(Iminoboryl)borate $[R_3B-B=NR]^-$: Durch Elektrophile E induzierte Umlagerung zu (Aminoboryl)boranen $R_2B-BR=NRE$

Stefan Luckert, Ulli Englert und Peter Paetzold*

Institut für Anorganische Chemie der Technischen Hochschule Aachen, D-52056 Aachen, Germany

Received October 30, 1995

Key Words: (Iminoboryl)borates / (Aminoboryl)boranes / Trialkyl(amino)diboranes(4)

(Iminoboryl)borates $[R_3B-B=NR]^-$: Rearrangement to (Aminoboryl)boranes $R_2B-BR=NRE$ by the Addition of Electrophiles E

(Iminoboryl)borates [Li(tmeda)₂][$R_2R'B-B\equiv NR$] (**2a**-**c**, R' = Me, Me₃SiCH₂, Me₃CCH₂) are formed from the azadiboriridine NB₂R₃ (**1**, R = *t*Bu) and LiR' in the presence of tmeda. Vinyllithium brings about a ring expansion of **1** to give the five-membered anionic ring [-CH=CH-BR=NR-BHR-]⁻, to which [Li(tmeda)]⁺ is bound (**3**). The (aminoboryl)boranes R₂B-BMe=NER (**4a**-**c**, EX = HCl, MeI, Me₃SiI) are obtained, when the polar compounds EX are added to **2a**, accom-

Synthese von (Iminoboryl)boraten

Das Azadiboriridin NB₂R₃ (1; R = *t*Bu) addiert Lewissäuren an seine basische B–B-Bindung^[1,2] oder läßt sich durch den Angriff ungesättigter Systeme (z.B. CO, CNR', R'C=CR' u.a.) an der B–B-Bindung spalten^[3,4]. Mit Lithiumalkaniden LiR' erreicht man – wie für R' = Me, Bu schon berichtet^[5] – die Spaltung einer B–N-Bindung von 1 und die Bildung von farblos festen (Iminoboryl)boraten, die in Gegenwart von Tetramethylendiamin (tmeda) in wohlkristallisierter Form erhalten werden [**2a**–**c**, Gl. (1)].

$$\frac{R}{RB} + \frac{LiR'}{PB} + 2 \text{ tmeda} [Li(tmeda)_2] \left[\begin{array}{c} R\\ R' - B\\ R \end{array} - B = R \end{array} \right] (1)$$

$$R = tBu = \frac{R'}{2a} \text{ Me}_{3}Si - CH_{2}$$

$$C = CH_{2}$$

Nach der röntgenstrukturanalytischen Sicherung eines Produkts vom Typ 2 ($\mathbf{R'} = \mathbf{Bu}^{[5]}$) folgt die Konstitution der neuen Produkte 2b, c aus den vergleichbaren NMR-Daten. – Den Mechanismus der Bildung von $2\mathbf{a}-\mathbf{c}$ aus 1 stellen wir uns so vor, daß sich zunächst Li $\mathbf{R'}$ an 1 in derselben Weise wie u.a. die Säure HOS(CF₃)O₂^[2] an die BB-Bindung addiert, nur daß in der Zwischenstufe A anstelle des H-Atoms jetzt das Li-Atom eine Dreizentrenbindung B-Li-B eingeht. Die Ablösung von Li⁺ durch Komplexbildung mit tmeda ist dann in einer konzertierten Reaktion von der Öffnung der B-N-Einfach-, der Bildung einer B-N-Dreifachbindung und einer 1,2-Verschiebung von R begleitet. panied by the elimination of LiX and the migration of Me. The borate **2b** reacts with HCl to give a mixture of the isomers $R_2B-B(CH_2SiMe_3)=NHR$ (**4d**) and $R(Me_3SiCH_2)-B-BR=NHR$ (**4d**'), and **2c** reacts with HCl to yield the borane $R(Me_3CCH_2)B-BR=NHR$ (**4e**') exclusively. The transformation of $[R_2R'B-B\equiv NR]^-$ to $R_2B-BR'=NRE$ by the attack of electrophiles E corresponds to the known transformation of $[R'_3B-C\equiv CR'']^-$ to $R'_2B-CR'=CR''E$.

Mit Vinyllithium reagiert 1 nicht zu einem Iminoborylborat, sondern der Vinvlrest spaltet die B-B-Bindung von 1 unter Bildung des Produkts 3 [Gl. (2)]. Zur Konstitution von 3 läßt sich aus den NMR-Spektren folgern, daß ein drei- und ein vierfach koordiniertes B-Atom vorliegen $[\delta(^{11}B) = -2.5, 25.0]$, daß an eines der Bor-Atome ein H-Atom gebunden ist (${}^{1}J = 85$ Hz), daß die Vinyl- in eine 1,2-Vinyliden-Gruppierung übergegangen ist und daß auf eine Ringeinheit ein Molekül tmeda trifft. Die Kristallstrukturanalyse von 3 (Abb. 1) erbrachte trotz guter Auflösung und eines ausreichenden Reflex-Parameter-Verhältnisses lediglich ein ungenaues Strukturmodell. Abgeleitete Geometriedaten sind mit vergleichsweise hohen Standardabweichungen behaftet, und die Verfeinerung konvergierte bei einem Gütefaktor von R = 0.127. Ausschlaggebend dafür sind zwei Fehlordnungsprobleme: Die konformative Instabilität des tmeda-Liganden äußert sich gleichermaßen in stark anisotropen Versetzungsparametern der Kohlenstoffatome wie auch in dem dadurch verkürzt erscheinenden interatomaren Abstand C20-C30. Zudem wurden zwei Konformere bezüglich der Rotationsstellung der tBu-Gruppe an B1 gefunden. Gesichert ist aber die Konstitution des Moleküls. Projeziert man das Li-Atom auf eine Ausgleichsebene durch den Fünfring B1-C1-C2-B2-N1, so ist die Projektion um ca. 40 pm vom ungewichteten Ringschwerpunkt weg auf die Atome N1-B1-C1 hin verschoben; dementsprechend ist der Abstand Li-B1 um knapp 40 pm und der

FULL PAPER

Abstand Li–C1 um ca. 20 pm kürzer als der Abstand Li–B2 bzw. Li–C2, so daß das Li-Atom offenbar trihapto an den Fünfring gebunden ist. Diese scheinbar unmögliche Bindungssituation für das schon vierfach koordinierte Atom B1 wird durch die Annahme einer B–H–Li-Dreizentrenbindung plausibel, und zusätzlich steht die Verfeinerung der Kristallstrukturbestimmung mit einem H-Atom in geeigneter Brückenposition in Übereinstimmung. – Es liegt nahe, daß LiC₂H₃ mit 1 – ähnlich wie EtC=CEt^[4] – zunächst eine [2 + 3]-Cycloaddition eingeht. Aus dem Cycloaddukt **B** entsteht dann durch Wanderung des Li- und eines H-Atoms das Produkt 3.

Abb. 1. Molekülstruktur von 3. – Ausgewählte Abstände [pm], Standardabweichungen in Klammern: N1–B1 156.1(3), N1–B2 143.0(4), C1–C2 130.8(4), B1–C1 160.1(4), B2–C2 159.3(4), Li–N1 228.1(5), Li–B1 230.9(5), Li–B2 268.0(6), Li–C1 229.2(5), Li–C2 249.5(5)

Einwirkung von Elektrophilen auf (Iminoboryl)borate

Behandelt man das (Iminoboryl)borat 2a mit Hydrogenchlorid, so addiert sich das H-Atom unter Abspaltung von LiCl an das N-Atom von 2a, und die Me-Gruppe wandert zum benachbarten B-Atom [Gl. (3a); die hier zum Ausdruck gebrachte Zweistufigkeit des Prozesses ist unbewiesen]. Mit Iodmethan oder Iodtrimethylsilan erhält man die analogen Produkte 4b, c, allerdings hier unter Bildung der entsprechenden quartären Derivate von tmeda [Gl. (3b)]. Die Produkte 4a-c lassen sich als (Aminoboryl)borane oder als Trialkyl(amino)diborane(4) verstehen. Im Falle von 4a, c beobachtet man nur eines der bezüglich der B-N-Doppelbindung denkbaren Z/E-Isomeren. Die beiden B-gebundenen *t*Bu-Gruppen erweisen sich NMR-spektroskopisch als äquivalent, wegen der Größe der BR₂-Gruppe eher eine Folge ihrer Senkrechtstellung bezüglich der B-B-N-Ebene als einer schnellen Rotation um die B-B-Bindung. Vermutlich liegt im Falle von **4a** das Z-Isomer vor, so daß sich die sperrigen Gruppen BR₂ und R an der B-N-Doppelbindung gegenüberstehen; im Falle von **4c** fällt eine solche Prognose schwer. – Das Produkt **4b** isoliert man in Form zweier Isomerer, wie ein doppelter Satz an NMR-Signalen im Verhältnis 73:27 ausweist. Vermutlich handelt es sich um Z/E-Isomere bezüglich der B-N-Doppelbindung. In beiden Isomeren sind die beiden *B*-gebundenen *t*Bu-Gruppen einander äquivalent.

Der Beweis für die Konstitution der farblos flüssigen Produkte 4a-c stützt sich ganz auf NMR-Daten (Tab. 1). Zunächst sprechen zwei ¹¹B-NMR-Signale bei $\delta =$ 94.2-101.3 und 48.9-57.2 für B-Atome in einem Diboran(4)-Gerüst, von denen eines an zwei organische und das andere an einen organischen Liganden und eine Aminogruppe gebunden sind^[6]. Vier ¹H-NMR-Singuletts im Verhältnis 18:9:3:1, 18:9:3:3 bzw. 18:9:3:9 für 4a-c spiegeln die Konstitution wider, bei den Konfigurationsisomeren von 4b werden die Bor- und Stickstoff-gebundenen Methylgruppen zusätzlich durch 2D-¹H/¹³C-HMQC-NMR-Experimente zugeordnet. Die typische Nichtauffindbarkeit der ¹³C-NMR-Signale *B*-gebundener C-Atome (BtBu) bzw. ihre Breite (BMe) ergänzen die erwarteten Befunde. Schließlich wurde die Diboran-Struktur von 4a durch einen Crosspeak im 2D-11B/11B-COSY-NMR-Spektrum bewiesen.

Auch die (Iminoboryl)borate 2b, c erfahren bei der Einwirkung von HCl eine Umlagerung im Sinne von Gl. (3). Dabei konkurrieren im Falle von 2b die Gruppen R' und R um die Umlagerung, so daß eine flüssige Mischung der Isomeren 4d und 4d' im Verhältnis 89:11 entsteht, während im Falle von 2c nur R unter Bildung des farblosen Festkörpers 4e' wandert [Gl. (4)]. Das Aminodiboran 4d weist einen mit 4a-c vergleichbaren Satz an NMR-Daten auf. In den Produkten 4d', e' ist dagegen die Äquivalenz der *B*-

Tab. 1. ¹H-, ¹³C- und ¹¹B-NMR-Signale (δ -Werte) der (Aminoboryl)borane R₂B-BR'=NRE (**4a**-d) und RR'B-BR=NRE (**4d**', e')

		4a	4b (I)	4b (II)	4c	4d	4d'[a]	4 e' ^[a]
ιΗ	BR	1.17	1.14	1.17	1.18	1.19	0.96, 1.14	1.02, 1.12 ^[b]
	NR	0.95	1.15	0.98	1.10	1.00	0.99	0.98
	R'	0.37	0.53	0.34	0.60	0.13, 0.13 ^[c]	0.17 ^[d]	1.16, 1.58, 1.79 ^[e]
	Е	4.05	2.39	2.50	0.34	4.15	4.28	4.14
13C	Me (BR)	30.6	30.0	28.8	32.1	31,1	29.9, 30.2	30.0, 31.2
	Me (NR)	31.7	30.6	31.7	32.4	31,8	32.0	31.9
	NC	50.0	56.2	55.0	55.0	50.4	50.2	50.3
	R'	9.2	8.0 ^[g]	6.7 ^[g]	9.2	2.0, 11.1 ^[c]	2.2, 29.4 ^[c]	31.5, 33.4, 50.9 ^[f]
	Е	1	42.8 ^[g]	31.7 ^[g]	7.2	1	1	1
пB	R_2B	101.3	97	97	94.2	96	96	101.4
	NB	48.9	54.6	50.9	57.2	49.4	49.4	51.5

^[a] Zur Zuordnung der *t*Bu-Gruppen dienten 2D-¹H/¹³C-NMR-HETCOR-Experimente. – ^[b] Im NOE-Experiment werden bei Einstrahlen der NH-¹H-NMR-Frequenz die Signale $\delta = 0.98$ (NR) und 1.02 (BR) verstärkt; letzteres gehört mithin zum gewanderten Rest R. – ^[c] SiMe₃, CH₂; Zuordnung über 2D-¹H/¹³C-NMR-HETCOR-Experimente. – ^[d] SiMe₃, die Signale für die diastereotopen CH₂-Protonen werden nicht gefunden. – ^[]e] s, d, d im Verh. 9:1:1, ²J = 16.8 Hz. – ^[C] C-2, *t*Bu, CH₂, Zuordnung über 2D-¹H/¹³C-NMR-HETCOR-Experimente. – ^[g] Zuordnung über 2D-¹H/¹³C-NMR-HETCOR-Experimente.

gebundenen *t*Bu-Gruppen aufgehoben, ein deutlicher Hinweis darauf, daß sich eine der beiden Gruppen umgelagert hat. Außerdem sind die Methylenprotonen des Neopentylrestes in **4e**' diastereotop; dies ist nur bei Wanderung der *t*Bu-Gruppe und Orthogonalität der BCC- und der BCN-Ebene möglich. Die entsprechenden Signale für die diastereotopen Methylenprotonen des Me₃SiCH₂-Rests in **4d**' sind hingegen zu intensitätsschwach, um im ¹H-NMR-Spektrum gefunden werden zu können. Für den Konstitutionsvergleich **4d/4d**' sind noch die ¹³C-NMR-Verschiebungen des Methylen-C-Atoms bei $\delta = 11.1/29.4$ erhellend; die geringere Abschirmung dieses Atoms in **4d**' ist zu erwarten, da hier das benachbarte B-Atom stärker ungesättigt ist als im Falle von **4d**, wo es eine B-N- π -Wechselwirkung eingeht. Indizien für *Z/E*-Isomere gibt es für **4d**, **d**', **e'** nicht.

Die Bildung der Aminoborane 4a, d, c' durch Umsetzung von 2a-c mit HCl verläuft gemäß NMR-spektroskopischer Produktkontrolle quantitativ. Im Falle der Methylierung und Silylierung von 2a entstehen noch Nebenprodukte, so daß man 4b nach einer Destillation mit 65% Ausbeute rein und 4c nur als nicht ohne Zersetzung destillierbares Rohprodukt mit ca. 90% Reinheit isoliert.

Ebenso quantitativ wie ihre Bildung gestaltet sich auch die Rückverwandlung der (Aminoboryl)borane 4a, d, d', e' in die (Iminoboryl)borate 2a-c, wenn man Butyllithium und tmeda zugibt [Gl. (5)].

$$R_{2}B \longrightarrow B(R') = NHR$$

$$+ LiBu$$

$$- C_{4}H_{9}$$

$$- Li^{+}$$

$$R' \longrightarrow B = NR$$

$$(5)$$

(Iminoboryl)borate sind isoelektronisch zu den seit langem bekannten Alkinylboraten^[7] $[R'_3B-C=CR'']^-$, und zwar in demselben Sinne wie Iminoborane R'B=NR'', und Alkine R'C=CR'' isoelektronisch sind^[8]. Die Reaktion der (Iminoboryl)borate mit Elektrophilen nach Gl. (3) und (4) überrascht insofern nicht, als die völlig analoge Reaktionen der Alkinylborate mit Elektrophilen gut untersucht ist; hier bietet die aus der Alkylgruppenwanderung resultierende C-C-Verknüpfung interessante synthetische Aspekte^[7] [Gl. (6]].

$$M\left[R'_{3}B - C \equiv CR''\right] \xrightarrow{+ EX} R'_{2}B - CR' \equiv CR''E \quad (6)$$

Experimenteller Teil

NMR: Varian Unity 500 bei 499.84 MHz (¹H; Standard TMS), 160.36 MHz (¹¹B; Standard BF₃ · OEt₂), 125.64 MHz (¹³C; Standard: TMS) in D₈[THF] (**2a-c**) oder C₆D₆ (**3**, **4a-e'**). – MS: Finnigan MAT 95 (EI, 70 eV). – Röntgenstrukturanalyse: Enraf-Nonius CAD4, Graphit-Monochromator. – Alle Versuche wurden unter trockenem Stickstoff ausgeführt. Die verwendeten Lösungsmittel waren sorgfältig getrocknet worden.

Bis[1,2-bis(dimethylamino)ethan]lithium-{di-tert-butyl{(tert-butylimino)boryl][(trimethylsilyl)methyl]borat} (2b): Zu 0.70 g (3.4 mmol) 1^[9] und 1.20 g (10.3 mmol) tmeda in 8 ml Et₂O gibt man bei $-78 \,^{\circ}$ C 329 mg (3.40 mmol) (Trimethylsilyl)methyllithium^[10] in 3 ml Et₂O. Man rührt 30 min bei $-78 \,^{\circ}$ C und bringt die Lösung dann innerhalb von 60 min auf Raumtemp. Aus der schwach gelben Lösung kristallisieren bei $-20 \,^{\circ}$ C 1.6 g (88%) **2b**. Das extrem luftempfindliche Produkt wurde nur NMR-spektroskopisch charakterisiert und erwies sich dabei als rein. $-^{1}$ H-NMR: $\delta = -1.02$ [q, $^{2}J(BH) = 4.2$ Hz, 2H, CH₂], -0.05 (s, 9H, SiMe₃), 0.74 [q, $^{3}J(BH) = 3.4$ Hz, 18H, BtBu], 1.14 (s, 9H, NtBu), 2.14, 2.30 (2 s, 24H bzw. 8H, 2 tmeda). $-^{11}$ B-NMR: $\delta = -16.0$, 15.6. $-^{13}$ C-NMR: $\delta = -3.02$ (SiMe₃), 7.8 [q, $^{1}J(BC) = 42$ Hz, CH₂], 34.9 (BCMe₃), 35.6 (NCMe₃), 45.9 (NMe), 47.4 (NCMe₃), 58.5 (NCH₂).

Bis[1,2-bis(dimethylamino)ethan]lithium-{di-tert-butyl[(tert-butylinino)boryl]neopentylborat} (2c): Man setzt 0.70 g (3.4 mmol) 1, 1.20 g (10.3 mmol) tmeda und 0.25 g (3.2 mmol) Neopentyllithium^[11] wie oben um und erhält bei Raumtemp. eine Suspension. Bei Zugabe von 5 ml Et₂O bildet sich eine ölige und eine leichtere etherische Phase. Aus dieser Mischung kristallisieren bei $-20 \,^{\circ}$ C 1.41 g (85%) NMR-spektroskopisch reines 2c. $-^{1}$ H-NMR: $\delta = 0.15$ [q, $^{2}J(BH) = 4.6$ Hz, 2H, CH₂], 0.77 [q, $^{3}J(BH) = 2.4$ Hz, 18H, B/Bu], 0.99 (s, 9H, CtBu), 1.16 (s, 9H, NtBu), 2.14, 2.30 (2 s, 24H bzw. 8H, 2 tmeda). $-^{11}$ B-NMR: $\delta = -16.3$, 16.2. $-^{13}$ C-NMR: $\delta = 33.2$ (CCMe₃), 35.0 (CCMe₃), 35.6 (NCMe₃), 35.8 (BCMe₃), 58.6 (NCH₂).

[1,2-Bis(dimethylamino)ethan]lithium-(1,2,5-tri-tert-butyl-1aza-2-bora-5-borata-1,3-cyclopentadienid) (3): Zu einer auf -78°C gekühlten Lösung von 1.00 g (4.83 mmol) 1 und 0.58 g (5.0 mmol) tmeda in 10 ml Et₂O gibt man im Verlauf von 10 min 8.4 ml einer 0.573 м Lösung von Vinyllithium in Ether^[12]. Die gelbe Lösung bringt man im Verlauf von 2 h auf Raumtemp. und rührt noch 1 h. Nach Entfernen aller flüchtigen Komponenten i. Vak., zuletzt bei 40°C/10⁻³ Torr, erhält man ein gelbes Öl. Festes Produkt kristallisiert bei -20°C aus 5 ml Toluol. Nochmaliges Kristallisieren aus Toluol/Hexan/Ether (4:2:1) ergibt für die Strukturanalyse geeignetes kristallines Produkt in einer Ausb. von 1.28 g (74%), Schmp. 35°C. Das äußerst hydrolyseempfindliche Produkt zersetzt sich in THF. $-{}^{1}$ H-NMR: $\delta = 1.35$ (s, br., 9H, BtBu), 1.45 (s, 9H, tBu), 1.59 (s, 9H, tBu), 1.53, 1.75 (2 s, br., 4 bzw. 12H, tmeda), 2.29 (q, ${}^{1}J = 85$ Hz; im ${}^{11}B/{}^{1}H-2D-HMQC-Spektrum als Crosspeak mit$ $\delta = -2.5$ beobachtet, BH), 7.04, 7.64 (2 d, J = 10.7 Hz, je 1 H, CH=CH. $-{}^{11}$ B-NMR: $\delta = -2.5$ (d, ${}^{1}J = 85$ Hz), 45.0 (br.). - 13 C-NMR: = 23.0 (br., BC), 33.0, 33.1, 36.0 (Me von 3 *t*Bu), 46.0 (Me von tmeda), 51.4 (NC), 56.3 (CH₂ von tmeda), 149.8, 171.8 (br., CH=CH).

1,1-Di-tert-butyl-2-(tert-butylamino)-2-methyldiboran(4) (4a): Zu einer Lösung von 312 mg (0.676 mmol) 2a in 5 ml frisch destilliertem THF gibt man bei $-78 \,^{\circ}$ C 1.4 ml 0.48 M HCl in Et₂O. Man entfernt alle flüchtigen Anteile bei 25 °C/0.1 Torr, nimmt den Rückstand in 5 ml Hexan auf, filtriert mit einer mit Kieselgur belegten Porzellanfritte (G4) und entfernt das Lösungsmittel i.Vak. Man gewinnt 143 mg (95%) farblos flüssiges 4a.

1,1-Di-tert-butyl-2-(tert-butylmethylamino)-2-methyldiboran(4) (4b): Bei -40 °C tropft man 1.0 g (7.0 mmol) Iodmethan, das frisch über CaH₂ destilliert worden ist, zu 414 mg (0.897 mmol) 2a in 8 ml frisch destilliertem THF, läßt auf Raumtemp. kommen, rührt noch 2 h und arbeitet wie oben auf. Durch Destillieren bei 70 °C/ 0.002 Torr erhält man 138 mg (65%) 4b als farblose Flüssigkeit. – MS, m/z (%): 237 (8) [M⁺; für C₁₄H₃₃B₂N ber. 237.27992, gef. 237.28000], 180 (4) [M - Bu], 112 (10) [M - BBu₂], 57 (100) [Bu⁺] u.a.

1,1-Di-tert-butyl-2-[tert-butyl(trimethylsilyl)amino]-2-methyldiboran(4) (4c): 360 mg (0.780 mmol) 2a in 5 ml frisch destilliertem THF vereint man bei $-78 \,^{\circ}$ C mit 1.0 g (5.0 mmol) frisch destilliertem Iodtrimethylsilan. Die trübe Mischung bringt man im Verlauf von 1 h auf Raumtemp. und rührt noch 1 h. Bei 90°C/0.001 Torr gewinnt man eine farblose Flüssigkeit, die gemäß NMR-Spektren zu ca. 90% aus 4c besteht. – MS, m/z (%): 295 (1) [M⁺; für $C_{16}H_{39}B_2NSi$ ber. 295.3038, gef. 295.30272], 170 (25) [M – BBu₂], 114 (100) [M – BBu₂ – Bu] u.a.

1,1-Di-tert-butyl-2-(tert-butylamino)-2-[(trimethylsilyl)methyl]diboran(4) (4d) und 1,2-Di-tert-butyl-1-(tert-butylamino)-2-[(trimethylsilyl)methyl]diboran(4) (4d'): Wie bei 4a beschrieben, erhält man aus 340 mg (0.656 mmol) 2b und 1.3 ml 0.48 \times HCl in Et₂O 175 mg (95%) farbloses flüssiges Produkt, das gemäß NMR-Spektrum aus einer Mischung der Isomeren 4d und 4d' im Verhältnis 89:11 besteht. – MS, m/z (%): 295 (1) [M⁺; für C₁₆H₃₉B₂NSi ber. 295.3038, gef. 295.3038], 238 (4) [M – Bu], 73 (30) [SiMe₃⁺], 57 (100) [Bu⁺] u.a.

1,2-Di-tert-butyl-1-(tert-butylamino)-2-neopentyldiboran(4) (4e'): Ebenso gewinnt man aus 465 mg (0.873 mmol) 2c und 1.8 ml 0.48 M HCl in Et₂O 221 mg (95%) farblos festes 4e'. – MS, *mlz* (%): 270 (0.5) [M⁺], 222 (1) [M – Bu, für $C_{13}B_{30}B_2N$ ber. 222.25642, gef. 222.2558], 166 (10) [M – Bu – C_4H_8], 57 (100) [Bu⁺] u.a.

Gewinnung von 2a aus 4a: Bei $-78 \,^{\circ}$ C tropft man zu 112 mg (0.502 mmol) 4a in 3 ml THF 0.3 ml 1.6 M Butyllithium in Hexan und 116 mg (1.00 mmol) tmeda. Nach 1stdg. Rühren bei Raumtemp. entfernt man alle flüchtigen Anteile i.Vak. und entimmt den NMR-Spektren, daß sich ausschließlich 2a gebildet hat. – Aus 4d/ 4d' und 4e' erhält man ebenso 2b bzw. 2c.

Kristallstrukturuntersuchung von 3: $C_{20}H_{46}B_2LiN_3$, M = 357.17g mol⁻¹. Kristalldaten: a = 853(1), b = 1953.0(7), c = 1462.7(7)pm, $\beta = 93.24(7)^\circ$, V = 2.431(3) nm³, Z = 4, $d_{ber} = 0.976$ g cm⁻³, Raumgruppe $P2_1/c$ (Nr. 14). Kristallgröße: $0.7 \times 0.6 \times 0.6$ mm³. Meßtemp. –70 °C. Cu- K_{α} -Strahlung ($\lambda = 154.184$ pm); 6357 Reflexe im ω - Θ -scan-Modus bei 5 < Θ < 73°; μ = 3.77 cm⁻¹; keine Absorptionskorrektur. Strukturlösung mit direkten Methoden (SHELXS-86). Alle Nichtwasserstoff-Atome außer dem Minoritätskonformer der fehlgeordneten tBu-Gruppe wurden anisotrop verfeinert, letztere isotrop mit d(C-C) = 154 pm am quartären Kohlenstoff-Atom der Gruppe mitgeführt. Die Wasserstoff-Atome in den fehlgeordneten Gruppen wurden in idealisierten Positionen [d(C-H) = 98 pm] in die Strukturfaktorrechnung einbezogen, während die übrigen H-Atome einschließlich des an der Dreizentrenbindung beteiligten isotrop verfeinert wurden. Konvergenz bei $R = 0.127, R_w = 0.139 [w^{-1} = \sigma^2(F_o)]$ mit 3233 unabhängigen Reflexen $I > 1 \cdot \sigma(I)$ für 316 Variable. Maximale Restelektronendichte in einer abschließenden Differenz-Fourier-Synthese: 0.39 · 10⁶ e · pm⁻³ in der Nähe des tmeda-Liganden^[13].

- [1] M. Müller, T. Wagner, U. Englert, P. Paetzold, Chem. Ber. 1995, 128, 1-9.
- ^[2] M. Müller, E. Eversheim, U. Englert, R. Boese, P. Paetzold, *Chem. Ber.* 1995, 128, 99-103.
- ^[3] S. Luckert, E. Eversheim, M. Müller, B. Redenz-Stormanns, U. Englert, P. Paetzold, *Chem. Ber.* **1995**, *34*, 1029–1035.
- [4] P. Paetzold, B. Redenz-Stormanns, R. Boese, Chem. Ber. 1991, 124, 2435-2441.
- [5] E. Eversheim, U. Englert, R. Boese, P. Paetzold, Angew. Chem. 1994, 106, 211-214; Angew. Chem. Int. Ed. Engl. 1994, 33, 201-202.
- B. Wrackmeyer in Annual Reports on NMR Spectroscopy, Bd. 20, Academic Press, London, 1988.
- ^[7] E.-I. Negishi, J. Organomet. Chem. 1976, 108, 281-324.
- ^[8] P. Paetzold, Adv. Inorg. Chem. 1987, 31, 123-170.
- ^[9] R. Boese, B. Kröckert, P. Paetzold, *Chem. Ber.* **1987**, *120*, 1913-1915.
- ^[10] J. W. Conolly, G. Urry, Inorg. Chem. 1963, 2, 645-646.
- [11] R. R. Schrock, J. D. Fellmann, J. Am. Chem. Soc. 1978, 100, 3359-3370.

- ^[12] C. S. Johnson Jr., M. A. Weiner, J. S. Waugh, D. Seyferth, J. Am. Chem. Soc. 1961, 83, 1306-1307.
 ^[13] Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-

Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-380090, der Autorennamen und des Zeitschriftenzitats angefor-dert werden.

[95169]