 109.10 (15), 95.10 (15), 82.10 (49), 81.15 (50), 80.10 (20), 67.10 (100).

4-Methyl-5-methylene-4-vinyl-1,3-dioxolan-2-one (2f): yield: 356 mg (89%); colourless oil; ¹H NMR (CDCl₃, 400 MHz): δ =5.96–5.89 (m, 1H), 5.48–5.29 (dd, 2H), 4.85– 4.33 (dd, 2H), 1.67 (s, 3H); ¹³C NMR (CDCl₃, 100.6 MHz): δ =156.0, 151.0, 136.0, 116.5, 87.2, 85.7, 25.5; GC-MS (EI, 70 eV): *m/z* (%)=96.15 (16), 95.15 (50), 81.10 (51), 68.10 (39), 67.10 (100).

4-Methyl-5-methylene-4-phenyl-1,3-dioxolan-2-one (2g): yield: 471 mg (67%); greenish-yellow oil; ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.49-7.47$ (m, 2H), 7.44–7.38 (m, 3H), 4.95 (d, J = 4.0 Hz, 1H), 4.48 (d, J = 4.0 Hz, 1H), 1.97 (s, 3H); ¹³C NMR (CDCl₃, 100.6 MHz): $\delta = 157.2$, 151.0, 139.1, 129.0, 128.8, 124.5, 88.1, 87.0, 27.3; GC-MS (EI, 70 eV): m/z (%) = 146.10 (13), 131.10 (19), 118.15 (100), 117.15 (82), 103.10 (52), 78.10 (32), 77.10 (43).

ACC-ethisterone: yield: 337 mg (94%); colourless crystals [acetone/hexane=1:5 v/v]; mp 170–171 °C; IR (KBr): ν = 2971, 2944, 2912, 2859, 1820, 1677, 1458, 1291, 1260, 1133, 1037, 1027, 864 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ =5.67

(s, 1H), 4.87 (d, J=3.6 Hz, 1H), 4.31 (d, J=4.0 Hz, 1H), 2.90–2.82 (1H), 2.43–2.29 (5H), 2.15–2.00 (m, 2H), 1.92– 1.89 (1H), 1.77–1.51 (6H), 1.45–1.39 (2H), 1.34–1.26 (1H), 1.20 (s, 3H), 1.14–1.06 (1H), 1.02 (s, 3H), 0.95–0.90 (1H); ¹³C NMR (CDCl₃, 100.6 MHz): $\delta = 199.0$, 170.0, 157.5, 151.2, 123.9, 96.6, 89.0, 52.9, 48.3, 35.5, 35.4, 34.0, 33.7, 32.3, 31.2, 30.8, 22.7, 20.0, 17.2, 14.1; HR-MS (ESI): m/z = 379.1879, calcd. for C₂₂H₂₈NaO₄⁺ [M+Na]⁺: 379.1880.

OPC-ethisterone: yield: 408 mg (96%); white solid; mp. 169–170 °C; ¹H NMR (CDCl₃, 400 MHz): δ =5.71 (s, 1H), 3.38–3.29 (m, 2H), 3.28–3.18 (m, 1H), 2.80–2.72 (m, 1H), 2.41–2.24 (4H), 2.08 (s, 3H), 2.00–1.95 (m, 1H), 1.87–1.76 (m, 3H), 1.69–1.56 (m, 5H), 1.49–1.32 (m, 4H), 1.20 (t, *J*= 6.8 Hz, *J*=7.2 Hz, 3H), 1.17 (s, 3H), 1.12 (t, *J*=7.2 Hz, *J*= 6.8 Hz, 3H), 1.05 (s, 3H), 0.97–0.84 (m, 2H); ¹³C NMR (CDCl₃, 100.6 MHz): δ =208.8, 199.3, 170.7, 155.3, 124.0, 95.4, 52.9, 47.1, 47.0, 42.1, 41.6, 38.4, 35.7, 35.6, 33.9, 33.2, 32.7, 31.4, 27.1, 24.7, 20.6, 17.3, 15.4, 14.3, 13.6; HR-MS (ESI): *m*/*z*=452.2772, calcd. for C₂₆H₃₉NNaO₄⁺ [M+Na]⁺: 452.2771.

General Procedure for the Synthesis of Oxazolidinones

Taking the carboxylative cyclization of *N*-benzylprop-2-yn-1amine and CO₂ as an example: a 10-mL Schlenk tube equipped with a stirrer bar was charged with AgOAc (1.7 mg, 2 mol%), (*n*-C₇H₁₅)₄NBr (5.9 mg, 2.4 mol%), *N*benzylprop-2-yn-1-amine (72.6 mg, 0.5 mmol) and DMSO (0.3 mL). Next, the Schlenk tube was attached to a balloon filled with CO₂. Then, the reaction mixture was stirred at 25 °C for the preset time. The CO₂ was carefully released after the reaction. The organic phase was analyzed by ¹H NMR with 1,1,2,2-tetrachloroethane as the internal standard or concentrated under vacuum and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1–5:1) to give the pure product.

5-Benzylidene-3-butyl-4-phenyloxazolidin-2-one (4a): yield: 141 mg (94%); ¹H NMR (CDCl₃, 400 MHz): δ =7.39– 7.27 (m, 5H), 4.76–4.74 (1H), 4.47 (s, 2H), 4.25–4.23 (1H), 4.03–4.02 (2H); ¹³C NMR (CDCl₃, 100.6 MHz): δ =155.6, 148.9, 134.9, 129.0, 128.23, 128.15, 86.8, 47.8, 47.2; GC-MS (EI, 70 eV): *m/z* (%)=189.20 (13.18), 92.15 (15.37), 91.15 (100), 65.10 (11.34).

3-Benzyl-4,4-dimethyl-5-methyleneoxazolidin-2-one (4b): yield: 112 mg (97%); light brown oil; ¹H NMR (CDCl₃, 400 MHz): δ =7.33–7.27 (m, 5H), 4.66 (1H), 4.45 (s, 2H), 4.22 (1H), 1.30 (6H); ¹³C NMR (CDCl₃, 100.6 MHz): δ = 160.7, 154.8, 137.6, 128.6, 127.72, 127.69, 84.1, 61.5, 44.0, 27.6; GC-MS (EI, 70 eV): *m/z* (%)=217.25 (4.67), 202.20 (19.34), 132.20 (7.04), 91.15 (100), 65.10 (8.80).

3-Benzyl-5-methyleneoxazolidin-2-one (4c): yield: 94 mg (98%); light brown oil; ¹H NMR (CDCl₃, 400 MHz): δ = 7.39–7.27 (m, 5H), 4.76–4.74 (1H), 4.47 (s, 2H), 4.25–4.23 (1H), 4.03–4.02 (2H); ¹³C NMR (CDCl₃, 100.6 MHz): δ = 155.6, 148.9, 134.9, 129.0, 128.23, 128.15, 86.8, 47.8, 47.2; GC-MS (EI, 70 eV): *m/z* (%) = 189.20 (13.18), 92.15 (15.37), 91.15 (100), 65.10 (11.34).

Acknowledgements

This work was supported by funds from the National Natural Sciences Foundation of China, Specialized Research Fund for the Doctoral Program of Higher Education (20130031110013), MOE Innovation Team of China (IRT13022) and the "111" Project of Ministry of Education of China (project No. B06005).

References

- [1] a) P. H. Abelson, *Science* 2000, 289, 1293–1293;
 b) D. W. Keith, *Science* 2009, 325, 1654–1655;
 c) C. S. Song, *Catal. Today* 2006, 115, 2–32;
 d) I. Omae, *Catal. Today* 2006, 115, 33–52;
 e) M. Aresta, A. Dibenedetto, A. Angelini, *Chem. Rev.* 2014, 114, 1709–1742.
- [2] a) T. Sakakura, J. C. Cho, H. Yasuda, Chem. Rev. 2007, 107, 2365–2387; b) S. N. Riduan, Y. G. Zhang, Dalton Trans. 2010, 39, 3347–3357; c) W. Wang, S. P. Wang, X. B. Ma, J. L. Gong, Chem. Soc. Rev. 2011, 40, 3703–3727; d) M. Peters, B. Kçhler, W. Kuckshinrichs, W. Leitner, P. Markewitz, T. E. Müller, ChemSusChem 2011, 4, 1216–1240; e) K. Huang, C. L. Sun, Z. J. Shi, Chem. Soc. Rev. 2011, 40, 2435–2452; f) Z. Z. Yang, L. N. He, J. Gao, A. H. Liu, B. Yu, Energy Environ. Sci. 2012, 5, 6602–6639; g) Y. Tsuj, T. Fujihara, Chem. Commun. 2012, 48, 9956–9964; h) Q. W. Song, Y. N. Zhao, L. N. He, J. Gao, Z. Z. Yang, Curr. Catal. 2012, 1, 107–124; i) Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933, doi: 10.1038/ncomms6933.
- [3] a) L. N. He, J. Q. Wang, J. L. Wang, *Pure Appl. Chem.* 2009, *81*, 2069–2080; b) X. Yin, J. R. Moss, *Coord. Chem. Rev.* 1999, *181*, 27–60; c) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn, *Angew. Chem.* 2011, *123*, 8662–8690; *Angew. Chem. Int. Ed.* 2011, *50*, 8510–8537.
- [4] a) K. Ohe, H. Matsuda, T. Ishihara, S. Ogoshi, N. Chatani, S. Murai, J. Org. Chem. 1993, 58, 1173–1177; b) K. Ohe, H. Matsuda, T. Morimoto, S. Ogoshi, N. Chatani, S. Murai, J. Am. Chem. Soc. 1994, 116, 4125–4126; c) V. Besse, F. Camara, C. Voirin, R. Auvergne, S. Caillol, B. Boutevin, Polym. Chem. 2013, 4, 4545–4561, and the references cited therein; d) H. Zhang, H. B. Liu, J. M. Yue, Chem. Rev. 2014, 114, 883–898, and the references cited therein.
- [5] For reports on the carboxylative cyclization of propargylic alcohols with CO₂, see: a) Y. Inoue, J. Ishikawa, M. Taniguchi, H. Hashimoto, Bull. Chem. Soc. Jpn. 1987, 60, 1204–1206; b) J. Fournier, C. Bruneau, P. H. Dixneuf, Tetrahedron Lett. 1989, 30, 3981-3982; c) Y. L. Gu, F. Shi, Y. Q. Deng, J. Org. Chem. 2004, 69, 391-394; d) W. Yamada, Y. Sugawara, H. M. Cheng, T. Ikeno, T. Yamada, Eur. J. Org. Chem. 2007, 2007, 2604-2607; e) S. Yoshida, K. Fukui, S. Kikuchi, T. Yamada, J. Am. Chem. Soc. 2010, 132, 4072-4073; f) Y. Kayaki, M. Yamamoto, T. Ikariya, Angew. Chem. 2009, 121, 4258-4261; Angew. Chem. Int. Ed. 2009, 48, 4194-4197; g) N. D. Cà, B. Gabriele, G. Ruffolo, L. Veltri, T. Zanetta, M. Costa, Adv. Synth. Catal. 2011, 353, 133-146; h) X. D. Tang, C. R. Qi, H. T. He, H. F. Jiang, Y. W. Ren, G. Q. Yuan, Adv. Synth. Catal. 2013, 355, 2019-

2028; i) Q. W. Song, B. Yu, X. D. Li, R. Ma, Z. F. Diao, R. G. Li, W. Li, L. N. He, *Green Chem.* **2014**, *16*, 1633– 1638; j) Y. B. Wang, D. S. Sun, H. Zhou, W. Z. Zhang, X. B. Lu, *Green Chem.* **2014**, *16*, 2266–2272; k) Q. W. Song, W. Q. Chen, R. Ma, A. Yu, Q. Y. Li, Y. Chang, L. N. He, *ChemSusChem* **2015**, *8*, 821–827.

- [6] For typical examples of fixing atmospheric pressure of CO₂, see: a) S. Minakata, I. Sasaki, T. Ide, Angew. Chem. 2010, 122, 1331–1333; Angew. Chem. Int. Ed. 2010, 49, 1309–1311; b) H. Mizuno, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2011, 133, 1251–1253; c) T. Kimura, K. Kamata, N. Mizuno, Angew. Chem. 2012, 124, 6804–6807; Angew. Chem. Int. Ed. 2012, 51, 6700–6703; d) L. Zhang, J. Cheng, B. Carry, Z. Hou, J. Am. Chem. Soc. 2012, 134, 14314–14317; e) Y. F. Zhao, B. Yu, Z. Z. Yang, H. Y. Zhang, L. D. Hao, X. Gao, Z. M. Liu, Angew. Chem. 2014, 126, 6032–6035; Angew. Chem. Int. Ed. 2015, 54, 5399–5403.
- [7] Simplified reaction model as follows calculated by the B3LYP/6-311++g(d) method in DFT calculations: $\Delta H = -19.26 \text{ kcal mol}^{-1}$, $\Delta G = -4.38 \text{ kcal mol}^{-1}$. For details, see the Supporting Information.

- [8] a) T. Ema, Y. Miyazaki, S. Koyama, Y. Yano, T. Sakai, *Chem. Commun.* 2012, 48, 4489–4491; b) T. Ema, Y. Miyazaki, J. Shimonishi, C. Maeda, J. Hasegawa, J. Am. *Chem. Soc.* 2014, 136, 15270–15279; the analogous strategy was also applied in earlier reports, see: c) S. H. Szczepankiewicz, C. M. Ippolito, B. P. Santora, T. J. Van de Ven, G. A. Ippolito, L. Fronckowiak, F. Wiatrowski, T. Power, M. Kozik, *Inorg. Chem.* 1998, 37, 4344–4352; d) K. Uemura, T. Kawaguchi, H. Takayama, A. Nakamura, Y. Inoue, J. Mol. Catal. A Chem. 1999, 139, 1–9; e) T. Ishikawa, T. Mizuta, K. Hagiwara, T. Aikawa, T. Kudo, S. Saito, J. Org. Chem. 2003, 68, 3702–3705.
- [9] For a review, see: A. B. Forinash, S. L. Evans, *Pharmacotherapy* **2003**, *23*, 1573–1591.
- [10] a) P. M. Levine, K. Imberg, M. J. Garabedian, K. Kirshenbaum, J. Am. Chem. Soc. 2012, 134, 6912–6915;
 b) H. Hofmeister, K. Annen, H. Laurent, H. Wiechert, Angew. Chem. 1984, 96, 720–722; Angew. Chem. Int. Ed. Engl. 1984, 23, 727–729; c) Z. H. Liu, J. Q. Liu, L. Zhang, P. Q. Liao, J. N. Song, X. H. Bi, Angew. Chem. 2014, 126, 5409–5413; Angew. Chem. Int. Ed. 2014, 53, 5305–5309.
- [11] CCDC 1043515 (ACC-ethisterone) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [12] For typical examples on activation of the nucleophile (NH group) by acetic-based catalyst-catalyzed CO₂ conversion, see: a) B. Yu, H. Y. Zhang, Y. F. Zhao, S. Chen, J. L. Xu, L. D. Hao, Z. M. Liu, ACS Catal. 2013,

3, 2076–2082; b) W. J. Lu, J. Ma, J. Y. Hu, J. L. Song, Z. F. Zhang, G. Y. Yang, B. X. Han, *Green Chem.* **2014**, *16*, 221–225.

- [13] The carbon peaks shifted apparently in the position of C=C [from $\delta = (88.69 \text{ and } 70.10)$ to (89.70 and 68.75) ppm] and propargylic position (from $\delta = 64.90$ to 63.99 ppm), mainly due to the electronic effect of the activation of hydroxy and silver towards the unsaturated bond. The CH₃ ($\delta = 1.54$ ppm) group was unaffected. Other unlabelled peaks were assigned as follows: (n-C₇H₁₅)₄NOAc, ¹H NMR (CDCl₃, 400 MHz): $\delta = 3.32$ (t, J = 8.4 Hz, 8H, 4 -CH₂-N), 1.90 (s, 3H, CH₃COO), 1.61 (m, 8H, 4 -CH₂-), 1.27 (m, 32 H, 16 -CH₂-), 0.82 (t, J = 6.6 Hz, 12 H, 4 CH₃-); ¹³C NMR (CDCl₃, 100.6 MHz): $\delta = 176.5$, 58.9, 31.4, 28.7, 26.3, 25.2, 22.3, 22.1, 13.9.
- [14] For the recent reports on the synthesis of oxazolidinone derivatives from propargylic amines and CO₂, see:
 a) M. Feroci, M. Orsini, G. Sotgiu, L. Rossi, A. Inesi, J. Org. Chem. 2005, 70, 7795–7798; b) Y. Kayaki, M. Yamamoto, T. Suzuki, T. Ikariya, Green Chem. 2006, 8, 1019–1021; c) S. Yoshida, K. Fukui, S. Kikuchi, T. Yamada, Chem. Lett. 2009, 38, 786–787; d) M. Yoshida, T. Mizuguchi, K. Shishido, Chem. Eur. J. 2012, 18, 15578–15581; e) Y. Takeda, S. Okumura, S. Tone, I. Sasaki, S. Minakata, Org. Lett. 2012, 14, 4874–4877; f) S. Hase, Y. Kayaki, T. Ikariya, Organometallics 2013, 32, 5285–5288; g) K.-i. Fujita, J. Sato, K. Inoue, T. Tsuchimoto, H. Yasuda, Tetrahedron Lett. 2014, 55, 3013–3016.