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Sodium fluoride as an efficient catalyst for the synthesis of 2,4-
disubstituted-1,3-thiazoles and selenazoles at ambient temperature
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A B S T R A C T

Sodium fluoride was found to be a simple, mild and efficient catalyst for the synthesis of 2,4-

disubstituted 1,3-thiazoles and selenazoles utilizing phenacyl bromides/3-(2-bromoacetyl)-2H-chro-

men-2-one and thiourea/phenylthiourea/selenourea in aqueous methanol at ambient temperature.

Analytically pure products are formed within 1–3 min in excellent yields.

� 2013 Rajitha Bavantula. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights

reserved.
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1. Introduction

Thiazole is a core structural motif present in a variety of natural
products, such as vitamin B1 (thiamine) and penicillin. Thiazole
derivatives also exhibit a broad spectrum of medicinal and
biological properties, such as antibacterial, antifungal [1], anti-
inflammatory [2], antiviral [3], antimalarial [4] and anti-HIV
activities [5]. Thiazole analogs have also been reported as ligands
at estrogen receptors [6], neuropeptide Y5 [7], adenosine receptors
[8], and act as inhibitors of human platelet aggregation factor [9],
urokinase [10] and poly (ADP-Ribose) polymerase-1 [11]. Selena-
zoles have been reported to possess antibacterial [12], and
superoxide anion scavenging activity [13], and exhibit cytotoxicity
and DNA fragmentation effects in human HT-1080 fibrosarcoma
cells [14]. The structures of sulfathiazole, meloxicam, and
selenazofurin and their pharmacological activities are given in
Fig. 1.

In view of the importance of thiazole and selenazole derivatives
in medicinal chemistry, several methods for their synthesis have
been reported utilizing various catalytic systems, such as
ammonium-12-molybdophosphate [15], b-cyclodextrin [16],
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CuPy2Cl2 [17], HMCM-41 [9], and also under different solvent
systems, such as ionic liquid/water [18], PEG-400 [19], glycerin
[20] and water [21]. However, most of these reported methods
suffer from drawbacks, such as harsh reaction conditions,
unsatisfactory yields, longer reaction times and critical isolation
procedures, and use of hazardous and expensive catalysts.
Therefore, to overcome the above limitations we have developed
a simple, mild and highly efficient protocol for the synthesis of
thiazoles and selenazoles utilizing sodium fluoride (NaF) as a
catalyst in aqueous methanol.

2. Experimental

Melting points were recorded on Stuart SMP30 apparatus and
are uncorrected. Analytical thin layer chromatography was
performed on F254 silica-gel precoated sheets using hexane/ethyl
acetate (8:2) as eluent, and visualized with UV light and iodine
vapor. Products were characterized by comparison with authentic
samples, and by spectral data (IR, 1H NMR and mass spectrometry).
IR spectra were recorded on a Perkin-Elmer 100S spectrophotom-
eter using a KBr disk. 1H NMR spectra were recorded on a Bruker
400 MHz spectrometer using DMSO-d6 as solvent and TMS as
internal standard. Elemental analyses were performed on a Carlo
Erba modal EA1108 unit, and the values obtained are within �0.4%
of the theoretical values. Mass spectra were recorded on a Jeol JMSD-
300 spectrometer.
n behalf of Chinese Chemical Society. All rights reserved.
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Fig. 1. Biologically active thiazole and selenazole derivatives.
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Scheme 1. Synthesis of 1,3-thiazoles and 1,3-selenazoles.

Table 1
Comparison of the catalytic activity of NaF with other catalysts in the synthesis of 4-

(4-chlorophenyl)thiazol-2-amine (4a).

Entrya Catalyst (0.02 g) Time (min) Yieldb (%)

1 NaF 1 99

2 KF 5 94

3 CuCl2 5 90

4 AlCl3 5 88

5 SnCl2 10 86

6 BaCl2 10 85

7 PCl5 5 82

8 CuPy2Cl2 5 88

9 CoPy2Cl2 5 87

CuPy2Cl2, Dipyridine copper chloride; CoPy2Cl2, Dipyridine cobalt chloride.
a Reaction conditions: 4-chlorophenacyl bromide (1 mmol), thiourea (1 mmol),

catalyst (0.02 g), methanol:water (1:1 v/v), stirring at ambient temperature.
b Isolated yields.
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2.1. General procedure for the synthesis of 1,3-thiazoles and

selenazoles (3–9):

The appropriate phenacylbromide or 3-(2-bromoacetyl)-2H-
chromen-2-one (1 mmol) and either thiourea, phenylthiourea or
selenourea (1 mmol) were dissolved in 2 mL of methanol, water
(2 mL) containing 0.02 g of NaF added and the mixture stirred at
room temperature for the appropriate time. After completion of
Table 2
NaF-catalyzed synthesis of substituted 1,3-thiazoles and 1,3-selenazoles.

Entrya Product X R’ Time (min) Yieldb (%) Melting point (8C)

Found Lit. [Ref.]

1 3a S NH2 1 98 150–152 150–151 [21]

3b S NH-Ph 1 98 134–136 135–136 [21]

3c Se NH2 2 97 132–134 132 [16]

2 4a S NH2 1 99 166–168 167–168 [19]

4b S NH-Ph 1 98 145–146 144–146 [19]

4c Se NH2 1 97 154–156 157 [16]

3 5a S NH2 1 96 182–184 176–177 [23]

5b S NH-Ph 1 98 230–232 –

5c Se NH2 1 98 177–178 132 [16]

4 6a S NH2 3 93 204–206 206–207 [21]

6b S NH-Ph 2 95 137–138 138–139 [21]

6c Se NH2 3 94 194–195 173 [16]

5 7a S NH2 2 97 135–136 –

7b S NH-Ph 1 98 102–103 –

7c Se NH2 2 98 166–168 167 [16]

6 8a S NH2 2 97 284–286 –

8b S NH-Ph 1 97 206–207 –

8c Se NH2 2 98 269–271 250 [16]

7 9a S NH2 1 99 228–229 –

9b S NH-Ph 1 98 188–190 –

9c Se NH2 1 98 217–218 280 [17]

a Reaction conditions: phenacyl bromide/3-(2-bromoacetyl)-2H-chromen-2-one (1 mmol), thiourea/phenylthiourea/selenourea (1 mmol), methanol:water (1:1 v/v),

stirring at ambient temperature.
b Isolated yields.
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Scheme 2. Proposed mechanism.
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the reaction, 10 mL of water was added and the solid that
separated out was filtered off and washed with water, affording
analytically pure substituted 1,3-thiazoles or 1,3-selenazole
derivatives in excellent yields.

Associated characterization data can be found in Supporting
information.

3. Results and discussion

In continuation of our studies toward the synthesis of
biologically active molecules [22], we now report the synthesis
of substituted 1,3-thiazoles and 1,3-selenazoles from the reaction
of v-bromoacetophenones and 3-(v-bromoacetyl)coumarin with
thiourea, phenylthiourea and selenourea utilizing NaF as catalyst
in 1:1 (v/v) methanol/water at ambient temperature. Under these
conditions excellent yields and rapid reaction times were obtained
(Scheme 1).

In order to determine optimal conditions, initially, a model
reaction between 4-chlorophenacyl bromide and thiourea was
carried out in methanol by varying the amount of NaF catalyst. A
maximum yield of 92% was obtained with 0.02 g of NaF within
5 min. Increasing amount of NaF led to no change in product yield
or reaction time. Several similar synthetic methodologies have
been reported utilizing water as solvent [21]; hence we carried out
the reaction in 1:1 (v/v) water/methanol utilizing 0.02 g of NaF. To
our surprise, under these conditions the reaction was completed
within 1 min and afforded analytically pure 4-(4-chlorophe-
nyl)thiazol-2-amine (4a) in 99% yield. We also carried out the
reaction in pure water, but these conditions required a longer
reaction time (25 min) for complete conversion. For authenticity,
the structure of 4a was confirmed on the basis of IR, 1H NMR and
mass spectral data and comparison with a literature report [19].

To investigate the unique catalytic activity of NaF, the above
reaction was also carried out utilizing different inorganic and
organometallic catalysts. These results clearly showed that, NaF is
a unique and efficient catalyst for the synthesis of thiazoles at
ambient temperature (Table 1).

After optimizing the reaction conditions, we examined the
scope and generality of the method utilizing other substrates, i.e., a
variety of phenacyl bromides, 3-(2-bromoacetyl)-2H-chromen-2-
one, and thiourea, phenylthiourea and selenourea. All the products
from these reactions were obtained within 1–3 min in excellent
yields. The results are presented in Table 2.

The proposed reaction pathway for the NaF-catalyzed forma-
tion of 2,4-disubstituted-1,3-thiazoles and selenazoles is shown in
Scheme 2. In the presence of NaF, the electrophilicity of the
carbonyl carbon of substituted 2-bromo ethanones is enhanced
due to coordination of the carbonyl oxygen with NaF. Amination
followed by cyclization and dehydration affords the desired
thiazole or selenazole.

4. Conclusion

In conclusion, we have developed a facile method for the
synthesis of substituted 1,3-thiazoles and 1,3-selenazoles by the
reaction of v-bromoacetophenones and 3-(v-bromoacetyl)-cou-
marin with thiourea, phenylthiourea, and selenourea in the
presence of NaF as a catalyst at ambient temperature. This
methodology offers several advantages over other procedures,
including higher yields, shorter reaction times, easy work-up
procedure, and analytically pure products. We believe that, this
methodology is superior over other reported methods, and may
have industrial utility in the synthesis of substituted 1,3-thiazoles
and 1,3-selenazoles at ambient temperature.
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