Solvent-Free Synthesis of 1,3-Diphenyl-5-arylpyrazole Derivatives

Ji-Tai Li*, Ying Yin and Xian-Tao Meng

College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medical Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, P.R. China

Received December 29, 2008: Revised April 16, 2009: Accepted April 23, 2009

Abstract: The synthesis of 1,3-diphenyl-5-arylpyrazoles *via* the reactions of 2,3-epoxy-1-phenyl-3-aryl-1-propanones with phenylhydrazine was carried out in 48-84% yields at 230 °C under solvent-free condition within 1.5 h. This method provides several advantages such as operational simplicity, higher yield and solvent-free.

Keywords: cyclization, 1,3-diphenyl-5-arylpyrazole, synthesis, solvent-free reaction, heterocycles.

INTRODUCTION

Aryl pyrazoles are ubiquitous substructures with important biological activity and pharmacological properties [1], including antimicrobial [2], anti-inflammatory [3], hypoglycemic [4], anti-hypertensive [5] and analgesic [6] properties. As a part of drug development program, numerous methods for the synthesis of 1,3,5-triarylpyrazoles have been reported [7-12]. However, in spite of their potential utility, some of the reported methods suffer from draw-backs such as longer reaction time, lower yield, expensive transition metal oxidant, use of toxic organic solvent and complexity of work-up. Thus, the development of a simple, efficient and green method for the preparation of 1,3-diphenyl-5arylpyrazoles is an active area of research.

RESULTS AND DISCUSSION

Under solvent-free condition, the effect of the reaction conditions on the condensation of 2,3-epoxyl-1,3-diphenyl-1-propanone (1a) and 2 was observed. The results are summarized in Table 1.

As shown in Table 1 (Entries 1-5), the yield of 3a increased from 48% to 82 % by changing the temperature from 170 °C to 230 °C. When the temperature was 240 °C, the 3a was obtained in 77 % yield. The results showed that 230 °C was the appropriate temperature for this reaction.

The molar ratio of substrate and reagent showed crucial effect on the reaction yield. When the molar ratio of **1a** and **2** was 1:1.1, **3a** was obtained in 82% yield (Entry **4**). When the

Scheme 1. Synthesis of 1,3-diphenyl-5-arylpyrazoles.

One of the greatest environmentally problematic aspects of organic synthetic chemistry is the use of solvent. The best way is to eliminate the use of solvent [13]. Refraining from the use of solvents in organic synthesis has led to improved results and milder synthetic procedures in some cases. Moreover, solvent-free thermal reactions are more important for practical synthetic processes in the industry [14,15].

All of the results stated above spur us to study the possibility of solvent-free synthesis of 1,3-diphenyl-5arylpyrazoles. Herein, we wish to report a simple and efficient method for synthesis of 1,3-diphenyl-5-arylpyrazoles under the solvent-free condition (Scheme 1). molar ratio was 1:1 or 1:1.2, the yield of 3a was 70% and 82% respectively (Entries 6 and 7).

In order to examine the effect of reaction times, the reaction of 1a and 2 was selected as a model reaction. It was found that when the reaction time was 1.5 h, the yield of 3awas 82%, and prolonged reaction time had little effect on yield.

From the results above, the reaction conditions we chose were as follows: the ratio of **1a** and **2** was 1:1.1, the temperature was 230 $^{\circ}$ C and the reaction time was 1.5 h. Using this reaction system, a series of 1,3-diphenyl-5-arylpyrazoles were prepared. The results are summarized in Table **2**.

From these results, we can deduce that the yields are in general, similar or higher than those described in literatures [7-12]. Compared with other reported methods, the main

^{*}Address correspondence to this author at the College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, P.R. China; Fax: +86-312-5079628; E-mail: lijitai@hbu.cn

Table 1. The Effect of Reaction Conditions on the Condensation of 1a and 2

Entry	Molar ratio ^a	Time (h)	Temp. (°C) ^b	Isolated yield (%)
1	1:1.1	2	170	48
2	1:1.1	2	190	55
3	1:1.1	2	210	74
4	1:1.1	2	230	82
5	1:1.1	2	240	77
6	1:1	2	230	70
7	1:1.2	2	230	82
8	1:1.1	1.5	230	82
9	1:1.1	2.5	230	82
10	1:1.1	3	230	79

^aMolar ratio of **1a** and **2**.

^bThe temperature of oil bath.

Table 2. Condensation of 2,3-Epoxy-1-phenyl-3-aryl-1-propanones and Phenylhydrazine^a

Entry	Ar	Product	Isolated yield (%)	m.p. (°C) (lit.)
a	C ₆ H ₅	3a	82	138-139(138-138.5) [17]
b	$3-NO_2C_6H_4$	3b	56	128-130(130) [18]
с	$4-NO_2C_6H_4$	3c	48	137-139(139-141) [8]
d	$2-ClC_6H_4$	3d	84	yellow liquid
e	3-ClC ₆ H ₄	3e	75	91-93(93-95) [8]
f	$4-ClC_6H_4$	3f	81	106-108(104-105) [7b]
g	2, 4- Cl ₂ C ₆ H ₃	3g	77	yellow liquid
h	3, 4- Cl ₂ C ₆ H ₃	3h	81	83-84
i	$2-CH_3OC_6H_4$	3i	82	145(116-117) [7b]
j	$3-BrC_6H_4$	3ј	79	107

^aReaction temperature, 230 °C; reaction time, 1.5 h; the molar ratio of **1a** and **2**, 1:1.1.

advantages of the procedure are operational simplicity, higher yields and solvent-free, which make it a useful and attractive process for the synthesis of these compounds.

In conclusion, we have found an efficient and practical procedure for the synthesis of some 1,3-diphenyl-5-arylpyrazoles *via* the condensation of 2,3-epoxy-1-phenyl-3-aryl-1-propanones and phenylhydrazine under a solvent-free condition.

EXPERIMENTAL

2,3-Epoxy-1-phenyl-3-aryl-1-propanones were prepared according to literature [16]. Melting points was uncorrected. The ¹H NMR spectras were recorded on a Bruker AVANCE 400 (400 MHz) spectrometer using TMS as internal standard and CDCl₃ as solvent. MS were determined on SHIMADZU (LCMS-2010EA, UVD/ELSD) using CH₃CN & H₂O (0.05% TFA) as mobile phase, the column type is Shim_pack XR-ODS with length 50 mm and internal 3 mm, the flow rate is 1 mL/min, and the gradient is as follows. Time (min.)/CH₃CN (%): 0/15, 1.70/100, 3.20/100, 3.33 /10, 3.60/stop.

Typical Procedure for the Preparation of 1,3-Diphenyl-5arylpyrazoles

A 25 mL round-bottomed flask was charged with **1a-j** (1.0 mmol), and **2** (0.119 g, 1.1 mmol). The mixture was heated at 230 °C. After completion of the reaction (the reaction was followed by TLC), the reaction mixture was purified by column chromatography on silica gel (200-300 mesh) eluted with a mixture of petroleum ether and ethyl acetate to afford the product **3a-j**. The authenticity of the products **3d**, **3g**, **3h**, **3i** and **3j** were established by their ¹H NMR, MS; the rest known compounds were established by their MS and melting points compared with that reported in literatures [7, 8, 17,18].

Compound 3a

1,3,5-triphenyl-1H-pyrazole, yellow solid, m.p.138-139 °C; m/z (ES): 297 [M+H]⁺.

Compound 3b

5-(3-nitrophenyl)-1,3-diphenyl-1H-pyrazole, yellow solid, m.p. 128-130 °C; m/z (ES): 342 [M+H]⁺.

Compound 3c

5-(4-nitrophenyl)-1,3-diphenyl-1H-pyrazole, yellow solid, m.p. 137-139 °C; m/z (ES): 342 [M+H]⁺.

Compound 3d

5-(2-chlorophenyl)-1,3-diphenyl-1H-pyrazole, yellow liquid; *m*/*z* (ES): 331 [M+H]⁺; ¹H NMR (400MHz, CDCl₃): $\delta_{\rm H}$ 6.86 (1H, s, pyrazole-H), 7.25-7.45 (12H, m, Ar-H), 7.95 (2H, d, *J*=7.2Hz, Ar-H).

Compound 3e

5-(3-chlorophenyl)-1,3-diphenyl-1H-pyrazole, yellow solid, m.p. 91-93 °C; m/z (ES): 331 [M+H]⁺.

Compound 3f

5-(4-chlorophenyl)-1,3-diphenyl-1H-pyrazole, yellow solid, m.p. 106-108 °C; m/z (ES): 331 [M+H]⁺.

Compound 3g

5-(2,4-dichlorophenyl)-1,3-diphenyl-1H-pyrazole, yellow liquid; m/z (ES): 365 [M+H]⁺; ¹H NMR (400 MHz, CDCl₃): δ_H 6.84 (1H, s, pyrazole-H), 7.17-7.45 (11H, m, Ar-H),7.93 (2H, d, *J*=7.1Hz, Ar-H).

Compound 3h

5-(3,4-dichlorophenyl)-1,3-diphenyl-1H-pyrazole, yellow solid, m.p. 83-84 °C; *m/z* (ES): 365 [M+H]⁺; ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 6.83 (1H, s, pyrazole-H), 7.00(1H, dd, J_1 =8.3Hz, J_2 =1.7Hz, Ar-H), 7.33-7.45 (11H, m, Ar-H),7.89 (2H, d, J=7.4Hz, Ar-H).

Compound 3i

5-(2-methoxyphenyl)-1,3-diphenyl-1H-pyrazole, yellow solid, m.p. 145 °C; *m/z* (ES): 327 [M+H]⁺; ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 3.40 (3H, s, OCH₃), 6.81 (2H, S, Ar-H), 7.01(1H, t, *J*=7.4Hz, pyrazole-H) 7.01-7.45 (10H, m, Ar-H), 7.94 (2H, d, *J*=7.3Hz, Ar-H).

Compound 3j

5-(3-bromophenyl)-1,3-diphenyl-1H-pyrazole, yellow solid, m.p. 107 °C; *m/z* (ES): 375 [M+H]⁺; ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 6.85 (1H, s, pyrazole-H),7.12-7.19 (2H, m, Ar-H), 7.34-7.52 (10H, m, Ar-H),7.91 (2H, d, *J*=7.3Hz, Ar-H).

ACKNOWLEDGEMENTS

The project was supported by Natural Science Foundation of Hebei Province (B2006000969), China.

REFERENCES

- (a) Pargellis, C.; Tong, L.; Churchill, L.; Cirillo, P.; Gilmore, G.; Graham, A. G.; Grob, P. A.; Hickey, E. R.; Moss, N.; Pav, S.; Regan, J. Nat. Struct. Biol., 2002, 9, 268; (b) Dumas, J.; Hatoum-Mokdad, H.; Sibley, R.; Riedl, B.; Scott, W. J.; Monahan, M. K.; Lowinge, T. B.; Brennan, C.; Natero, R.; Turner, T.; Johnson, J.; Schoenleber, R.; Bhargava, A.; Wilhelm, S. W.; Housley, T. J.; Gerald, E. R.; Shrikhande, A. Bioorg. Med. Chem. Lett. 2000, 10, 2051; (c) Menozzi, G.; Mosti, L.; Schenone, P.; Donnoli, D.; Schiariti, F.; Marmo, E. Farmaco, 1990, 45, 167.
- [2] Singh, S. P.; Naithani, R.; Aggarwal, R.; Prakesh, O. Indian J. Heterocycl. Chem., 2001, 11, 27.
- [3] Nargund, L. V. G.; Hariprasad, V.; Reddy, G. R. N. J. Pharm. Sci., 1992, 81, 892.
- [4] Bauer, V. J.; Dalalian, H. P.; Fanshawe, W. J.; Safir, S. R.; Tocus, E. C.; Boshart, C. R. J. Med. Chem., 1968, 11, 981.
- [5] Ashton, W. T.; Hutchins, S. M.; Greenlee, W. J.; Doss, G. A.; Chang, R. S. L.; Lotti, V. J.; Faust, K. A.; Chen, T. B.; Zingaro, G. J.; Kivlighn, S. D.; Siegl, P. K. S. J. Med. Chem., **1993**, *36*, 3595.
- [6] Menozzi, G.; Schenone, P. L.; Mosti, J. Heterocycl. Chem., 1993, 30, 997.
- [7] (a) Huang, Y. R. and Katzenellenbogen, J. A. Org. Lett., 2000, 2(18), 2833; (b) Bishop, B. C.; Brands, K. M. J.; Gibb, A. D.; Kennedy, D. J. Synthesis, 2004, (1), 43.
- [8] Azarifar, D.; Maleki, B. Synth. Commun., 2005, 35(19), 2581.
- [9] Heller, S. T. and Natarajan, S. R. Org. Lett., 2006, 8(13), 2675.
- [10] Deng, X. H. and Mani, N. S. Org. Lett., 2006, 8(16), 3505.
- [11] Ahlström, M. M.; Ridderström, M.; Zamora, I. and Luthman, K. J. Med. Chem., 2007, 50(18), 4444.
- [12] Liu, H. L.; Jiang, H. F.; Zhang, M.; Yao, W. J.; Zhu, Q. H.; Tang, Z. Tetrahedron Lett., 2008, 49(23), 3805.
- [13] Sheldon, R. A. Selective catalytic synthesis of fine chemicals: opportunities and trends. J Mol. Catal., 1996, 107, 75.
- [14] (a) Tanaka, K.; Toda, F. *Chem. Rev.*, **2000**, *100*, 1025; (b)
 Choudhary, V. R.; Dhar, A.; Jana, P.; Jha, R.; Uphade, B. S. *Green Chem.*, **2005**, *7*, 768.
- [15] Deka, N.; Mariotte, A. M.; Boumendjel, A. A. Green Chem., 2001, 3, 263.
- [16] Li, J. T.; Liu, X. F. Ultrason. Sonochem., 2008, 15(4), 330.
- [17] Ponnala, S.; Sahu, D. P. *Synth. Commun.*, **2006**, *36*, 2189.
- [18] Shah, J. N.; Shah, C. K. J. Org. Chem., **1978**, 43, 1266.